mathematical methods - week 5

Integration in complex plane

Georgia Tech PHYS-6124

Homework HW \#5
due Tuesday, September 23, 2014
== show all your work for maximum credit,
$==$ put labels, title, legends on any graphs
$==$ acknowledge study group member, if collective effort

Exercise 5.1 Complex integration
(a) 4; (b) 2; (c) 2; and (d) 3 points

Exercise 5.2 Fresnel integral
7 points

Bonus points
Exercise 5.3 Cauchy's theorem via Green's theorem in the plane
6 points

Total of 18 points $=100 \%$ score. Extra points accumulate, can help you later if you miss a few problems.

2014-09-16 Predrag Lecture 10 Calculus of residues

Arfken \& Weber Chapter 6 - Laurent expansion; chapter 7 - residues

2014-09-18 Predrag Lecture 11 Integration in complex plane

Arfken \& Weber Chapter 7, section 7.1
Grigoriev notes: Evaluation of integrals

Exercises

5.1. Complex integration.

(a) Write down the values of $\oint_{C}(1 / z) d z$ for each of the following choices of C : (i) $|z|=1, \quad$ (ii) $|z-2|=1, \quad$ (iii) $|z-1|=2$.

Then confirm the answers the hard way, using parametric evaluation.
(b) Evaluate parametrically the integral of $1 / z$ around the square with vertices $\pm 1 \pm i$.
(c) Confirm by parametric evaluation that the integral of z^{m} around an origin centered circle vanishes, except when the integer $m=-1$.
(d) Evaluate $\int_{1+i}^{3-2 i} d z \sin z$ in two ways: (i) via the fundamental theorem of (complex) calculus, and (ii) (optional) by choosing any path between the end-points and using real integrals.

5.2. Fresnel integral.

We wish to evaluate the $I=\int_{0}^{\infty} \exp \left(i x^{2}\right) d x$. To do this, consider the contour integral $I_{R}=\int_{C(R)} \exp \left(i z^{2}\right) d z$, where $C(R)$ is the closed circular sector in the upper half-plane with boundary points $0, R$ and $R \exp (i \pi / 4)$. Show that $I_{R}=0$ and that $\lim _{R \rightarrow \infty} \int_{C_{1}(R)} \exp \left(i z^{2}\right) d z=0$, where $C_{1}(R)$ is the contour integral along the circular sector from R to $R \exp (i \pi / 4)$. [Hint: use $\sin x \geq(2 x / \pi)$ on $0 \leq x \leq \pi / 2$.] Then, by breaking up the contour $C(R)$ into three components, deduce that

$$
\lim _{R \rightarrow \infty}\left(\int_{0}^{R} \exp \left(i x^{2}\right) d x-\mathrm{e}^{i \pi / 4} \int_{0}^{R} \exp \left(-r^{2}\right) d r\right)=0
$$

and, from the well-known result of real integration $\int_{0}^{\infty} \exp \left(-x^{2}\right) d x=\sqrt{\pi} / 2$, deduce that $I=\mathrm{e}^{i \pi / 4} \sqrt{\pi} / 2$.
5.3. Cauchy's theorem via Green's theorem in the plane. Express the integral $\oint_{C} d z f(z)$ of the analytic function $f=u+i v$ around the simple contour C in parametric form, apply the two-dimensional version of Gauss' theorem (a.k.a. Green's theorem in the plane), and invoke the Cauchy-Riemann conditions. Hence establish Cauchy's theorem $\oint_{C} d z f(z)=$ 0 .

