Linear and nonlinear dimensionality reduction: applications to neural data

Sara A. Solla
Northwestern University

A simple motor task: center-out reaches

Instructed delay center-out reaching task

Neural recordings: center-out reaches

Neural recordings: population activity

$$
X=\left[\begin{array}{cccc}
n_{1}^{t} & n_{1}^{t+1} & & n_{1}^{t+T} \\
n_{2}^{t} & n_{2}^{t+1} & \cdots & n_{2}^{t+T} \\
\vdots & \vdots & & \vdots \\
n_{N}^{t} & n_{N}^{t+1} & \cdots & n_{N}^{t+T}
\end{array}\right]
$$

Data matrix X has N rows and ($T+1$) columns

$$
\begin{aligned}
& N \approx 10^{2} \text { for Multi-Electrode Arrays (MEAs) } \\
& N \approx 10^{3} \text { for Neuropixels }
\end{aligned}
$$

N is the number of recorded neurons

Population activity: multiple targets

Target-dependent population activity

$$
\vec{f}=\left(f_{1}, f_{2}, \cdots, f_{N}\right) \quad f_{i}=\frac{n_{i}}{\Delta}
$$

Principal Components Analysis (PCA)

Consider data in the form of N-dimensional vectors. Here, the data is the N-dimensional vector of firing rates associated with each reach.

Data for M reaches result in an $N \times M$ matrix:

$$
X=\left(\overrightarrow{x_{1}}\left|\overrightarrow{x_{2}}\right| \ldots \mid x_{M}\right)
$$

Estimate the mean firing rate of each neuron:

$$
\hat{\mu}_{i}=\frac{1}{M} \sum_{k=1}^{M} x_{i k} \quad 1 \leq i \leq N
$$

and subtract it from the corresponding row.

Principal Components Analysis (PCA)

Next, estimate the covariance of the data:

$$
\begin{gathered}
\hat{C}=\frac{1}{(M-1)} X X^{T} \\
\hat{C}_{i j}=\frac{1}{(M-1)} \sum_{k=1}^{M}\left(x_{i k}-\hat{\mu}_{i}\right)\left(x_{j k}-\hat{\mu}_{j}\right) \\
1 \leq i, j \leq N
\end{gathered}
$$

The diagonalization of the covariance matrix yields eigenvectors and eigenvalues: the principal components

$$
\widehat{C} \vec{u}_{v}=\lambda_{v} \vec{u}_{v}
$$

$$
1 \leq v \leq N
$$

Principal Components Analysis (PCA): relation to Singular Value Decomposition (SVD)

Consider the singular value decomposition of the data matrix X :

$$
X=U \Sigma V^{T}
$$

The columns of the $N \times N$ orthonormal matrix U provide a basis for the neural space.

The columns of the $M \times M$ orthonormal matrix V provide a basis for the space of samples.

The $N \times M$ matrix sigma Σ consists of an $N \times N$ diagonal block and and N by $(M-N)$ block of zeros.

Principal Components Analysis (PCA): relation to Singular Value Decomposition (SVD)

Given the singular value decomposition of the data matrix X :

$$
\begin{gathered}
X=U \Sigma V^{T} \\
X X^{T}=\left(U \Sigma V^{T}\right)\left(V \Sigma^{T} U^{T}\right) \\
=U\left(\Sigma \Sigma^{T}\right) U^{T} \\
\hat{C}=\frac{1}{(M-1)} X X^{T}=U \Lambda U^{T} \\
\Lambda=\frac{1}{(M-1)} \sum \Sigma^{T}
\end{gathered}
$$

Principal Components Analysis (PCA): dimensionality reduction

$$
\Lambda=\frac{1}{(M-1)} \Sigma \Sigma^{T}
$$

$\Lambda=\left[\begin{array}{ccccc}\lambda_{1} & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & \lambda_{K} & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & \lambda_{N}\end{array}\right]$

$$
\text { with } \lambda_{1} \geq \cdots \geq \lambda_{K} \geq \cdots \geq \lambda_{N}
$$

Dimensionality reduction: keep only the K leading eigenvalues

$$
\hat{C}=U \Lambda U^{T}
$$

$$
\hat{C}=\sum_{\mu=1}^{N} \lambda_{\mu} \vec{u}_{\mu} \vec{u}_{\mu}^{T} \quad \Rightarrow \quad \hat{C}=\sum_{\mu=1}^{K} \lambda_{\mu} \vec{u}_{\mu} \vec{u}_{\mu}^{T}
$$

Principal Components Analysis (PCA): dimensionality reduction

$$
\hat{C}=\sum_{\mu=1}^{N} \lambda_{\mu} \vec{u}_{\mu} \vec{u}_{\mu}^{T} \quad \Rightarrow \quad \hat{C}=\sum_{\mu=1}^{K} \lambda_{\mu} \vec{u}_{\mu} \vec{u}_{\mu}^{T}
$$

b

C

Target-dependent population activity

Population dynamics: the empirical neural space

Neural state space

PCA eigenvalues

Isomap eigenvalues

ISOMAP nonlinear dimensionality reduction

Multidimensional scaling

Represent objects as points in a low dimensional space: Euclidean distances between the corresponding points reproduce as well as possible an empirical matrix of distances or dissimilarities.

	A	B	C	D
A	0	7	2	3
B	7	0	4.5	6
C	2	4.5	0	5
D	3	6	5	0

Multidimensional scaling

Consider data in the form of N -dimensional vectors. Here, the data is the N -dimensional vector of firing rates associated with each reach.

Data for M reaches result in an $N \times M$ matrix:

$$
X=\left(\overrightarrow{x_{1}}\left|\overrightarrow{x_{2}}\right| \ldots \mid \overrightarrow{x_{M}}\right)
$$

If the matrix \boldsymbol{X} is hidden from us, but we are given instead an $M \times M$ matrix \boldsymbol{S} of squared distances between the points, can we reconstruct the matrix \boldsymbol{X} ?

Multidimensional scaling

If the distances are Euclidean:

$$
S_{i j}=d_{i j}^{2}=\left(\vec{x}_{i}-\vec{x}_{j}\right)^{T}\left(\vec{x}_{i}-\vec{x}_{j}\right)
$$

the scalar product between data points can be written as:

$$
\vec{x}_{i}^{T} \vec{x}_{j}=-(1 / 2)\left(S_{i j}-\left\|\vec{x}_{i}\right\|^{2}-\left\|\vec{x}_{j}\right\|^{2}\right)
$$

In matrix form, $\quad \vec{x}_{i}{ }^{\boldsymbol{T}} \overrightarrow{\boldsymbol{x}_{j}}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)_{i j}$
and $\quad S_{i j}-\left\|\vec{x}_{i}\right\|^{2}-\left\|\vec{x}_{j}\right\|^{2}=(\boldsymbol{J S J})_{i j}$
where \boldsymbol{J} is the $M \times M$ centering matrix $\boldsymbol{J}=\boldsymbol{I}-(1 / M) \boldsymbol{e} \boldsymbol{e}^{T}$

$$
X^{T} X=-(1 / 2) J S J
$$

Multidimensional scaling

In matrix form: $\quad X^{\boldsymbol{T}} \boldsymbol{X}=-(\mathbf{1 / 2}) \boldsymbol{J} S \boldsymbol{J}$
From this equation the data matrix \boldsymbol{X} can be easily obtained:

$$
X^{T} X=U \Lambda U^{T} \Longrightarrow X=\Lambda^{1 / 2} U^{T}
$$

- If the distance matrix to which this calculation is applied is based on Euclidean distances, this process allows us to recover the data matrix \boldsymbol{X} from the distance matrix \boldsymbol{S}.
- A reduction of the dimensionality of the original data space follows from truncation of the number of eigenvalues from M to K, and the corresponding restriction in the number of eigenvectors used to reconstruct \boldsymbol{X}.
- It can be proved that this truncation is equivalent to PCA, which is based on the diagonalization of $\boldsymbol{X} \boldsymbol{X}^{T}$.

Multidimensional scaling

When applied to an arbitrary matrix S of 'squared distances', the method still implies defining an 'inner product' matrix Y
through the centering operation: $Y=-(1 / 2) J S J$, followed by the diagonalization of $Y: Y=U \Lambda U^{T}$ and the identification of the data matrix X as $X=\Lambda^{1 / 2} U^{T}$.

This procedure minimizes a cost function E that measures the Frobenius norm of the difference between two matrices: the original matrix Y and the inner product matrix $X^{T} X$ obtained from the Euclidean representation of the data:

$$
E(X)=\left\|X^{T} X-Y\right\|_{F}
$$

ISOMAP: nonlinear embedding

Tenenbaum, de Silva, Langford, Science (2000)

ISOMAP eigenvalues

ISOMAP: two-dimensional projection

Euclidean vs Geodesic distances

Geodesics on a curved manifold

ISOMAP: two-dimensional projection

Endpoint predictions from M1 activity

[0 Simultaneous recordings of population activity can be analyzed with fundamentally different techniques than those used for single neurons.
[For limb reaches, the population activity defines a nonlinear low dimensional manifold whose intrinsic coordinates capture task-relevant dimensions.
[] The curvature of the manifold is a network effect and arises from the interaction among neurons, while coordinates within the manifold are task-specific.

