$\gamma^{\mu} \gamma^{\nu}= \pm \gamma^{\nu} \gamma^{\mu}$ where the sign is ' + ' for $\mu=\nu$ and ' - ' otherwise. Hence for any product Γ of the γ matrices, $\gamma^{\mu} \Gamma=(-1)^{n_{\mu}} \Gamma \gamma^{\mu}$ where n_{μ} is the number of $\gamma^{\nu \neq \mu}$ factors of Γ. For $\Gamma=\gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, n_{\mu}=3$ for any $\mu=0,1,2,3$; thus $\gamma^{\mu} \gamma^{5}=-\gamma^{5} \gamma^{\mu}$.
(b)

First,

$$
\begin{align*}
\left(\gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}\right)^{\dagger} & =-i\left(\gamma^{3}\right)^{\dagger}\left(\gamma^{2}\right)^{\dagger}\left(\gamma^{1}\right)^{\dagger}\left(\gamma^{0}\right)^{\dagger}=+i \gamma^{3} \gamma^{2} \gamma^{1} \gamma^{0} \\
& =+i\left(\left(\gamma^{3} \gamma^{2}\right) \gamma^{1}\right) \gamma^{0}=(-1)^{3} i \gamma^{0}\left(\left(\gamma^{3} \gamma^{2}\right) \gamma^{1}\right) \tag{S.1}\\
& =(-1)^{3+2} i \gamma^{0}\left(\gamma^{1}\left(\gamma^{3} \gamma^{2}\right)\right)=(-1)^{3+2+1} i \gamma^{0}\left(\gamma^{1}\left(\gamma^{2} \gamma^{3}\right)\right) \\
& =+i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \equiv+\gamma^{5}
\end{align*}
$$

Second,

$$
\begin{align*}
\left(\gamma^{5}\right)^{2} & =\gamma^{5}\left(\gamma^{5}\right)^{\dagger}=\left(i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}\right)\left(i \gamma^{3} \gamma^{2} \gamma^{1} \gamma^{0}\right)=-\gamma^{0} \gamma^{1} \gamma^{2}\left(\gamma^{3} \gamma^{3}\right) \gamma^{2} \gamma^{1} \gamma^{0} \tag{S.2}\\
& =+\gamma^{0} \gamma^{1}\left(\gamma^{2} \gamma^{2}\right) \gamma^{1} \gamma^{0}=-\gamma^{0}\left(\gamma^{1} \gamma^{1}\right) \gamma^{0}=+\gamma^{0} \gamma^{0}=+1
\end{align*}
$$

Any four distinct $\gamma^{\kappa}, \gamma^{\lambda}, \gamma^{\mu}, \gamma^{\nu}$ are $\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}$ in some order. They all anticommute with each other, hence $\gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}=\epsilon^{\kappa \lambda \mu \nu} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \equiv-i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$. The rest is obvious.
(d)

$$
\begin{align*}
i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5} & =\gamma_{\kappa} \gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]} \\
& =\frac{1}{4} \gamma_{\kappa}\left(\gamma^{\kappa} \gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}-\gamma^{[\lambda)} \gamma^{\kappa} \gamma^{(\mu} \gamma^{\nu]}+\gamma^{[\lambda} \gamma^{\mu)} \gamma^{\kappa} \gamma^{(\nu]}-\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]} \gamma^{\kappa}\right) \tag{S.3}\\
& =\frac{1}{4}\left(4 \gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}+2 \gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}+4 g^{[\lambda \mu} \gamma^{\nu]}+2 \gamma^{[\nu} \gamma^{\mu} \gamma^{\lambda]}\right) \\
& =\frac{1}{4}(4+2+0-2) \gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]} .
\end{align*}
$$

Proof by inspection: In the Weyl basis, the 16 matrices are

$$
\begin{gather*}
\mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \gamma^{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & +\sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right) \\
i \gamma^{[i} \gamma^{j]}=\epsilon^{i j k}\left(\begin{array}{cc}
\sigma^{k} & 0 \\
0 & \sigma^{k}
\end{array}\right), \quad i \gamma^{[0} \gamma^{i]}=\left(\begin{array}{cc}
-i \sigma^{i} & 0 \\
0 & +i \sigma^{i}
\end{array}\right) \tag{S.4}\\
\gamma^{5} \gamma^{0}=\left(\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right), \quad \gamma^{5} \gamma^{1}=\left(\begin{array}{cc}
0 & -\sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right),
\end{gather*}
$$

and their linear independence is self-evident. Since there are only 16 independent 4×4 matrices altogether, any such matrix Γ is a linear combination of the matrices (S.4). $\mathcal{Q . E . D}$.

Algebraic Proof: Without making any assumption about the matrix form of the γ^{μ} operators, let us consider the Clifford algebra $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$. Because of these anticommutation relations, one may re-order any product of the γ^{\prime} 's as $\pm \gamma^{0} \cdots \gamma^{0} \gamma^{1} \cdots \gamma^{1} \gamma^{2} \cdots \gamma^{2} \gamma^{3} \cdots \gamma^{3}$ and then further simplify it to $\pm\left(\gamma^{0}\right.$ or 1$) \times\left(\gamma^{1}\right.$ or 1$) \times\left(\gamma^{2}\right.$ or 1$) \times\left(\gamma^{3}\right.$ or 1$)$. The net result is (up to a sign or $\pm i$ factor) one of the 16 operators $1, \gamma^{\mu}, i \gamma^{[\mu} \gamma^{\nu]},-i \gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\epsilon^{\lambda \mu \nu \rho} \gamma^{5} \gamma_{\rho}$ (cf. (d)) or $i \gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=\epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$ (cf. (c)). Consequently, any operator Γ algebraically constructed of the γ^{μ} 's is a linear combination of these 16 operators.

Incidentally, the algebraic argument explains why the γ^{μ} (and hence all their products) should be realized as 4×4 matrices since any lesser matrix size would not accommodate 16 independent products. That is, the γ 's are 4×4 matrices in four spacetime dimensions; different dimensions call for different matrix sizes. Specifically, in spacetimes of even dimensions d, there are 2^{d} independent products of the γ operators, so we need matrices of size $2^{d / 2} \times 2^{d / 2}: 2 \times 2$ in two dimensions, 4×4 in four, 8×8 in six, 16×16 in eight, 32×32 in ten, etc., etc..

In odd dimensions, there are only 2^{d-1} independent operators because $\gamma^{d+1} \equiv(i) \gamma^{0} \gamma^{1} \cdots \gamma^{d-1}$ the analogue of the γ^{5} operator in 4 d - commutes rather than anticommutes with all the γ^{μ} and hence with the whole algebra. Consequently, one has two distinct representations of the Clifford algebra - one with $\gamma^{d+1}=+1$ and one with $\gamma^{d+1}=-1-$ but in each representation there are only 2^{d-1} independent operator products, which call for the matrix size of $2^{(d-1) / 2} \times 2^{(d-1) / 2}$. For example, in three spacetime dimensions (two space, one time), can take $\left(\gamma^{0}, \gamma^{1}, \gamma^{2}\right)=\left(\sigma_{3}, i \sigma_{1}, i \sigma_{2}\right)$ for $\gamma^{4} \equiv i \gamma^{0} \gamma^{1} \gamma^{2}=+1$ or $\left(\gamma^{0}, \gamma^{1}, \gamma^{2}\right)=\left(\sigma_{3}, i \sigma_{1},-i \sigma_{2}\right)$ for $\gamma^{4}=-1$,

a) The field operator $\phi(x, t)$ must satisfy antiperiodic boundary conditions.

$$
\phi(x+L, t)=-\phi(x, t)=e^{i \pi} \phi(x, t)
$$

suggesting that all modes must have wavenumbers of the form

$$
k_{n}=\frac{\pi}{L}(2 n+1) \quad \text { problem 4) }
$$

for some integer n. Thus, we have a mode expansion

$$
\phi(x, t)=\sum_{n}\left[e^{i k_{n}(x-t)} a\left(k_{n}\right)+e^{-i k_{n}(x-t)} a^{\dagger}\left(k_{n}\right)\right]
$$

b) The Green's function is given by

$$
\begin{aligned}
G_{F}\left(x, x^{\prime}\right) & =\int \frac{d k d \omega}{(2 \pi)^{2}} \frac{e^{-i \omega \Delta t} e^{i k \Delta x}}{k^{2}-\omega^{2}} \\
& =i \int \frac{d k d \omega}{\left(2 \pi^{2}\right)} \frac{e^{i(\omega \Delta \tau+k \Delta x)}}{k^{2}+\omega^{2}} \\
& =i \int_{0}^{\infty} d \alpha \int \frac{d k}{2 \pi} e^{-\alpha k^{2}+i k \Delta x} \int \frac{d \omega}{2 \pi} e^{-\alpha \omega^{2}+i \omega \Delta \tau} \\
& =i \int_{0}^{\infty} \frac{d \alpha}{4 \pi \alpha} e^{-\frac{1}{4 \alpha}\left[\left(\Delta \tau^{2}\right)+(\Delta x)^{2}\right]} \\
& =-i \int_{0}^{\infty} \frac{d u}{4 \pi u} e^{-u\left[\left(\Delta \tau^{2}\right)+(\Delta x)^{2}\right]}
\end{aligned}
$$

I got the second line by Wick rotating (Peskin and Shroeder, p. 193 or Srednicki, p. 216) and the line after that by using the identity

$$
\frac{1}{B}=\int_{0}^{\infty} d \alpha e^{-\alpha B}
$$

The integral on the last line is formally divergent, but note that

$$
-\frac{\partial}{\partial B} \int_{0}^{\infty} \frac{d \alpha}{\alpha} e^{-\alpha B}=\int_{0}^{\infty} d \alpha e^{-\alpha B}
$$

in order to recover

$$
\begin{aligned}
G_{F}\left(x, x^{\prime}\right) & =-\frac{i}{4 \pi} \ln \left[(\Delta \tau)^{2}+(\Delta x)^{2}\right] \\
& =-\frac{1}{2 \pi} \ln \left|x-x^{\prime}\right|
\end{aligned}
$$

after Wick rotating things back.
c) Start with

$$
\begin{aligned}
G_{F}\left(x, x^{\prime}\right) & =\sum_{k_{n}} \int \frac{d \omega}{2 \pi} \frac{e^{i\left(k_{n} x-\omega t\right)}}{k_{n}^{2}-\omega^{2}} \\
& =\int \frac{d^{2} k}{(2 \pi)^{2}} \frac{e^{i k x}}{k^{2}} \sum_{n}(2 \pi) \delta\left(k-(2 n+1) \frac{\pi}{L}\right) \\
& =\sum_{m} \int \frac{d k d \omega}{(2 \pi)^{2}} \frac{e^{i k x}}{k^{2}} e^{i \pi m} e^{i m k L} \\
& =\sum_{m}(-1)^{m} G_{F}\left(x+m L, x^{\prime}\right)
\end{aligned}
$$

using the Poisson sum formula on the third line.
d) The Lagrangian for the theory is

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi
$$

with canonical momentum $\Pi=\frac{\partial \mathcal{L}}{\partial \phi}$ so the Hamiltonian is

$$
\mathcal{H}=\Pi \dot{\phi}-\mathcal{L}=\frac{1}{2} \dot{\phi}^{2}+\frac{1}{2} \phi_{, x}^{2}
$$

e) The point-splitting Hamiltonian is

$$
\mathcal{H}_{\epsilon} \equiv \frac{1}{2} \dot{\phi}(x, t) \dot{\phi}(x+\epsilon, t)+\frac{1}{2} \phi_{, x}(x, t) \phi_{, x}(x+\epsilon, t)
$$

So

$$
\langle 0| \mathcal{H}_{\epsilon}(x, t)|0\rangle=-\frac{1}{2}\left(\partial_{0}^{2}-\partial_{x}^{2}\right) G_{F}(x, x+\epsilon)
$$

In flat space, this is simply

$$
=-\frac{1}{2 \pi} \frac{1}{\epsilon^{2}}
$$

and in the box it is

$$
-\frac{1}{2 \pi} \frac{1}{\epsilon^{2}}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n L)^{2}}
$$

As expected, both Hamiltonians diverge in the $\epsilon \rightarrow 0$ limit.
e) Subtracting the flat Hamiltonian from the box Hamiltonian eliminates the ϵ dependence, leaving a difference of

$$
-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n L)^{2}}=\frac{1}{\pi L^{2}}\left(\sum_{n=1} \frac{1}{n^{2}}-2 \sum_{n=1} \frac{1}{(2 n)^{2}}\right)=\frac{\pi}{12 L^{2}}
$$

The Lagrangian is

problem 5) solution

$$
\mathcal{L}=\frac{1}{2}\left(i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi-i m^{\prime} \bar{\psi} \gamma_{5} \psi\right)
$$

a) We perform a chiral transformation

$$
\begin{aligned}
& \psi \rightarrow e^{i \alpha \gamma_{5}} \psi \\
& \bar{\psi} \rightarrow \psi^{\dagger} e^{-i \alpha \gamma_{5}} \gamma^{0}=\bar{\psi} e^{i \alpha \gamma_{5}}
\end{aligned}
$$

where we can anti-commute every power of γ_{5} in the exponential past the γ_{0} in the definition of $\bar{\psi}$. Then the derivative term in the Lagrangian becomes

$$
\bar{\psi} e^{i \alpha \gamma_{5}} \gamma^{\mu} \partial_{\mu} e^{i \alpha \gamma_{5}} \psi=\bar{\psi} \gamma^{\mu} \partial_{\mu} e^{-i \alpha \gamma_{5}} e^{i \alpha \gamma_{5}} \psi=\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi
$$

b) Transforming the mass terms gives

$$
m \bar{\psi} e^{2 i \alpha \gamma_{5}} \psi+i m^{\prime} \bar{\psi} e^{2 i \alpha \gamma_{5}} \gamma_{5} \psi
$$

Fortunately, we can use $\left(\gamma_{5}\right)^{2}=1$ to simplify the exponential.

$$
e^{2 i \alpha \gamma_{5}}=\sum_{n=0}^{\infty}\left[\frac{(2 i \alpha)^{2} n}{(2 n)!}+\gamma_{5} \frac{(2 i \alpha)^{2 n+1}}{(2 n+1)!}\right]=\cos 2 \alpha+i \gamma_{5} \sin 2 \alpha
$$

so the sum of the mass terms is

$$
\bar{\psi}\left[\left(m \cos 2 \alpha-m^{\prime} \sin 2 \alpha\right)+i \gamma_{5}\left(m^{\prime} \cos 2 \alpha+m \sin 2 \alpha\right)\right] \psi
$$

Rotating the chiral mass term away requires finding a value of alpha such that

$$
m^{\prime} \cos 2 \alpha+m \sin 2 \alpha=0
$$

which is satisfied by

$$
\frac{m^{\prime}}{m}=-\tan 2 \alpha
$$

so the new mass is given by

$$
\sqrt{m^{2}+m^{\prime 2}}
$$

