
40 CHAPTER 3. REPRESENTATION THEORY

m m

m

k

k

x

y

y

y

x

x1

2

3

3

1 2

k

Figure 3.2: The three springs example, showing the coordinate system. Each co-
ordinate pair has its origin at the center of its respective mass in the equilibrium
position.

Finally, we use the first orthogonality relation to isolate a particular coeffi-
cient, obtaining,

aj =
1
h

nc∑
k=1

χ(j)∗(Ck)χ(Ck)Nk. (3.91)

3.10 Example Application

For our first example of a physical application, we consider an arrangement
of springs and masses which have a particular symmetry in the equilibrium
position. We’ll consider here the case of an equilateral triangle, expanding on
the example in Mathews & Walker chapter 14.

Suppose that we have a system of three equal masses, m, located (in equilib-
rium) at the vertices of an equilateral triangle. The three masses are connected
by three identical springs of strength k. See Fig. 3.2. The question we wish to
answer is: If the system is constrained to move in a plane, what are the normal
modes? We’ll use group theory to analyze what happens when a normal mode is
excited, potentially breaking the equilateral triangular symmetry to some lower
symmetry.

Let the coordinates of each mass, relative to the equilibrium position, be
xi, yi, i = 1, 2, 3. The state of the system is given by the 6-dimensional vector:
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η = (x1, y1, x2, y2, x3, y3), as a function of time. The kinetic energy is:

T =
m

2

6∑
i=1

η̇2
i . (3.92)

Likewise, the potential energy, for small perturbations about equilibrium, is
given by:

V =
k

2

⎧⎨
⎩(x2 − x1)2 +

[
−1

2
(x3 − x2) +

√
3

2
(y3 − y2)

]2

+

[
1
2
(x1 − x3) +

√
3

2
(y1 − y3)

]2
⎫⎬
⎭ .

(3.93)
Or, we may write:

V =
k

2

6∑
i,j=1

Uijηiηj , (3.94)

where

U =
1
4

⎛
⎜⎜⎜⎜⎜⎝

5
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3 −3
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3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
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⎞
⎟⎟⎟⎟⎟⎠ . (3.95)

The equations of motion (F = ma) are:

mη̈i = −∂V
∂ηi

= −k
6∑

j=1

Uijηj . (3.96)

In a normal mode,
η = Aeiωt, (3.97)

where A is a constant 6-vector, and hence,

−mω2ηi = −k
6∑

j=1

Uijηj , (3.98)

or,
6∑

j=1

Uijηj = ληi, where λ =
mω2

k
. (3.99)

That is, the normal modes are the eigenvectors of U , with frequencies given in
terms of the eigenvalues. In principle, we need to solve the secular equation
|U −λI| = 0, a sixth-order polynomial equation, in order to get the eigenvalues.
Let’s see how group theory can help make this tractable, by incorporating the
symmetry of the system.
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Each eigenvector “generates” an irreducible representation when acted upon
by elements of the symmetry group. Consider a coordinate system in which U
is diagonal (such a coordinate system must exist, since U is Hermitian):

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λa

. . .
λa

λb

. . .
λb

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.100)

where the first na coordinate vectors in this basis belong to eigenvalue λa, and
transform among themselves according to irreducible representation D(a), and
so forth.

What is the appropriate symmetry group? Well, it must be the group,
D3, of operations which leaves an equilateral triangle invariant. This group is
generated by taking products of a rotation by 2π/3, which we will call R, and a
reflection about the y-axis, which we will call P . The entire group is then given
by the 6 elements {e,R,R2, P, PR, PR2}. Note that this group is isomorphic
with the group of permutations of three objects, S3. The classes are:

{e}, {R,R2}, {P, PR, PR2}. (3.101)

As there are three classes, there must be three irreducible representations, and
hence their dimensions must be 1, 1, and 2. Thus, we can easily construct the
character table in Table 3.3.

The first row is given by the dimensions of the irreps, since these are the
traces of the identity matrices in those irreps. The first column is all ones,
since this is the trivial irrep where every element of D3 is represented by the
number 1. The second and third row of the second column may be obtained by
orthogonality with the first row (remembering the Nk weights), noticing that in
a one-dimensional representation the traces are the same as the representation.
In particular, the representation of R must be a cube root of one, and the
representation of P must be a square root of one. Finally, the second and
third rows of the final column are readily determined using the orthogonality
relations. Note that in this example, we don’t actually need to construct the
non-trivial representations to determine the character table. In general, it may
be necessary to construct a few of the matrices explicitly.

There is a 6-dimensional representation ofD3 which acts on our 6-dimensional
coordinate space. We wish to decompose this representation into irreducible rep-
resentations (why? because that will provide a breakdown of the normal modes
by their symmetry under D3). It is sufficient to know the characters, which we
obtain by explicitly considering the action of one element from each class.

Clearly, η = D(e)η, hence D(e) is the 6 × 6 identity matrix. Its character is
χ(C1) = 6.
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Table 3.3: Character table for D3.

�i → �i = 1 �2 = 1 �3 = 2
Nk class ↓; irrep → χ(1) χ(2) χ(3)

1 {e} 1 1 2
2 {R,R2} 1 1 −1
3 {P, PR, PR2} 1 −1 0
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Figure 3.3: The three springs example, showing result of a rotation by 2π/3.

Now consider a rotation by 2π/3, see Fig. 3.3. The 6×6 matrix representing
this rotation is:

D(R) =

⎛
⎝ 0 0 r
r 0 0
0 r 0

⎞
⎠ , (3.102)

where r is the 2 × 2 rotation matrix:

r =
(

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

)
=

1
2

(−1 −√
3√

3 −1

)
. (3.103)

We see that the trace is zero, that is χ(C2) = 0.
The action of P is to interchange masses 1 and 2, and reflect the x coordi-
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nates:

D(P ) =

⎛
⎝ 0 p 0
p 0 0
0 0 p

⎞
⎠ , (3.104)

where p is the 2 × 2 reflection matrix:

p =
(−1 0

0 1

)
. (3.105)

We see that the trace is again zero, that is χ(C3) = 0.
With these characters, we are now ready to decompose D into the irreps of

D3. We wish to find the coefficients a1, a2, a3 in:

D = a1D
(1) ⊕ a2D

(2) ⊕ a3D
(3). (3.106)

They are given by:

aj =
1
h

nc∑
k=1

Nkχ
(j)∗(Ck)χ(Ck). (3.107)

The result is:

a1 =
1
6
(1 · 1 · 6 + 2 · 1 · 0 + 3 · 1 · 0) = 1

a2 =
1
6
(1 · 1 · 6 + 2 · 1 · 0 + 3 · −1 · 0) = 1 (3.108)

a3 =
1
6
(1 · 2 · 6 + 2 · −1 · 0 + 3 · 0 · 0) = 2.

That is,
D = D(1) ⊕D(2) ⊕ 2D(3). (3.109)

In the basis corresponding to the eigenvalues we thus have:

U =

⎛
⎜⎜⎜⎜⎜⎝

λ1

λ2

λ31

0

0
λ31

λ32

λ32

⎞
⎟⎟⎟⎟⎟⎠ , (3.110)

where λ1 corresponds to D(1), λ2 to D(2), and λ31, λ32 to two instances of D(3).
Thus, we already know that there are no more than four distinct eigenvalues,
that is, some of the six modes have the same frequency.

Let’s see that we can find the actual frequencies without too much further
work. Consider D(g)U in this diagonal coordinate system. In this basis we must
have:

D(g) =

⎛
⎜⎝
D(1)(g)

D(2)(g) 0

0 D(3)(g)
D(3)(g)

⎞
⎟⎠ , (3.111)
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and hence,

D(g)U =

⎛
⎜⎝
λ1D

(1)(g)
λ2D

(2)(g) 0

0
λ31D

(3)(g)
λ32D

(3)(g)

⎞
⎟⎠ . (3.112)

We don’t know what this coordinate system is, but we may consider quantities
which are independent of coordinate system, such as the trace:

Tr [D(g)U ] = λ1χ
(1)(g) + λ2χ

(2)(g) + (λ31 + λ32)χ(3)(g). (3.113)

Referring to Eqn. 3.95 we find, for g = e:

Tr [D(e)U ] = TrU =
1
4
(5 + 3 + 5 + 3 + 2 + 6) = 6. (3.114)

For g = R:

Tr [D(R)U ] = Tr
1
2

⎛
⎜⎜⎜⎜⎜⎝

0 0
−1 −√

3√
3 −1

−1 −√
3

0 0√
3 −1

0 −1 −√
3 0√

3 −1

⎞
⎟⎟⎟⎟⎟⎠×

1
4

⎛
⎜⎜⎜⎜⎜⎝

5
√
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3√
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3 −3

−4 0 5 −√
3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
3 −3 0 6

⎞
⎟⎟⎟⎟⎟⎠

=
1
8
(1 + 3 − 3 + 3 + 4 + 0 + 1 − 3 + 3 + 3) =

3
2

(3.115)

For g = P :

Tr [D(P )U ] = Tr

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

1
4

⎛
⎜⎜⎜⎜⎜⎝

5
√

3 −4 0 −1 −√
3√

3 3 0 0 −√
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3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
3 −3 0 6

⎞
⎟⎟⎟⎟⎟⎠

=
1
4
(4 + 0 + 4 + 0 − 2 + 6) = 3. (3.116)

This gives us the three equations:

6 = λ1 + λ2 + 2(λ31 + λ32)
3
2

= λ1 + λ2 − (λ31 + λ32) (3.117)

3 = λ1 − λ2.
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Hence,

λ1 = 3 (3.118)
λ2 = 0 (3.119)

λ31 + λ32 =
3
2
. (3.120)

To determine λ31 and λ32, we could consider another invariant, such as

TrU2 = λ2
1 + λ2

2 + 2
(
λ2

31 + λ2
32

)
. (3.121)

Alternatively, we may use some physical insight: There must be three degrees
of freedom with eigenvalue 0, corresponding to an overall rotation of the system
and overall translation of the system in two directions. Thus, choose λ31 = 0
and then λ32 = 3/2.

The frequencies are ω =
√
λk/m. The highest frequency is ω =

√
3k/m, cor-

responding to the “breathing mode” in which the springs all expand or contract
in unison. Note that this is the mode corresponding to the identity representa-
tion; the symmetry of the triangle is not broken in this mode.

3.11 Another example

Let us consider another simple example (again an expanded discussion of an
example in Mathews & Walker, chapter 16), to try to get a more intuitive picture
of the connection between eigenfunctions and irreducible representations:

Consider a square “drumhead”, and the connection of its vibrational modes
with representations of the symmetry group of the square. We note that two
eigenfunctions which are related by a symmetry of the square must have the
same eigenvalue – otherwise this would not be a symmetry. The symmetry
group of the square (see Fig. 3.4) is generated by a 4-fold axis, plus mirror
planes joining the sides and vertices.

This group has the elements:

{e,Ma,Mb,Mα,Mβ, R±π/2, Rπ}. (3.122)

Thus, the order is h = 8. The classes are readily seen to be:

C1 = {e}
C2 = {Ma,Mb}
C3 = {Mα,Mβ} (3.123)
C4 = {Rπ}
C5 = {Rπ/2, R−π/2}

We must have
∑nr

i=1 �
2
i = 8, but nr = 5, and therefore �1 = �2 = �3 = �4 = 1,

and �5 = 2 are the dimensions of the irreducible representations.


