Investigation of the Lorentz gas in terms of periodic orbits
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The diffusion constant and the Lyapunov exponent for the spatially periodic Lorentz gas are
evaluated numerically in terms of periodic orbits. A symbolic description of the dynamics
reduced to a fundamental domain is used to generate the shortest periodic orbits. Applied to
a dilute Lorentz gas with finite horizon, the theory works well, but for the dense
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I. INTRODUCTION

The Lorentz gas' is one of the simplest nontrivial mod-
els of deterministic diffusion. Diffusion of a light molecule
in a gas of heavy scatterers is modeled by a point particle
in a plane bouncing oﬁ‘ an array of reflecting disks. As a
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pure hyperbolic system, the Lorentz gas is a good candl-
date for description in terms of cycle expansions.” This
might seem a hopeless task, as one has to deal with all
periodic and aperiodic solutions of an infinitely extended
system. An approach based on larger and larger finite por-
tions of the system is described in Ref. 3, with the diffusion
constant related to the escape rates from such finite por-
tions. As far as escape rates are obtained in direct numer-
ical simulations this approach has been shown io be
effective.* However, from the cyclists point of view where
the rates are calculated from the periodic orbits, this ap-
proach is impractical; with each added disk new peculiar-
ities arise in the enumeration of periodic orbits, and with
current methods there is little hope of getting results for
more than a few disks, and no hope of approaching the
desired scaling limit.

A recent approach; introduced independently in Refs.
5 and 14 and tested in this paper, exploits the fact that the
periodic Lorentz gas can be constructed by putting to-
gether translated copies of an elementary cell. Therefore
quantities characterizing global dynamics, such as the Ly-
apunov exponent and the diffusion constant, can be com-
puted from the dynamics restricted to the elementary cell.

il. THE PERIODIC LORENTZ GAS

In the periodic Lorentz gas' a point particle reflects
elastically off a periodic array of reflecting disks in a plane.
“The system can be thought of as an unfolding of the Sinai
billiard.® The standard diffusion constant can be defined if
the particle has a bounded free path between any two suc-
cessive bounces. An example is a triangular array with
sufficiently small interdisk spacing. Unfortunately, as we
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shall see, the same mechanism that guarantees a finite ho-
rizon also leads to rather awkward pruning of periodic
orbits.

Machta and Zwanzig’ have given numerical results for
the diffusion constant in Lorentz gases, as well as estimates
based on a random walk approximation. We shall follow
their notation and fix the radius of the disks to 1, assume
unit particle speed, and denote the spacing between the
disks by w (see Fig. 1). The horizon is finite for w < 4/v3
—2=0.309%....

lll. DIFFUSION

In this section we briefly review the derivation of a
formula for the diffusion coefficient of a spatially periodic
system in terms of the periodic orbits in an elementary cell,
originally given in Ref. 5 {which contains a more detailed
treatment together with considerations about the discrete
symmetries and a reduction of the dynamics to a funda-
mental domain).

The method applies to any hyperbolic dynamical sys-
tem that is a periodic tiling M= UgpM of the dynamical
phase space M by translates My of an elementary cell M,
with T the Abelian group of lattice translations.

It is convenient to define two time evolution operators,
one for the whole phase space, and one for the elementary
cell. Let &, = (;S(J,c) denote the point in the global space M
obtained by the flow in time ¢, and x, = ¢'(x) denotes the
corresponding flow in the elementary cell. The two are
related by
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elementary cell M.

Given a fixed vector BeRd, where d is the dimension of
the phase space, one can extract the diffusive properties of
the Lorentz gas from the generating function

(e =), - 2)

where the average is over all xeM.
The diffusive properties follow by studying

1 .
Q(B) =lim,_ - log(e® ") (3)
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FIG. 1. A small portion of a triangular Lorentz gas. The whole set of
scatierers can be obtained by translating the elementary cell indicated in
the figure,

and its derivatives at 8 =0. Clearly Q(0) =0, and if by
symmetry all odd derivatives vanish (i.e., there is no drift),
the second derivatives

R

=lim,_ X

(4)
yield a (generically anisotropic) diffusion matrix. The spa-
tial diffusion constant is then given by

1 v
D= 3

f=1

1 o~ ~~
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where the / sum is restricted to the v spatial components g,
of the phase space vectors x.

The basic ingredient of the approach is the reduction of
the average (3) to the elementary cell. In order to under-
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stand U’llS recall that (3) can be writien as

R YA
838Q(B)‘ —lim,_, 3G

(FE-y = J.Ey dx dp & 0= Prob,(x—3) (6)
(y—x)
- f B
X85~ ). (7)
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=8 { i = {prdx is the volume of the t:wmt:ul,m'y' Cell
M. Note that there is a unique lattice translation 7 such
that 7=y — 7, with yeM. Now the translational invari-
ance can be used to reduce the integral over p to the ele-
mentary cell:

o

F-2y (Fx) —2)
1l y = | dxdy

|
X&(y— ¢'(X))- (8)

In this way the global 3' flow averages can be computed by
following the flow ¢' restricted to the elementary cell M.
As is well known,® the #— e limit of such averages can be
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recovered by means of transfer operators. Equation (8)
suggests that we study the operator .¥* whose kernel is
given by

Ly, %) =P ED5( —x), (9)

where X, = ¢ (x)eM, but X, x,, yeM. It is straightforward
to check that this operator has the semigroup property,

f dz L2y, 2).L(z, x) = L2y, x).
M

The quantity of interest (3) is given by the leading eigen-
value of %%, Ag = ¢'%P). In particular, for 8 =0, the op-
erator (9) is the Perron~Frobenius operator, with the lead-
ing eigenvalue A, =1 (the probability conservation).
To evaluate the spectrum of .#°, consider
tr &= f dx NS (x _ 5. (10)
M
Here r’z\_,(x) is the discrete lattice translation defined in (1).
For discrete time and hyperbolic dynamics we have

= ¥ 3 & 1
tr ,20 = P:TP’_:!’ et ]det(l _ J'(x))] ) ( )
reN

where the sum is over pericdic points of all prime cycles p
whose period 7, divides £, and J,(x) = D¢™P(x). Note that
the sum over cycle points of p can be replaced by a factor
T as det(l—J,) = det(1 — J,(x)) and n =7, (x) are
mdependent of x. For the Jacobian J, thiS follows by the
chain rule, and for the traveled dlstance n this follows by
continuing the path periodically in . For the discrete
time case we finally obtain

det(l —z.%)
_ Hexp(—
2

where the product runs over the set & of prime cycles.

Generalization to continuous time”'® amounts to the
replacement 27— ¢~ *"7, where 7, is now the (not necessar-
ily integer) period of the prime cycle p:

(12)

r=1
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2 —
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I $ ! ety = 57 |
z(gs)= 11 exp( -z F—’“_wetu—.r;;n)' (13)

The associated Ruelle zeta function is then (see, e.g., Ref.
2 for details)

1 eBﬁ — 5ty
é(ﬁ,s)ﬂg(l" |A,] )

with A, = He/lp,e the product of the expanding eigenvalues
of J,.

pThe first main result of Ref. 5 is that the function Q(3)
of Eq. (3) is the largest solution of the equation Z(3,0(/3})
=0 [or equivalently, of 1/£{8,Q(8)) = 0]. '

The above infinite products can be rearranged as
expansions with improved convergence properties.’
To present the result, we define 7, = E =/ | A »|, and
expand the zeta function (14) as a formal power series,

(14)
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Ha-p=1+ 3 1, (15)
P Plonl

where
"{171.----;7;‘1 ( 1) "1'!-"2 Hrf’;;’ (16)

and the sum is over all distinct nonrepeating combinations
of prime cycles. Taking two derivatives, as in the deriva-
tion of Eq. (35} and Eq. (80) in Ref. 2 one obtains the

main formula tested numerically in this paper.
The diffusion constant (5) is given by

2= DR, 4+ 1) | Ay Ay
T (=D M Ay AL

(17)

with sums as in (15}. The beauty of this formula is that
even though the global trajectory is in general not periodic,
1,70, the reduction to the elementary cell enables us to
compute the desired quantity in the usual way in terms of
periodic orbiis.

Apart from the diffusion constant we will compute Ly-
apunov exponents and test the probability conservation.
Because it involves derivatives of zeta functions the for-
mula for the largest Lyapunov exponent takes a similar
form as the one for the diffusion constant above (17). The
formula (modified for continuous time) is given in Ref. 2,
Eq. (91): '

21— D, +
(=1 (r, +

+1u’P1r)/| P:»l
'+fpk)/|Ap1--~ pk] )

A= (18)
In this formula g »=1n|A,| denotes the stability of a cycle.

Note that all quantities involved here are invariant under
the svmmetries of the lattice
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A. A simple example: A chain of baker’s maps

Some confidence can be gained at this point by apply-
ing the above formula (17) to a trivial system, a chain of
coupled baker maps studied in Ref. 11. In this case there
are only four fixed points, all with stablllty A,=1/2, two

of which give rise to the translations 7, = :Ir:l As the sys-

P
tem is uniformly hyperbolic, all curvature terms are iden-

tically zero, and the fixed points substituted into (17} yield
immediately the correct result D= 1/4.

IV. DYNAMICS IN‘ THE ELEMENTARY CELL

Unfolding a periodic orbit in the elementary cell can
result in a closed orbit in the whole lattice or in a segment
of some translational movement. According to the above
result (17) the diffusive properties of the system follow
from the relation between the closed and the translating
orbits.

Since the system is closed the escape rate is zero.
Therefore the dynamical zeta function [Eq. (14) with 8
= 0] should have its first zero at z=1. £(0,0) is simply
14+ 2= D¥|A, A,

The periodic orbits in the elementary cell can be found
in a systematic way. Starting at a given disk, the trajectory
can reach any of the neighboring 12 disks in the next

TABLE I. Elementary cell, w=0.3.

Length # cycles £(0,0) A D

1 0 ven e e

2 24 —0.31697 1.330 0.750
3 &4 —0.54152 1.435 0.677
4 156 —0.09718 1.902 0.565
5 492 0.02383 2.324 0.425
6 1484 0.02812 1.931 0.259
7 5244 0.02044 1.836 0.371
8 195008 ~— 0.00036 1.754 0.513
Ref. 7, estimate 0.175
Numerical experiment 0.25

bounce. A symbolic dynamics is obtained by labeling these
displacements anticlockwise with numbers 0 to 11. When O
denotes a flight between disks which are nearest neighbors
all even numbers do so. For any spacing there is an cbvious
pruning rule that motion in the same direction cannot be
repeated twice in a row because the particle cannot cross a
disk. In fact, for the dense gas considered here, the direc-
tion has to change at least by two units after each bounce.
After a long flight (odd label) the change has to be at least
3.

The cycles corresponding to a given sequence can now
be found, e.g., by minimizing the length of a path visiting
the disks according to the symbols.

Although the discrete C,, symmetry of the elcmentarv
cell is not exploited in the dlﬂ‘usmn formula, it can be used
to reduce the necessary computational effort. The images
of 2 cycle under rotation and reflection do not have to be
computed separately. Nevertheless the huge number of

B 2 A of a chaotic traiectory with about 300 bounces is
O3 &0 A puluun O 8 Cnaglle rajeclory wilthh asoul U0 DOUnNces IS

shown. Although the particle is often trapped between neighboring disks
for several bounces, there are also segment of the trajectory which take
the particle over a large distance with few bounces.

CHAQS, Vol. 2, No. 1, 1992



88 Cvitanovi¢, Gaspard, and Schreiber : Investigation of the Lorentz terms

TABLE II. Elementary cell, w = 2.0, imposed finite horizon.

Length # cycles A D
1 0 Ve e
2 54 0.5528 1.6716
3 440 0.5588 1.7006
4 3234 0.5604 1.7054
5 27856 0.5605 1.7049

symbols drastically restricts the maximal cyc]e length at-
tainable in numerical calculations.

Table I shows the results obtained for a spacing of
w = 0.3. Note that because of the pruning rule there can-
not be a fixed point with these symbols.

As mentioned above a lot of orbits turn out to be for-
bidden when the required finite horizon is achieved by
making the spacing between disks small enough. This is

immediataly reflectad in the fact that the number of orbits
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does not increase by a factor of 11 each time the length is
increased. Indeed, for the cycles computed so far, the av-
erage factor is less than 4. So very poor convergence of
cycle expansions has to be expected. With this in mind the
numbers given in Table I are in.a reasonable accord with
the probability conservation and also not a disaster for the
Lyapunov exponent (compare with the more accurate es-
timates of Table V). Nevertheless, the estimates of the
diffusion constant up to the number of cycles employed so
far do not show any convergence at all. They seem to be
more sensitive to the bad shadowing than the Lyapunov
exponent and the probability conservation.

A. Dilute Lorentz gas

In order to test the diffusion formula under less trying
conditions, we eliminate pruning by making the spacing
between disks larger, and imposing the finite horizon by
fiat; in this section we consider the measure zero subset of
those orbits which after each bounce travel omy' to one of
the nearest or next-nearest disks (see Fig. 2). This set is a
Cantor set repeller, and the probability is not conserved.
Estimates of the Lyapunov exponent and the diffusion con-
stant for trajectories restricted to this set are given in Table

I1.
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FIG. 3. The upper row shows the case when the preceding segment has
been a long one, the lower row the case when it has been a short one. The
arrows ai the end points indicate the sense of the next change of direction.
Due to the discrete symmetry of the triangular lattice, all translated,
rotated or reflected copies of each situation shown are denoted by the

same symbol.

e

FIG. 4. The upper row shows the case when the preceding segment has
been a short one, the lower row the case when it has been a long one.

As the set is not the full set of orbits contributing to
diffusion, there are no results obtained by other means that
these numbers could be compared with. Encouragingly,
the diffusion constant exhibits reasonable convergence,
supporting the claim that the cycle expansion formula is in
principle convergent, but for high density of scatterers the
convergence is adversely affected by the strong pruning of
the allowed orbits.

V. REDUCTION TO THE FUNDAMENTAL DOMAIN

In Ref. 5 some effort is made to derive a diffusion
formula similar to (17) involving quantities within the fun-
damental domain. The fact that lattice translations do not
commute with the symmetry group within the elementary
cell makes this apparently a difficult and not yet completed
task. Therefore only results for the Lyapunov exponent
(18) and the probability conservation are given in this

cantian
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The fundamental domain dynamics used here, due to
F. Christiansen, '? is given in Figs. 3, 4, and Table III. Now
the symbols indicate relative direction changes instead of
the absolute directions. The right and left turns are not
distinguished—instead, one reads off a symbol whether the
next turn has to be taken in the same or in the opposite
sense. Lower case letters denote short flights between
closeby disks, upper case letters denote the long flights to

TABLE Iil. Symbols in the fundamental domain.

Amount of change Direction of change

Symbol  Last long  Last short  Next the same  Next other way
a 1 2 X
b 3 4 X
c 5 6 b3
d 5 4 X
e 3 2 X
f 1 X
A 2 1 X
B 4 3 X
C 6 5 X
D 4 s X
E 2 3 x
F - 1 X

CHAQS, Vol. 2, No. 1, 1982
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FIG. 5. Shown are global orbits which reduce to fixed points in the
fundamental domain. Five of them (a,b,c,C,D} are not pruned for w
= (1.3, the spacing shown here. The sixth {B)} is an example of a pruned
cycle; it exists for a dilute Lorentz gas, but for the dense Lorentz gas its
trajectory is blocked by the center disk. Both B and D denote turns by 120
deg, but D also changes the sense of rotation at each bounce.

the next nearest disks. Each symbol correspends to a given
depends on whether the last flight was long (odd label in
the notation of the last section) or short (even label).

Christiansen'® had originally proposed to denote sym-
bols “f and “F by the same letter, thus reducing the size
of the alphabet. We prefer to use instead the two letters
together with the pruning rule that “/” can only follow an
uppercase letter (i.e., a long segment) and “F’ only a
lowercase letter. The symbols given to an orbit by this
scheme are invariant under all spatial symmetries of the
system but not under the time reversal.

Of the possible 12 symbols, “4,” “B,” “f,”" and “F”
are pruned as soon as the horizon gets finite. Among the
remaining symbols there is still strong pruning, reflected in
the fact that for w = 0.3 the number of ¢ycles of symbol
length » does not grow like 8" but roughly as 3". Figure 5
shows all the fundamental domain fixed points which are
not pruned at w = 0.3 together with an example of a
pruned fixed point.

Table IV gives some impression of the pruning in-

volved. In order that longer orbits be shadowed by shorter
ones, for every combination of two symbols a two-cycle, .

TABLE 1V. Problematic shadowing, w = 0.3.

a b ¢ d e C D E
1 X X X X X
a X X X
b X X X X X X
[+ X X e X X
d X X X X
e X X
C X
D X X X
E X

TABLE V. Fundamental domain, w=0.3.

Length # cycles £(0,0) A
1 5 — 1.216975 res
2 10 —0.024 823 1.745 407
3 32 — 0.021 694 1.719 617
4 104 0.000 329 1.743 494
5 351 0.002 527 1.760 581
6 1243 0.000 034 1.756 546

and the fixed points corresponding to each of the symbols
should exist. Two-cycles such as “ac,” “aC,”...are missing
while corresponding “shadowing” pseudo-cycles “ac,”
“aC” exist, and conversely, two-cycles occur where one of
the symbols has no corresponding fixed point (e.g., the
symbol “d” in “ad”). So shadowing seems to be largely
disfunctional, at least as long as finite approximate Markov
partitions'® are not developed. With this in mind the con-
vergence which can be seen in Table V is better than ex-
pected. Furthermore, for general reasons discussed in Ref.
13, the convergence of cycle expansions for dynamics re-
stricted to the fundamental domain is considerably better
than for the elementary cell, as can be verified by compar-
ing the Lyapunov exponent and probability conservation
estimates in the two cases.

To conclude, we have tested numerically the recently
proposed formula for deterministic diffusion in the Lorentz
gas. While the cycle expansions work well in estimating the
more traditional indicators of deterministic chaos, such as
the Lyapunov exponent, they do not yet lead to converging
estimates of the diffusion constant for the dense Lorentz
gas. This appears to be a consequence of the severe sym-
bolic dynamics pruning and the attendant lack of shadow-
ing in cycle expansions. Whether this difficulty can be sur-
mounted by more careful control of the symbolic dynamics
remains to be seen.
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