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(|> Dimensional Analysis with h = c =1
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We have set i = ¢ = 1. This allows us to convert a time T to a length
LviaT = L/c, and a length L to a mass M via M = he™'/L. Thus any
quantity A can be thought of as having units of mass to some some power
(positive, negative, or zero) that we will call [A]. For example,

[m] = +1, (289)
[z#] = -1, (290)
0¥] = +1, (291)
[d%] = —d. (292)

In the last line, we have generalized our considerations to theories in d space-
time dimensions.

Let us now consider a scalar field in d spacetime dimensions with la-
grangian density

N

L=—30"00,p — im** = 3" Lg.om. (293)
n=3
The action is
S = /dd;r, c, (294)
and the path integral is
Z(J) = /’D(,o exp[z’/dd:c (L+ J(,o)] . (295)

From eq. (295), we see that the action S must be dimensionless, because it
appears as the argument of the exponential function. Therefore

S]=0. (296)
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1~ Loop Corrections to the Propagator

The (conMckc\) Pmaadah)v LS rdw-u\ ) ’ﬂ\m |-P-T
propeyatys by P.C el Thary' ey (2,32

| \§ A"’;‘ft rtmambey ;
— 9 . .
k2T () T (306)

—~ - = — + e + o '
’thsl'ca.ﬂ mass-shell cpndi Nm pZ_ _m? Pole 4 QS(?)__

consistent with eq. (306) if and only if

5 (kl) -

I(-m?) = o0, (307)
I'(-m?) = o, (308)
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(k) = Lig)* () / Gy DA
—i(Ak* + Bm?) + O(g") . (303)

Here we have written the integral appropriate for d spacetime dimensions;
for now we will leave d arbitrary, but later we will want to focus on d = 6,

where the coupling g is dimensionless.
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Prove thy Feynman’s formula to combine denominators,
1

ay...0q

f dF, (2101 + -+ Tnan) ™, (309)

where the integration measure over the Feynman parameters z; is

1
[dFu=(-1)! [ dor.drabam oAz =1) . (310)
Ver{A’B ﬂvd‘
—“\L measure is normalized so that
/anl =1. (311)
Eq. (309) can be proven by direct evaluation for n = 2, and by induction for

n> 2.
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A(k+0)A(L) = (2 + m?)((£ + k)% + m?)

= ), dz[e+ 0], (312)

In the last line we have defined q={+zk and

= _ 2
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where

I(k?) = / d:c/ ke +D (317)
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avaluation of I(k?), eq. (317).

. o The angular part
of the integral over ¢ yields the area {2, of the unit sphere in d dimensions

which is Qg = 279/2 JT(3d). (This is most easily verified by computing the

_ ussian integral [ dg ¢—7" in both cartesian and spherical coordinates.)
The radial part of the ¢ integral can also be evaluated in terms of gamma

functions.
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The overall result (generalized slightly for later use) is

/(d“@ (@) _ T(b-a—Lid)(a+1d)

2 @+ DP @G D (3%)

In the case of interest, eq. (317), we have a = 0 and b = 2.

Useful Integrals:

You will find useful to know the following integrals:

1 T(n+m) [ "1 —z)™ !
A"Bm  T(n)T(m) fﬂ T @A+ (1-—2)B)m )
D D
fom = [ (g::)pD (»* +2p -qurm%)“ B % 5 F(?)g:)r 2 mg- )
where Sp is the volume of the D-dimensional unit hypersphere ©
$p = 2071 P2 () @
and I'(s) is the T-function
I'(s) = ] - dtt*te™! (8)
For s — 0, the ['-function behaves lik{:e
T'(s) = F(S: Y ~ :1?- + finite terms (9)

['(z) i :
(z) is the Euler gamma function; tor a nonnegative integer n and small T
7

I'(n+1) = n!,
L(n+i) = en) -
b = SV (323)
(=D "
[(—-n+z) = n!) [E -v+ Zk:l kT4 0(z) | (324)

where v = 0.5772. .. is the Euler-Mascheroni constant.
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We now return to eq. (317), use eq.(324), and set d = 6 — ¢; we get

€Y g2 | :
( I(k%:%%f_) /0 de(%r) / J (328)
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- we must still impose the conditions II(—m?) = 0 and
IT'(—m?) = 0. The easiest way to do this is to first note that, schematically,

1
(k) = la fo dz DIn D + linear in k? and m? + O(a?) . (338)
We can then impose II(—m?) = 0 via

1
(k) = Lo [0 dz DIn(D/Dy) + linear in (k? +m?) + O(a?).  (339)

where
Do=D|, ,=[1-z(1-2)jm*. (340)
that IT'(—m?) vanishes for
() = o [ 'de DIn(D/Dy) — La(k? +m?) +0(?) . (341)

This is our final formula for the O(a) term in IT(k?).
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Loop Corrections to the Vertex

We can define an exact three-point vertex function igVs(ki, k2, k3) as the
sum of one-particle irreducible diagrams with three external lines carrying
momenta ki, ko, and ks, all incoming, with k; + k2 + k3 = 0 by momentum
conservation. (In adopting this convention, we allow k? to have either sign;
if k; is the momentum of an external particle, then the sign of k? is positive
if the particle is incoming, and negative if it is outgoing.) The original vertex
iZ,9 is the first term in this sum, )
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Al—k)A(rk)AO = f dFy [¢ +D] . (357)

In the last line, we have defined ¢ = ¢ — x1k; + z2k2, and

D = I (l—ﬁﬁl)k? + .’y"z(l"ﬂ:g)kg + 211?1I2k1 'kg + m2
= 1113.'121}9% + 3&'1332]5% + $2I3k§ + m2 . (358)

After making a Wick rotation
of the ¢° contour, we have

d%g 1
Valks, ko, ks) = 2y + ng aF; 3f (27rq)d @+ Dy O@g"),  (3%9)
Deave fus refaNen -
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f @2r)d (@ + D)® 2(4@2(”2 pD-(3-d/2) (360)

Then we set d = 6 — . To keep g dimensionless, we make the replacement
g — g jif/2. Then we have

ani2\ "2
V3(k1,k2,k3)=Zg+%ar‘(%)/df’3( 5 ) + 0(a?) (361)



(vest (s jwﬂ“%o complike e vl v veed b w‘kﬂ'fwsfwlf uaoﬁ)

take the ¢ — 0 limit. The result is

12 47 ji? 2
Va(ky, ko ks) = Z, + Lo | = + ] dF; In +0@?),  (362)
€ e'D
where we have used [dF; = 1. We use p? = 4me " ji?, set
Zy=1+C, (363)
and rearrange to get

Vs(ky, ka,ks) = 1+ {a[L +In(u/m)] +C}

~ ta [ dFy DIn(D/m?)
+ 0(a?) . (364)
If we take C to have the form
C = —alL +In(u/m) + rc| + O(a?) , (365)

where k¢ is a purely numerical constant, then we get

\ Vg(khkg, k3) =1- %CI!/dF3 ln(D/m2) — Kot + 0(02) . (366)

Thus this choice of C renders V3(ki, ko, k3) finite and independent of u, as
required.

We now need a condition, analogous to II(—m?) = 0 and II'(—m?) = 0,
to fix the value of kc. These conditions on I1(k?) were mandated by known
properties of the exact propagator, but there is nothing directly comparable
for the vertex. Different choices of k¢ correspond to different definitions of

the coupling g. This is because, in order to measure g, we would measure
a cross section that depends on g; these cross sections also depend on kc.
Thus we can use any value for k¢ that we might fancy, as long as we all
agree on that value when we compare our calculations with experimental
measurements. It is then most convenient to simply set k¢ = 0. This
corresponds to the condition

V3(0,0,0)=1. (367)

This condition can then be used to fix the higher-order (in g) terms in Z,.
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