(a) : QFT final spring05, problem 3) $\gamma^{\mu}\gamma^{\nu} = \pm \gamma^{\nu}\gamma^{\mu}$ where the sign is '+' for $\mu = \nu$ and '-' otherwise. Hence for any product Γ of the γ matrices, $\gamma^{\mu}\Gamma = (-1)^{n_{\mu}}\Gamma\gamma^{\mu}$ where n_{μ} is the number of $\gamma^{\nu\neq\mu}$ factors of Γ . For $\Gamma = \gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$, $n_{\mu} = 3$ for any $\mu = 0, 1, 2, 3$; thus $\gamma^{\mu}\gamma^5 = -\gamma^5\gamma^{\mu}$.

First,

$$(\gamma^{5} \equiv i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})^{\dagger} = -i(\gamma^{3})^{\dagger}(\gamma^{2})^{\dagger}(\gamma^{1})^{\dagger}(\gamma^{0})^{\dagger} = +i\gamma^{3}\gamma^{2}\gamma^{1}\gamma^{0} = +i((\gamma^{3}\gamma^{2})\gamma^{1})\gamma^{0} = (-1)^{3}i\gamma^{0}((\gamma^{3}\gamma^{2})\gamma^{1}) = (-1)^{3+2}i\gamma^{0}(\gamma^{1}(\gamma^{3}\gamma^{2})) = (-1)^{3+2+1}i\gamma^{0}(\gamma^{1}(\gamma^{2}\gamma^{3})) = +i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} \equiv +\gamma^{5}.$$
(S.1)

Second,

$$(\gamma^{5})^{2} = \gamma^{5}(\gamma^{5})^{\dagger} = (i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3})(i\gamma^{3}\gamma^{2}\gamma^{1}\gamma^{0}) = -\gamma^{0}\gamma^{1}\gamma^{2}(\gamma^{3}\gamma^{3})\gamma^{2}\gamma^{1}\gamma^{0} = +\gamma^{0}\gamma^{1}(\gamma^{2}\gamma^{2})\gamma^{1}\gamma^{0} = -\gamma^{0}(\gamma^{1}\gamma^{1})\gamma^{0} = +\gamma^{0}\gamma^{0} = +1.$$
(S.2)

(c)

Any four distinct γ^{κ} , γ^{λ} , γ^{μ} , γ^{ν} are γ^{0} , γ^{1} , γ^{2} , γ^{3} in some order. They all anticommute with each other, hence $\gamma^{\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu} = \epsilon^{\kappa\lambda\mu\nu}\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} \equiv -i\epsilon^{\kappa\lambda\mu\nu}\gamma^{5}$. The rest is obvious.

(d)

$$i\epsilon^{\kappa\lambda\mu\nu}\gamma_{\kappa}\gamma^{5} = \gamma_{\kappa}\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]}$$

$$= \frac{1}{4}\gamma_{\kappa}\left(\gamma^{\kappa}\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} - \gamma^{[\lambda}\gamma^{\kappa}\gamma^{(\mu}\gamma^{\nu]} + \gamma^{[\lambda}\gamma^{\mu}\gamma^{\kappa}\gamma^{(\nu]} - \gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]}\gamma^{\kappa}\right)$$

$$= \frac{1}{4}\left(4\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} + 2\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} + 4g^{[\lambda\mu}\gamma^{\nu]} + 2\gamma^{[\nu}\gamma^{\mu}\gamma^{\lambda]}\right)$$

$$= \frac{1}{4}(4 + 2 + 0 - 2)\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = \gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]}.$$
(S.3)

(e) : *Proof by inspection:* In the Weyl basis, the 16 matrices are

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \gamma^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \gamma^{i} = \begin{pmatrix} 0 & +\sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix},$$
$$i\gamma^{[i}\gamma^{j]} = \epsilon^{ijk} \begin{pmatrix} \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix}, \quad i\gamma^{[0}\gamma^{i]} = \begin{pmatrix} -i\sigma^{i} & 0 \\ 0 & +i\sigma^{i} \end{pmatrix}, \qquad (S.4)$$
$$\gamma^{5}\gamma^{0} = \begin{pmatrix} 0 & -1 \\ +1 & 0 \end{pmatrix}, \quad \gamma^{5}\gamma^{1} = \begin{pmatrix} 0 & -\sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}, \quad \gamma^{5} = \begin{pmatrix} -1 & 0 \\ 0 & +1 \end{pmatrix},$$

and their linear independence is self-evident. Since there are only 16 independent 4×4 matrices altogether, any such matrix Γ is a linear combination of the matrices (S.4). $Q.\mathcal{E}.\mathcal{D}$.

Algebraic Proof: Without making any assumption about the matrix form of the γ^{μ} operators, let us consider the Clifford algebra $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$. Because of these anticommutation relations, one may re-order any product of the γ 's as $\pm \gamma^0 \cdots \gamma^0 \gamma^1 \cdots \gamma^1 \gamma^2 \cdots \gamma^2 \gamma^3 \cdots \gamma^3$ and then further simplify it to $\pm (\gamma^0 \text{ or } 1) \times (\gamma^1 \text{ or } 1) \times (\gamma^2 \text{ or } 1) \times (\gamma^3 \text{ or } 1)$. The net result is (up to a sign or $\pm i$ factor) one of the 16 operators 1, γ^{μ} , $i\gamma^{[\mu}\gamma^{\nu]}$, $-i\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = \epsilon^{\lambda\mu\nu\rho}\gamma^5\gamma_{\rho}$ (cf. (d)) or $i\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]} = \epsilon^{\kappa\lambda\mu\nu}\gamma^5$ (cf. (c)). Consequently, any operator Γ algebraically constructed of the γ^{μ} 's is a linear combination of these 16 operators.

Incidentally, the algebraic argument explains why the γ^{μ} (and hence all their products) should be realized as 4×4 matrices since any lesser matrix size would not accommodate 16 independent products. That is, the γ 's are 4×4 matrices in four spacetime dimensions; different dimensions call for different matrix sizes. Specifically, in spacetimes of even dimensions d, there are 2^d independent products of the γ operators, so we need matrices of size $2^{d/2} \times 2^{d/2}$: 2×2 in two dimensions, 4×4 in four, 8×8 in six, 16×16 in eight, 32×32 in ten, etc., etc..

In odd dimensions, there are only 2^{d-1} independent operators because $\gamma^{d+1} \equiv (i)\gamma^0\gamma^1 \cdots \gamma^{d-1}$ — the analogue of the γ^5 operator in 4d — commutes rather than anticommutes with all the γ^{μ} and hence with the whole algebra. Consequently, one has two distinct representations of the Clifford algebra — one with $\gamma^{d+1} = +1$ and one with $\gamma^{d+1} = -1$ — but in each representation there are only 2^{d-1} independent operator products, which call for the matrix size of $2^{(d-1)/2} \times 2^{(d-1)/2}$. For example, in three spacetime dimensions (two space, one time), can take $(\gamma^0, \gamma^1, \gamma^2) = (\sigma_3, i\sigma_1, i\sigma_2)$ for $\gamma^4 \equiv i\gamma^0\gamma^1\gamma^2 = +1$ or $(\gamma^0, \gamma^1, \gamma^2) = (\sigma_3, i\sigma_1, -i\sigma_2)$ for $\gamma^4 = -1$,

but in both	cases we have 2	$\times 2$ matrices	Likewise,	we have 4×4	matrices in f	ve dimensions,
8×8 in 7D	$, 16 \times 16 \text{ in 9D},$	32×32 in 11]	D. etc., etc			

8×8 in 7D	16×16 in 9D	$, 32 \times 32$ in	11D, etc.,
--------------------	----------------------	---------------------	------------

a) The field operator $\phi(x, t)$ must satisfy antiperiodic boundary conditions.

$$\phi(x+L,t) = -\phi(x,t) = e^{i\pi}\phi(x,t)$$

suggesting that all modes must have wavenumbers of the form

for some integer n. Thus, we have a mode expansion

$$\phi(x,t) = \sum_{n} \left[e^{ik_n(x-t)} a(k_n) + e^{-ik_n(x-t)} a^{\dagger}(k_n) \right]$$

b) The Green's function is given by

$$G_F(x, x') = \int \frac{dk \, d\omega}{(2\pi)^2} \frac{e^{-i\omega\Delta t} e^{ik\Delta x}}{k^2 - \omega^2}$$

= $i \int \frac{dk \, d\omega}{(2\pi^2)} \frac{e^{i(\omega\Delta\tau + k\Delta x)}}{k^2 + \omega^2}$
= $i \int_0^\infty d\alpha \int \frac{dk}{2\pi} e^{-\alpha k^2 + ik\Delta x} \int \frac{d\omega}{2\pi} e^{-\alpha \omega^2 + i\omega\Delta\tau}$
= $i \int_0^\infty \frac{d\alpha}{4\pi\alpha} e^{-\frac{1}{4\alpha}[(\Delta\tau^2) + (\Delta x)^2]}$
= $-i \int_0^\infty \frac{du}{4\pi u} e^{-u[(\Delta\tau^2) + (\Delta x)^2]}$

I got the second line by Wick rotating (Peskin and Shroeder, p. 193 or Srednicki, p. 216) and the line after that by using the identity

$$\frac{1}{B} = \int_0^\infty d\alpha \, e^{-\alpha B}$$

The integral on the last line is formally divergent, but note that

$$-\frac{\partial}{\partial B}\int_0^\infty \frac{d\alpha}{\alpha}e^{-\alpha B} = \int_0^\infty d\alpha \, e^{-\alpha B}$$

in order to recover

$$G_F(x, x') = -\frac{i}{4\pi} \ln\left[(\Delta \tau)^2 + (\Delta x)^2\right]$$
$$= -\frac{1}{2\pi} \ln|x - x'|$$

after Wick rotating things back.

c) Start with

$$G_F(x, x') = \sum_{k_n} \int \frac{d\omega}{2\pi} \frac{e^{i(k_n x - \omega t)}}{k_n^2 - \omega^2} = \int \frac{d^2 k}{(2\pi)^2} \frac{e^{ikx}}{k^2} \sum_n (2\pi) \delta \left(k - (2n+1)\frac{\pi}{L} \right) = \sum_m \int \frac{dk \, d\omega}{(2\pi)^2} \frac{e^{ikx}}{k^2} e^{i\pi m} e^{imkL} = \sum_m (-1)^m G_F(x + mL, x')$$

using the Poisson sum formula on the third line.

d) The Lagrangian for the theory is

$$\mathcal{L} = -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$$

with canonical momentum $\Pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}}$ so the Hamiltonian is

$$\mathcal{H} = \Pi \dot{\phi} - \mathcal{L} = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} \phi_{,x}^2$$

e) The point-splitting Hamiltonian is

$$\mathcal{H}_{\epsilon} \equiv \frac{1}{2}\dot{\phi}(x,t)\dot{\phi}(x+\epsilon,t) + \frac{1}{2}\phi_{,x}(x,t)\phi_{,x}(x+\epsilon,t)$$

 \mathbf{SO}

$$\langle 0|\mathcal{H}_{\epsilon}(x,t)|0\rangle = -\frac{1}{2} (\partial_0^2 - \partial_x^2) G_F(x,x+\epsilon)$$

In flat space, this is simply

$$=-rac{1}{2\pi}rac{1}{\epsilon^2}$$

and in the box it is

$$-\frac{1}{2\pi}\frac{1}{\epsilon^2} - \frac{1}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n}{(nL)^2}$$

As expected, both Hamiltonians diverge in the $\epsilon \to 0$ limit.

e) Subtracting the flat Hamiltonian from the box Hamiltonian eliminates the ϵ dependence, leaving a difference of

$$-\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n}{(nL)^2} = \frac{1}{\pi L^2}\left(\sum_{n=1}^{\infty}\frac{1}{n^2} - 2\sum_{n=1}^{\infty}\frac{1}{(2n)^2}\right) = \frac{\pi}{12L^2}$$

The Lagrangian is

problem 5) solution

$$\mathcal{L} = \frac{1}{2} \left(i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi - i m' \bar{\psi} \gamma_5 \psi \right)$$

a) We perform a chiral transformation

$$\begin{split} \psi &\to e^{i\alpha\gamma_5}\psi \\ \bar{\psi} &\to \psi^{\dagger}e^{-i\alpha\gamma_5}\gamma^0 = \bar{\psi}e^{i\alpha\gamma_5} \end{split}$$

where we can anti-commute every power of γ_5 in the exponential past the γ_0 in the definition of $\bar{\psi}$. Then the derivative term in the Lagrangian becomes

$$\bar{\psi}e^{i\alpha\gamma_5}\gamma^{\mu}\partial_{\mu}e^{i\alpha\gamma_5}\psi = \bar{\psi}\gamma^{\mu}\partial_{\mu}e^{-i\alpha\gamma_5}e^{i\alpha\gamma_5}\psi = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$

b) Transforming the mass terms gives

$$m\bar\psi e^{2i\alpha\gamma_5}\psi+im'\bar\psi e^{2i\alpha\gamma_5}\gamma_5\psi$$

Fortunately, we can use $(\gamma_5)^2 = 1$ to simplify the exponential.

$$e^{2i\alpha\gamma_5} = \sum_{n=0}^{\infty} \left[\frac{(2i\alpha)^2 n}{(2n)!} + \gamma_5 \frac{(2i\alpha)^{2n+1}}{(2n+1)!} \right] = \cos 2\alpha + i\gamma_5 \sin 2\alpha$$

so the sum of the mass terms is

$$\bar{\psi} \Big[(m\cos 2\alpha - m'\sin 2\alpha) + i\gamma_5 (m'\cos 2\alpha + m\sin 2\alpha) \Big] \psi$$

Rotating the chiral mass term away requires finding a value of *alpha* such that

 $m'\cos 2\alpha + m\sin 2\alpha = 0$

