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Preface

Ben Mottelson is the only physicist I personally know who thinks equally clearly
quantum-mechanically and classically, the rest of us are not so lucky. Still, I
have never understood why my colleagues say that “while we understand classical
mechanics,” quantum mechanics is mysterious. I never got the memo: to me
it is equally magical that both Newtonian and quantum mechanics follow from
variational principles.

On the other hand, almost every single thing we learn about quantum me-
chanics and thus come to believe is quantum mechanics –operators, commutators,
complex amplitudes, unitary evolution operators, Green’s functions, spectra, path
integrals, spins, angular momenta– under a closer inspection has nothing specifi-
cally quantum mechanical to it. It is machinery equally suited to classical, statisti-
cal and stochastic mechanics, which in ChaosBook.org are thought of together -
in terms of evolution operators and their spectra. The common theme of the three
theories is that things fall apart, and infinitely many fragments have to be pieced
together to craft a theory. In the end it is only the i/� granularity of phase space
that is the mystery of quantum mechanics; and why, a century later, quantum
mechanics is still a theory that refuses to fail us?

Over the years I have watched in amazement study group after study group of
graduate students grovel in orgies of Minkowski and spin indices, and tried in vain
to deprogram them through my ChaosBook.org/FieldTheory book [2], but
all in vain: students want Quantum Field Theory to be mysterious and accessed
only by pages of indix summations. Or two-forms. These notes are yet another
attempt to demystify most of field theory, inspired by young Feynman driving
yet younger Dyson across the continent to Los Alamos, hands of the steering
wheel and gesticulating: “Path integrals are everything!” These lectures are about
of “everything.” The theory is developed here at not quite the pedestrian level,
perhaps a cyclist level. We do it mostly on a finite lattice, without any functional
voodoo; all we have to know is how to manipulate finite dimensional vectors and
matrices. More of such stuff can be found in ref. [2].

This version of field theory presupposes prior exposure to the Ising model and
the Landau mean field theory of critical phenomena on the level of ref. [1], or any
other decent introduction to critical phenomena.

Acknowledgments. These notes owe its existence to the Niels Bohr Insti-
tute’s and Nordita’s hospitable and nurturing environment, and the private, na-
tional and cross-national foundations that have supported the collaborators’ re-
search over a span of several decades. I am indebted to Benny Lautrup both for
my first introduction to lattice field theory, and for the sect. 1.3 interpretation
of the Fourier transform as the spectrum of the stepping operator. And last but
not least– profound thanks to all the unsung heroes–students and colleagues, too
numerous to list here–who have supported this project over many years in many
ways, by surviving courses based on these notes, by providing invaluable insights,
by teaching us, by inspiring us. I am thank the Carlsberg Foundation and Glen
P. Robinson for partial support, and Dorte Glass, Tzatzilha Torres Guadarrama
and Raenell Soller for typing parts of the manuscript.

Who is the 3-legged dog reappearing throughout the book? Long ago, when
I was innocent and knew not Borel measurable α to Ω sets, I asked V. Baladi a

http://ChaosBook.org
http://ChaosBook.org/FieldTheory
http://chaosbook.org/FieldTheory/quefithe.html
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question about dynamical zeta functions, who then asked J.-P. Eckmann, who then
asked D. Ruelle. The answer was transmitted back: “The master says: ‘It is holo-
morphic in a strip’.” Hence His Master’s Voice (H.M.V.) logo, and the 3-legged
dog is us, still eager to fetch the bone, or at least a missing figure, if a reader is
kind enough to draw one for us. What is depicted on the cover? Roberto Ar-
tuso found the smørrebrød at the Niels Bohr Institute indigestible, so he digested
H.M.V.’s wisdom on a strict diet of two Carlsbergs and two pieces of Danish pas-
try for lunch every day. Frequent trips down to Milano’s ancestral grounds kept
him alive.

version 3.6 - Dec 9 2012 ackn.tex 9dec2013



Chapter 1

Lattice field theory

1.1 Wanderings of a drunken snail . . . . . . . . . . . . . . . 5

1.2 Lattice derivatives . . . . . . . . . . . . . . . . . . . . . . 8
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1.3 Periodic lattices . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 A 2-point lattice diagonalized . . . . . . . . . . . . 11

1.4 Discrete Fourier transforms . . . . . . . . . . . . . . . . . 12

1.4.1 Fourier transform of the propagator . . . . . . . . . 13

1.4.2 Lattice Laplacian diagonalized . . . . . . . . . . . . 14

1.5 Continuum field theory . . . . . . . . . . . . . . . . . . . 15

We motivate path integrals to come by formulating the simplest example of
propagator, Green’s function for the random walk on a lattice, as a sum over paths.
In order to set the stage for the continuum formulation, we then describe lattice
derivatives and lattice Laplacians, and explain how symmetry under translations
enables us to diagonalize the free propagator by means of a discrete Fourier trans-
form.

1.1 Wanderings of a drunken snail

Statistical mechanics is formulated in a Euclidean world in which there is no time,
just space. What do we mean by propagation in such a space?

We have no idea what the structure of our space on distances much shorter
than interatomic might be. The very space-time might be discrete rather than
continuous, or it might have geometry different from the one we observe at the ac-
cessible distance scales. The formalism we use should reflect this ignorance. We
deal with this problem by coarse-graining the space into small cells and requiring
that our theory be insensitive to distances comparable to or smaller than the cell
sizes.

Our next problem is that we have no idea why there are “particles,” and why
or how they propagate. The most we can say is that there is some probability that

5



6 CHAPTER 1. LATTICE FIELD THEORY

a particle steps from one cell to another cell. At the beginning of the century, the
discovery of Brownian motion showed that matter was not continuous but was
made up of atoms. In quantum physics we have no experimental indication of
having reached the distance scales in which any new space-time structure is being
sensed: hence for us this stepping probability has no direct physical significance.
It is a phenomenological parameter which - in the continuum limit - might be
related to the “mass” of the particle.

We assume that the state of a particle is specified by its position, and that it has
no further internal degrees of freedom, such as spin or color: i = (x1, x2, · · · , xd) .
What is it like to be free? A free particle exists only in itself and for itself; it
neither sees nor feels the others; it is, in this chilly sense, free. But if it is not at
once paralyzed by the vast possibilities opened to it, it soon becomes perplexed
by the problems of realizing any of them alone. Born free, it is constrained by
the very lack of constraint. Sitting in its cell, it is faced by a choice of doing
nothing (s = stopping probability) or stepping into any of the 2d neighboring cells
(h = stepping probability):

The number of neighboring cells defines the dimension of the space. The
stepping and stopping probabilities are related by the probability conservation:
1 = s + 2dh . Taking the stepping probability to be the same in all directions
means that we have assumed that the space is isotropic.

Our next assumption is that the space is homogeneous, i.e., that the stepping
probability does not depend on the location of the cell; otherwise the propagation
is not free, but is constrained by some external geometry. This can either mean
that the space is infinite, or that it is compact and periodic (a torus; a Lie group
manifold). That is again something beyond our ken - we proceed in the hope that
the predictions of our theory will be insensitive to very large distances.

The isotropy and homogeneity assumptions imply that at distances much larger
than the lattice spacing, our theory should be invariant under rotations and trans-
lations. The requirement of insensitivity to the very short and very long distances
means that the theory must have nice ultraviolet and infrared properties.

Let a particle start in the cell i and step along until it stops in the cell j.

a Brownian walk
a walk on a lattice

The probability of this process is h� s, where � is the number of steps in the corre-
sponding path. The total probability that a particle wanders from the ith cell and

lattFT - 4dec2012 version 3.6 - Dec 9 2012



1.1. WANDERINGS OF A DRUNKEN SNAIL 7

stops in the jth cell is the sum of probabilities associated with all possible paths
connecting the two cells:

Δi j = s
∑
�

h�Ni j(�) , (1.1)

where Ni j(�) is the number of all paths of length � connecting lattice sites i and j.
In order to compute Ni j(�), define a stepping operator

(σμ)i j = δi+nμ, j , (1.2)

where nμ is a unit step in direction μ. If a particle is introduced into the ith cell by
a source Jk = δik , the stepping operator moves it into a neighboring cell:

(σμJ)k = δi+nμ,k → [FieldTheory-p63a.ps] .

The operator

(h · σ)i j =

d∑
μ=1

hμ[(σ
μ)i j + (σμ) ji] , hμ = (h, h, · · · , h) (1.3)

generates all steps of length 1 with probability h:

(h · σ)J = h [FieldTheory-p63b.ps] , ith cell .

(The examples are drawn in two dimensions). The paths of length 2 are generated
by

(h · σ)2J = h2 [FieldTheory-p63c.ps] ,

and so on. Note –and this is the key observation– that the ith component of the
vector (h · σ)�J counts the number of paths of length � connecting the ith and the
kth cells. The total probability that the particle stops in the kth cell is given by

φk = s
∞∑
�=0

(h · σ)�k jJ j

φ =
s

1 − h · σ J . (1.4)

The value of the field φk at a space point k measures the probability of observing
the particle introduced into the system by the source J. The Euclidean free scalar
particle propagator (1.1) is given by

Δi j =

( s
1 − h · σ

)
i j
, (1.5)

or, in the continuum limit (see sect. 1.5) by
exercise ??

Δ(x, y) =
∫

ddk

(2π)d

eik·(x−y)

k2 + m2
. (1.6)

version 3.6 - Dec 9 2012 lattFT - 4dec2012



8 CHAPTER 1. LATTICE FIELD THEORY

1.2 Lattice derivatives

In order to set up continuum field-theoretic equations which describe the evolution
of spatial variations of fields, we need to define lattice derivatives.

Consider a smooth function φ(x) evaluated on an infinite d-dimensional lattice

φ� = φ(x) , x = a� = lattice point , � ∈ Zd , (1.7)

where a is the lattice spacing. Each set of values of φ(x) (a vector φ�) is a
possible lattice configuration. Assume the lattice is hyper-cubic, and let n̂μ ∈
{n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d positive direc-
tions. The lattice derivative is then

(∂μφ)� =
φ(x + an̂μ) − φ(x)

a
=
φ�+n̂μ − φ�

a
. (1.8)

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the stepping operator in the direction μ(

σμ
)
� j
= δ�+n̂μ, j . (1.9)

As σ will play a central role in what follows, it pays to understand what it does.
In computer dicretizations, the lattice will be a finite d-dimensional hyper-

cubic lattice

φ� = φ(x) , x = a� = lattice point , � ∈ (Z/N)d , (1.10)

where a is the lattice spacing and there are Nd points in all. For a hyper-cubic
lattice the translations in different directions commute, σμσν = σνσμ, so it is
sufficient to understand the action of (1.9) on a 1-dimensional lattice.

Let us write down σ for the 1-dimensional case in its full [N×N] matrix glory.
Writing the finite lattice stepping operator (1.9) as an ‘upper shift’ matrix,

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.11)

is no good, as σ so defined is nilpotent, and after N steps nothing is left, σN = 0.
A sensible way to approximate an infinite lattice by a finite one is to replace it by a
lattice periodic in each n̂μ direction. On a periodic lattice every point is equally far
from the “boundary” N/2 steps away, the “surface” effects are equally negligible
for all points, and the stepping operator acts as a cyclic permutation matrix

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.12)

lattFT - 4dec2012 version 3.6 - Dec 9 2012



1.2. LATTICE DERIVATIVES 9

with ‘1’ in the lower left corner assuring periodicity.
Applied to the lattice configuration φ = (φ1, φ2, · · · , φN), the stepping operator

translates the configuration by one site, σφ = (φ2, φ3, · · · , φN , φ1). Its transpose
translates the configuration the other way, so the transpose is also the inverse,
σ−1 = σT . The partial lattice derivative (1.8) can now be written as a multiplica-
tion by a matrix:

∂μφ� =
1
a

(
σμ − 1

)
� j
φ j .

In the 1-dimensional case the [N×N] matrix representation of the lattice deriva-
tive is:

∂ =
1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1

−1 1
. . .

1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.13)

To belabor the obvious: On a finite lattice of N points a derivative is simply a
finite [N×N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

1.2.1 Lattice Laplacian

In the continuum, integration by parts moves ∂ around, φT · ∂2φ→ −∂φT · ∂φ; on
a lattice this amounts to a matrix transposition[(

σμ − 1
)
φ
]T · [(σμ − 1

)
φ
]
= φT ·

(
σ−1
μ − 1

) (
σμ − 1

)
· φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂T =
1
a

(
σ−1 − 1

)
= −σ−1 1

a
(σ − 1) = −σ−1∂ .

The symmetric (self-adjoint) combination Δ = −∂T∂

Δ = − 1

a2

d∑
μ=1

(
σ−1
μ − 1

) (
σμ − 1

)
= − 2

a2

d∑
μ=1

(
1 − 1

2
(σ−1

μ + σμ)

)
(1.14)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [N×N] matrix representation of
the lattice Laplacian is:

Δ =
1

a2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.15)

version 3.6 - Dec 9 2012 lattFT - 4dec2012



10 CHAPTER 1. LATTICE FIELD THEORY

The lattice Laplacian measures the second variation of a field φ� across three
neighboring sites: it is spatially non-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
lattice, φ� = φ(a�), where φ(a�) is defined by the value of the continuum function
φ(x) = x2 at the lattice point x� = a�.

1.2.2 Inverting the Laplacian

Evaluation of perturbative corrections in (2.20) requires that we come to grips
with the “free” or “bare” propagator M. While the inverse propagator M−1 is a
simple difference operator (2.19), the propagator is a messier object. A way to
compute is to start expanding the propagator M as a power series in the Laplacian

βM =
1

m′20 1 − Δ =
1

m′20

∞∑
k=0

⎛⎜⎜⎜⎜⎜⎝ 1

m′20

⎞⎟⎟⎟⎟⎟⎠
k

Δk . (1.16)

As Δ is a finite matrix, the expansion is convergent for sufficiently large m′20 . To
get a feeling for what is involved in evaluating such series, evaluate Δ2 in the
1-dimensional case:

Δ2 =
1

a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.17)

What Δ3, Δ4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other lat-
tice site. In statistical mechanics, M is the (bare) 2-point correlation. In quantum

exercise ??
field theory, it is called a propagator, for reasons explained in sect.1.1.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We will show how
this works in sect. 1.3.

1.3 Periodic lattices

Our task now is to transform M into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is applicable only to trans-
lationally invariant saddle point configurations.

Consider the effect of a lattice translation φ→ σφ on the matrix polynomial

S [σφ] = −1
2
φT

(
σT M−1σ

)
φ .

lattFT - 4dec2012 version 3.6 - Dec 9 2012



1.3. PERIODIC LATTICES 11

As M−1 is constructed from σ and its inverse, M−1 and σ commute, and the
function S [σφ] is invariant under translations,

S [σφ] = S [φ] = −1
2
φT · M−1 · φ . (1.18)

If a function (in this case, the function S [φ]) defined on a vector space (in this case,
the configuration φ) commutes with a linear operator σ, then the eigenvalues of σ
can be used to decompose the φ vector space into invariant subspaces. For a hyper-
cubic lattice the translations in different directions commute, σμσν = σνσμ, so it
is sufficient to understand the spectrum of the 1-dimensional stepping operator
(1.12). To develop a feeling for how this reduction to invariant subspaces works
in practice, let us continue humbly, by expanding the scope of our deliberations to
a lattice consisting of 2 points.

1.3.1 A 2-point lattice diagonalized

The action of the stepping operator σ (1.12) on a 2-point lattice φ = (φ1, φ2) is to
permute the two lattice sites

σ =
( 0 1
1 0

)
.

As exchange repeated twice brings us back to the original configuration, σ2 = 1,
the characteristic polynomial of σ is

(σ + 1)(σ − 1) = 0 ,

with eigenvalues λ0 = 1, λ1 = −1. Construct now the symmetrization, antisym-
metrization projection operators

P0 =
σ − λ11
λ0 − λ1

=
1
2

(1 + σ) =
1
2

( 1 1
1 1

)
(1.19)

P1 =
σ − 1
−1 − 1

=
1
2

(1 − σ) =
1
2

( 1 −1
−1 1

)
. (1.20)

Noting that P0 + P1 = 1, we can project the lattice configuration φ onto the two
eigenvectors of σ:

φ = 1φ = P0 · φ + P1 · φ ,(
φ1

φ2

)
=

(φ1 + φ2)√
2

1√
2

( 1
1

)
+

(φ1 − φ2)√
2

1√
2

( 1
−1

)
(1.21)

= φ̃0n̂0 + φ̃1n̂1 . (1.22)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform sep-
arately under any linear transformation constructed from σ and its powers.

In this way the characteristic equation σ2 = 1 enables us to reduce the 2-
dimensional lattice configuration to two 1-dimensional ones, on which the value
of the stepping operator σ is a number, λ ∈ {1,−1}, and the eigenvectors are n̂0 =

1√
2
(1, 1), n̂1 =

1√
2
(1,−1). We have inserted

√
2 factors for convenience, in order

that the eigenvectors be normalized unit vectors. As we shall now see, (̃φ0, φ̃1) is
the 2-site periodic lattice discrete Fourier transform of the field (φ1, φ2).

version 3.6 - Dec 9 2012 lattFT - 4dec2012



12 CHAPTER 1. LATTICE FIELD THEORY

1.4 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with N sites.
Each application of σ translates the lattice one step; in N steps the lattice is

back in the original configuration

σN = 1

.
.

.

.
..

.
k

N−1

N−2

0

45
3

2

1h

,

so the eigenvalues of σ are the N distinct N-th roots of unity

σN − 1 =
N−1∏
k=0

(σ − ωk1) = 0 , ω = ei 2π
N . (1.23)

As the eigenvalues are all distinct and N in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded in appendix A.1)
associates with the k-th eigenvalue of σ a projection operator that projects a con-
figuration φ onto k-th eigenvector of σ,

Pk =
∏
j�k

σ − λ j1
λk − λ j

. (1.24)

A factor (σ − λ j1) kills the j-th eigenvector ϕj component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · ·. The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j�k(λk − λ j) ensures that Pk is normalized as

a projection operator. The set of the projection operators is complete,∑
k

Pk = 1 , (1.25)

and orthonormal

PkP j = δk jPk (no sum on k) . (1.26)

Constructing explicit eigenvectors is usually not a the best way to fritter one’s
youth away, as choice of basis is largely arbitrary, and all of the content of the
theory is in projection operators. However, in case at hand the eigenvectors are
so simple that we can forget the general theory, and construct the solutions of the
eigenvalue condition

σϕk = ωkϕk (1.27)

by hand:

1√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...

ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ωk 1√

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...

ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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1.4. DISCRETE FOURIER TRANSFORMS 13

The 1/
√

N factor is chosen in order that ϕk be normalized complex unit vectors

ϕ†k · ϕk =
1
N

N−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1√
N

(
1, ω−k, ω−2k, · · · , ω−(N−1)k

)
. (1.28)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (1.29)

as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker delta function for a peri-
odic lattice

δk j =
1
N

N−1∑
�=0

ei 2π
N (k− j)�

.
.

.

.
..

.

N−2

N−1

0

1

2

3
5 4

k

. (1.30)

The sum is over the N unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unless k = j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (1.27),
(1.28) as

(Pk)��′ = (ϕk)�(ϕ
†
k)�′ =

1
N

ei 2π
N (�−�′)k , (no sum on k) . (1.31)

The completeness (1.25) follows from (1.30), and the orthonormality (1.26) from
(1.29).

φ̃k, the projection of the φ configuration on the k-th subspace is given by

(Pk · φ)� = φ̃k (ϕk)� , (no sum on k)

φ̃k = ϕ†k · φ =
1√
N

N−1∑
�=0

e−i 2π
N k�φ� (1.32)

We recognize φ̃k as the discrete Fourier transform of φ�. Hopefully rediscovering
it this way helps you a little toward understanding why Fourier transforms are full
of eix·p factors (they are eigenvalues of the generator of translations) and when
are they the natural set of basis functions (only if the theory is translationally
invariant).

1.4.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑
kk′

PkMPk′ =
∑
kk′

ϕk(ϕ
†
k ·M · ϕk′)ϕ

†
k′ .

The matrix

M̃kk′ = (ϕ†k ·M · ϕk′) (1.33)

version 3.6 - Dec 9 2012 lattFT - 4dec2012



14 CHAPTER 1. LATTICE FIELD THEORY

is the Fourier space representation of M. No need to stop here - the terms in the
action (1.18) that couple four (and, in general, 3, 4, · · ·) fields also have the Fourier
space representations

γ�1�2···�n φ�1φ�2 · · · φ�n = γ̃k1k2 ···kn φ̃k1 φ̃k2 · · · φ̃kn ,

γ̃k1k2···kn = γ�1�2···�n(ϕk1 )�1(ϕk2)�2 · · · (ϕkn )�n

=
1

Nn/2

∑
�1···�n

γ�1�2···�n e−i 2π
N (k1�1+···+kn�n) . (1.34)

According to (1.29) the matrix Uk� = (ϕk)� = 1√
N

ei 2π
N k� is a unitary matrix, so

the Fourier transform is a linear, unitary transformation, UU† =
∑

Pk = 1, with
Jacobian det U = 1. The form of the path integral (2.8) does not change under
φ → φ̃k transformation, and from the formal point of view, it does not matter
whether we compute in the Fourier space or in the configuration space that we
started out with. For example, the trace of M is the trace in either representation

tr M =
∑
�

M�� =
∑
kk′

∑
�

(PkMPk′)��

=
∑
kk′

∑
�

(ϕk)�(ϕ
†
k ·M · ϕk′)(ϕ

†
k′)� =

∑
kk′

δkk′ M̃kk′ = tr M̃ .

From this it follows that tr Mn = tr M̃n, and from the tr ln = ln tr relation that
det M = det M̃. In fact, any scalar combination of φ’s, J’s and couplings, such as
the partition function Z[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the payback?

1.4.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (1.27) to convert σ matrices into scalars. If M
commutes with σ, then (ϕ†k ·M ·ϕk′ ) = M̃kδkk′ , and the matrix M acts as a multipli-
cation by the scalar M̃k on the kth subspace. For example, for the 1-dimensional
version of the lattice Laplacian (1.14) the projection on the k-th subspace is

(ϕ†k · Δ · ϕk′) =
2

a2

(
1
2

(ω−k + ωk) − 1

)
(ϕ†k · ϕk′)

=
2

a2

(
cos

(
2π
N

k

)
− 1

)
δkk′ (1.35)

In the k-th subspace the bare propagator is simply a number, and, in contrast to
the mess generated by (1.16), there is nothing to inverting M−1:

(ϕ†k · M · ϕk′) = (G̃0)kδkk′ =
1
β

δkk′

m′20 − 2c
a2

∑d
μ=1

(
cos

(
2π
N kμ

)
− 1

) , (1.36)

where k = (k1, k2, · · · , kμ) is a d-dimensional vector in the Nd-dimensional dual
lattice.
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1.5. CONTINUUM FIELD THEORY 15

Going back to the partition function (2.20) and sticking in the factors of 1 into
the bilinear part of the interaction, we replace the spatial J� by its Fourier trans-
form J̃k, and the spatial propagator (M)��′ by the diagonalized Fourier transformed
(G̃0)k

JT · M · J =
∑
k,k′

(JT · ϕk)(ϕ
†
k · M · ϕk′)(ϕ

†
k′ · J) =

∑
k

J̃†k (G̃0)k J̃k . (1.37)

What’s the price? The interaction term SI[φ] (which in (2.20) was local in the
configuration space) now has a more challenging k dependence in the Fourier
transform version (1.34). For example, the locality of the quartic term leads to the
4-vertex momentum conservation in the Fourier space

S I[φ] =
1
4!
γ�1�2�3�4 φ�1φ�2φ�3φ�4 = −βu

Nd∑
�=1

(φ�)
4 ⇒

= −βu
1

Nd

N∑
{ki}

δ0,k1+k2+k3+k4 φ̃k1 φ̃k2 φ̃k3 φ̃k4 . (1.38)

1.5 Continuum field theory
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16 EXERCISES

Exercises

1.1. Free-field theory combinatorics. Check that there
indeed are no combinatorial prefactors in the expansion
(2.31).

1.2. Quality of asymptotic series. Use the saddle-point
method to evaluate Zn

Zn =
(−1)n

n!4n

∫
dφ√
2π

e−φ
2/2+4n ln φ

Find the smallest error for a fixed g; plot both your error
and the the exact result (2.23) for g = 0.1, g = 0.02,
g = 0.01. The prettiest plot makes it into these notes as
figure 2.2!

1.3. Complex Gaussian integrals. R
exercise 3.B.1 of ref. [2].

1.4. Prove ln det = tr ln. (link here
problem sets, already done).

1.5. Convexity of exponentials. Pro
(2.25). Matthias Eschrig suggest th
proof be offered, applicable to any m
ing sequence with alternating signs.

1.6. Wick expansion for φ4 theories. D
the combinatorial signs.

1.7. Wick expansions. Read sect. 3.
3.C.2 of ref. [2].
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Chapter 2

Path integrals

2.1 Field theory - setting up the notation . . . . . . . . . . . . 19

2.2 Saddle-point expansions . . . . . . . . . . . . . . . . . . . 20

2.3 Saddle-point expansions are asymptotic . . . . . . . . . . 23

2.4 Free propagation . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Free field theory . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Feynman diagrams . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Hungry pac-men munching on fattened J’s . . . . . 26

The path integral (3.35) is an ordinary multi-dimensional integral. In the clas-
sical �→ 0, the action is large (high price of straying from the beaten path) almost
everywhere, except for some localized regions of the q-space. Highly idealized,
the action looks something like the sketch in figure2.1 (in order to be able to draw
this on a piece of paper, we have suppressed a large number of q� coordinates).

Such integral is dominated by the minima of the action. The minimum value
S [q] configurations qc are determined by the zero-slope, saddle-point condition

d
dφ�

S [qc] + J� = 0 . (2.1)

The term “saddle” refers to the general technique of evaluating such integrals for
complex q; in the statistical mechanics applications qc are locations of the min-
ima of S [q], not the saddles. If there is a number of minima, only the one (or the
nc minima related by a discrete symmetry) with the lowest value of −S [qc] −
qc · J dominates the path integral in the low temperature limit. The zeroth or-
der, classical approximation to the partition sum (3.35) is given by the extremal
configuration alone

Z[J] = eW[J] →
∑

c

eWc[J] = eWc[J]+ln nc

Wc[J] = S [qc] + qc · J . (2.2)

In the saddlepoint approximation the corrections due to the fluctuations in the
qc neighborhood are obtained by shifting the origin of integration to

q� → qc
� + q� ,

17



18 CHAPTER 2. PATH INTEGRALS

Figure 2.1: In the classical �→ 0 limit (or the low
temperature T = 1/β limit) the path integral (2.8)
is dominated by the minima of the integrand’s ex-
ponent. The location φc of a minimum is deter-
mined by the extremum condition ∂�S [φc]+ J� = 0
.

the position of the c-th minimum of S [q] − q · J, and expanding S [q] in a Taylor
series around qc.

For our purposes it will be convenient to separate out the quadratic part S0[q],
and collect all terms higher than bilinear in q into an “interaction” term SI[q]

S 0[q] = −
∑
�

q�
(
M−1

)
�,�′

q� ,

S I[q] = −(· · ·)�,�′,�′′q�q�′q�′′ + · · · . (2.3)

Rewrite the partition sum (3.35) as

eW[J] = eWc[J]
∫

[dq] e−
1
2 qT ·M−1·q+S I [q] .

As the expectation value of any analytic function

g(q) =
∑

gn1n2...q
n1
1 qn2

2 · · · /n1!n2! · · ·
can be recast in terms of derivatives with respect to J∫

[dq] g[q]e−
1
2 qT ·M−1·q = g

[
d
dJ

] ∫
[dq] e−

1
2 qT ·M−1·q+q·J

∣∣∣∣∣
J=0

,

we can move S I[q] outside of the integration, and evaluate the Gaussian integral
in the usual way

exercise 1.3

eW[J] = eWc[J]eS I [ d
dJ ]

∫
[dq] e−

1
2 qT ·M−1·q+q·J

∣∣∣∣∣
J=0

= |det M| 12 eWc[J]eS I [ d
dJ ] e

1
2 JT ·M·J

∣∣∣∣
J=0

. (2.4)

M is invertible only if the minima in figure 2.1 are isolated, and M−1 has
no zero eigenvalues. The marginal case would require going beyond the Gaussian
saddlepoints studied here, typically to the Airy-function type stationary points [9].
In the classical statistical mechanics S [q] is a real-valued function, the extremum
of S [q] at the saddlepoint qc is the minimum, all eigenvalues of M are strictly
positive, and we can drop the absolute value brackets | · · · | in (2.4).

exercise 4.4
Expanding the exponentials and evaluating the d

dJ derivatives in (2.4) yields
the fluctuation corrections as a power series in 1/β = T .

The first correction due to the fluctuations in the qc neighborhood is obtained
by approximating the bottom of the potential in figure 2.1 by a parabola, i.e.,
keeping only the quadratic terms in the Taylor expansion (2.3).
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2.1. FIELD THEORY - SETTING UP THE NOTATION 19

2.1 Field theory - setting up the notation

The partition sum for a lattice field theory defined by a Hamiltonian H[φ] is

Z[J] =
∫

[dφ]e−β(H[φ]−φ·J)

[
dφ
]
=

dφ1√
2π

dφ2√
2π
· · · ,

where β = 1/T is the inverse temperature, and J� is an external probe that we can
twiddle at will site-by-site. For a theory of the Landau type the Hamiltonian

HL[φ] =
r
2
φ�φ� +

c
2
∂μφ�∂μφ� + u

Nd∑
�=1

φ4
� (2.5)

is translationally invariant. Unless stated otherwise, we shall assume the repeated
index summation convention throughout. We find it convenient to bury now some
factors of

√
2π into the definition of Z[J] so they do not plague us later on when

we start evaluating Gaussian integrals. Rescaling φ → (const)φ changes [dφ] →
(const)N[dφ], a constant prefactor in Z[J] which has no effect on averages. Hence
we can get rid of one of the Landau parameters r, u, and c by rescaling. The
accepted normalization convention is to set the gradient term to 1

2 (∂φ)2 by J →
c1/2 J, φ→ c−1/2φ, and the HL in (2.5) is replaced by

H[φ] =
1
2
∂μφ�∂μφ� +

m2
0

2
φ�φ� +

g0

4!

∑
�

φ4
�

m2
0 =

r
c
, g0 = 4!

u

c2
. (2.6)

Dragging factors of β around is also a nuisance, so we absorb them by defining
the action and the sources as

S [φ] = −βH[φ] , J� = βJ� .

The actions we learn to handle here are of form

S [φ] = −1
2

(M−1)��′φ�φ�′ + S I[φ] ,

S I[φ] =
1
3!
γ�1�2�3 φ�1φ�2φ�3 +

1
4!
γ�1�2�3�4 φ�1φ�2φ�3φ�4 + · · · . (2.7)

Why we chose such awkward notation M−1 for the matrix of coefficients of the
φ�φ�′ term will become clear in due course (or you can take a peak at (2.27) now).
Our task is to compute the partition function Z[J], the “free energy” W[J], and
the full n-point correlation functions

Z[J] = eW[J] =

∫
[dφ]eS [φ]+φ·J (2.8)

= Z[0]

⎛⎜⎜⎜⎜⎜⎜⎝1 +
∞∑

n=1

∑
�1�2···�n

G�1�2···�n

J�1 J�2 . . . J�n

n!

⎞⎟⎟⎟⎟⎟⎟⎠ ,
G�1�2···�n =

〈
φ�1φ�2 . . . φ�n

〉
=

1
Z[0]

d
dJ �1

. . .
d
dJ �n

Z[J]
∣∣∣∣∣
J=0

. (2.9)
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20 CHAPTER 2. PATH INTEGRALS

The “bare mass” m0 and the “bare coupling” g0 in (2.6) parameterize the relative
strengths of quadratic, quartic fields at a lattice point vs. contribution from spatial
variation among neighboring sites. They are called “bare” as the 2- and 4-point
couplings measured in experiments are “dressed” by fluctuation contributions.

In order to get rid of some of the lattice indices it is convenient to employ vec-
tor notation for the terms bilinear in φ, and keep the rest lumped into “interaction,”

S [φ] = −M2

2
φT · φ − C

2

[(
σμ − 1

)
φ
]T · (σμ − 1

)
φ + S I[φ] . (2.10)

For example, for the discretized Landau Hamiltonian M2/2 = βm2
0/2, C = β/a2,

and the quartic term S I[φ] is local site-by-site,

γ�1�2�3�4 = −4! βu δ�1�2δ�2�3δ�3�4 ,

so this general quartic coupling is a little bit of an overkill, but by the time we get
to the Fourier-transformed theory, it will make sense as a momentum conserving
vertex (1.38).

Consider the action

S [σφ] = −1
2
φT · σT M−1σ · φ − βg0

4!

Nd∑
�=1

(σφ)4
� .

As M−1 is constructed from σ and its inverse, M−1 and σ commute, and the
bilinear term is σ invariant. In the quartic term σ permutes cyclically the terms in
the sum. The total action is translationally invariant

S [σφ] = S [φ] = −1
2
φT · M−1 · φ − βg0

4!

Nd∑
�=1

φ4
� . (2.11)

2.2 Saddle-point expansions

Good. You know how to evaluate a Gaussian integral, and now you would like
to master path integrals. What to do? Simple - turn path integrals into Gaussian
integrals, as follows:

Laplace method deals with integrals of form

I =
∫ ∞

−∞
dx e−tΦ(x) (2.12)

where t and Φ(x) are real. If Φ(x) is bounded from below and smooth at minimal
value Φ(x∗), Φ′(x∗) = 0, Φ′′(x∗) > 0, I is dominated by the value of the integrand
at Φ(x∗). For large values of t the Laplace estimate is obtained by expanding
Φ(x∗ + δx) to second order in δx and evaluting the resulting Gaussian integral,

I ≈
∑
x∗

√
2π/tΦ′′(x∗) e−tΦ(x∗) . (2.13)

Generalization to multidimensional integrals is straightforward. The Gaussian
integral in D-dimensions is given by

exercise 1.3
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2.2. SADDLE-POINT EXPANSIONS 21

∫
[dx]e−

1
2 xT ·M−1·x+x·J = (det M)

1
2 e

1
2 JT ·M·J , (2.14)

[dx] =
dx1√

2π

dx2√
2π
· · · dxD√

2π
,

where M is a real symmetric positive definite matrix, i.e., matrix with strictly
positive eigenvalues.

The stationary phase estimate of (2.12) is
exercise ??

I ≈
∑
x∗

(2π/t)d/2 |det D2Φ(x∗)|−1/2A(xn) etΦ(x∗)− iπ
4 m(x∗) ,

where x∗ are the stationary phase points

d
dxi
Φ(x)

∣∣∣∣∣
x=x∗
= 0 ,

D2Φ(x∗) denotes the matrix of second derivatives, and m(x∗) is the number of its
negative eigenvalues (when evaluated at the stationary phase point x∗).

These integrals is all that is needed for the semiclassical approximation, with
the proviso that M−1 in (2.14) has no zero eigenvalues. If it has, the integral is
not damped in direction of the associated eigenvector, and higher orders in Taylor
expansion of Φ(x∗ + δx) need to be retained (see (4.4) on Airy integral).

The “path integral” (2.8) is an ordinary multi-dimensional integral. In the
β→ ∞ limit, or the T → 0 low temperature limit, the action is large (high price of
straying from the beaten path) almost everywhere, except for some localized re-
gions of the φ-space. Highly idealized, the action looks something like the sketch
in figure 2.1 (in order to be able to draw this on a piece of paper, we have sup-
pressed a large number of φ� coordinates).

Such integral is dominated by the minima of the action. The minimum value
S [φ] configurations φc are determined by the zero-slope, saddle-point condition

d
dφ�

S [φc] + J� = 0 . (2.15)

The term “saddle” refers to the general technique of evaluating such integrals for
complex φ; in the statistical mechanics applications φc are locations of the min-
ima of S [φ], not the saddles. If there is a number of minima, only the one (or the
nc minima related by a discrete symmetry) with the lowest value of −S [φc] −
φc · J dominates the path integral in the low temperature limit. The zeroth or-
der, mean field approximation to the partition sum (2.8) is given by the extremal
configuration alone

Z[J] = eW[J] →
∑

c

eWc[J] = eWc[J]+ln nc

Wc[J] = S [φc] + φc · J . (2.16)

In the saddle-point approximation the corrections due to the fluctuations in
the φc neighborhood are obtained by shifting the origin of integration to

φ� → φc
� + φ� ,

the position of the c-th minimum of S [φ]−φ·J, and expanding S [φ] in a Taylor se-
ries around φc. For our purposes it will be convenient to separate out the quadratic

version 3.6 - Dec 9 2012 lattPathInt - 9dec2012



22 CHAPTER 2. PATH INTEGRALS

part S 0[φ], and collect all terms higher than bilinear in φ into an “interaction” term
S I[φ]

S 0[φ] = −
∑
�

φ�

(
βr
2c
+ 12

βu

c2
(φc

�)
2
)
φ� +

β

2

∑
�,�′

φ�Δ��′φ�′ ,

S I[φ] = −βu

c2

Nd∑
�=1

φ4
� . (2.17)

Spatially nonuniform φc
� are conceivable. The mean field theory assumption is

that the translational invariance of the lattice is not broken, and φc� is independent
of the lattice point, φc

� → φc. In the φ4 theory considered here, it follows from
(2.15) that φc = 0 for r > 0, and φc = ±√|r|/4u for r < 0 . There are at most
nc = 2 distinct φc configuration with the same S [φc], and in the thermodynamic
limit we can neglect the “mean field entropy” ln nc in (2.16) when computing free
energy density per site [3],

− β f [J] = lim
N→∞W[J]/Nd . (2.18)

We collect the matrix of bilinear φ coefficients in

(M−1)��′ = βm′20 δ��′ − βcΔ��′ , m′20 = m2
0 + 12u(φc)2 (2.19)

in order to be able to rewrite the partition sum (2.8) as

eW[J] = eWc[J]
∫

[dφ]e−
1
2φ

T ·M−1·φ+S I[φ] .

As the expectation value of any analytic function

g(φ) =
∑

gn1n2...φ
n1
1 φ

n2
2 · · · /n1!n2! · · ·

can be recast in terms of derivatives with respect to J∫
[dφ]g[φ]e−

1
2φ

T ·M−1·φ = g
[

d
dJ

] ∫
[dφ]e−

1
2φ

T ·M−1·φ+φ·J
∣∣∣∣∣
J=0

,

we can move S I[φ] outside of the integration, and evaluate the Gaussian integral
in the usual way

exercise 1.3

eW[J] = eWc[J]eS I [ d
dJ ]

∫
[dφ]e−

1
2φ

T ·M−1·φ+φ·J
∣∣∣∣∣
J=0

= |det M| 12 eWc[J]eS I [ d
dJ ] e

1
2 JT ·M·J

∣∣∣∣
J=0

. (2.20)

M is invertible only if the minima in figure 2.1 are isolated, and M−1 has
no zero eigenvalues. The marginal case would require going beyond the Gaussian
saddle-points studied here, typically to the Airy-function type stationary points [9].
In the classical statistical mechanics S [φ] is a real-valued function, the extremum
of S [φ] at the saddle-point φc is the minimum, all eigenvalues of M are strictly
positive, and we can drop the absolute value brackets | · · · | in (2.20).

As we shall show in sect. 2.6, expanding the exponentials and evaluating the
d
dJ derivatives in (2.20) yields the fluctuation corrections as a power series in 1/β =
T .
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The first correction due to the fluctuations in the φc neighborhood is obtained
by approximating the bottom of the potential in figure 2.1 by a parabola, i.e.,
keeping only the quadratic terms in the Taylor expansion (2.17). For a single
minimum the “free energy” is in this approximation

W[J]1-loop = Wc[J] +
1
2

tr ln M , (2.21)

where we have used the matrix identity ln det M = tr ln M, valid for any finite-
dimensional matrix. This result suffices to establish the Ginzburg criterion (ex-
plained in many excellent textbooks) which determines when the effect of fluctu-
ations is comparable or larger than the mean-field contribution alone.

exercise 1.4

2.3 Saddle-point expansions are asymptotic

The first trial ground for testing our hunches about field theory is the zero-dimensional
field theory, the field theory of a lattice consisting of one point. As there are no
neighbors, there are no derivatives to take, and the field theory is a humble 1-
dimensional integral

Z[J] =
∫

dφ√
2π

e−
φ2

2M−βuφ4+φJ .

In zero-dimensional field theory M is a [1×1] matrix, i.e. just a number. As
it is in good taste to get rid of extraneous parameters, we rescale φ2 → Mφ2,√

MJ → J, and are left with one parameter which we define to be g = 4βM2u.
As multiplicative constants do not contribute to averages, we will drop an overall
factor of

√
M and study the integral

Z[J] =
∫

dφ√
2π

e−φ
2/2−gφ4/4+φJ . (2.22)

Substituting M as defined by (2.19) we have g = T/(r + 12u(φc)2), so the small g
expansions is a low temperature expansion. However, as we approach the critical
temperature, r + 12u(φc)2 → 0, the perturbation theory fails us badly, and that is
one of the reasons why we need the renormalization theory.

The idea of the saddle-point expansion (2.20) is to keep the Gaussian part∫
dφ e−φ2/2+φJ as is, expand the rest as a power series, and then compute the mo-

ments∫
dφ√
2π

φne−φ
2/2 =

(
d
dJ

)n

eJ2/2
∣∣∣∣
J=0
= (n − 1)!! if n even, 0 otherwise .

We already know the answer. In this zero-dimensional theory we have taken
M = 1, the n-point correlation is simply the number of terms in the diagrammatic
expansion, and according to (2.31) that number is exploding combinatorially, as
(n − 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional φ4 field theory in
the saddle-point expansion to all orders:

Z[0] =
∑

n

Zngn ,

Zn =
(−1)n

n!4n

∫
dφ√
2π
φ4ne−φ

2/2 =
(−1)n

16n!
(4n)!
(2n)!

. (2.23)
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The Stirling formula n! =
√

2π nn+1/2e−n yields for large n

gnZn ≈ 1√
nπ

(
4gn

e

)n

. (2.24)

exercise 1.2 As the coefficients of the parameter gn are blowing up combinatorially, no matter
how small g might be, the perturbation expansion is not convergent! Why? Con-
sider again (2.23). We have tacitly assumed that g > 0, but for g < 0, the potential
is unbounded for large φ, and the integrand explodes. Hence the partition function
in not analytic at the g = 0 point.

Is the whole enterprise hopeless? As we shall now show, even though di-
vergent, the perturbation series is an asymptotic expansion, and an asymptotic
expansion can be extremely good [9]. Consider the residual error after inclusion
of the first n perturbative corrections:

Rn =

∣∣∣∣∣∣∣Z(g) −
n∑

m=0

gmZm

∣∣∣∣∣∣∣
=

∫
dφ√
2π

e−φ
2/2

∣∣∣∣∣∣∣e−gφ4/4 −
n∑

m=0

1
m!

(
−g

4

)m
φ4m

∣∣∣∣∣∣∣
≤

∫
dφ√
2π

e−φ
2/2 1

(n + 1)!

(
gφ4

4

)n+1

= gn+1 |Zn+1| . (2.25)

The inequality follows from the convexity of exponentials, a generalization of the
exercise 1.5

inequality ex ≥ 1+ x. The error decreases as long as gn |Zn| decreases. From (2.24)
the minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn

∣∣∣
min
≈
√

4g
π

e−1/4g. (2.26)

As illustrated by the figure 2.2, a perturbative expansion can be, for all practical
purposes, very accurate. In QED such argument had led Dyson to suggest that the
QED perturbation expansions are good to nmin ≈ 1/α ≈ 137 terms. Due to the
complicated relativistic, spinorial and gauge invariance structure of perturbative
QED, there is not a shred of evidence that this is so. The very best calculations
that humanity has been able to perform so far stop at n ≤ 5.

2.4 Free propagation

In many field theory textbooks much time is spent on “non-interacting fields”,
“free propagation”, etc... As a matter of fact, papers which attempt to “derive”
quantum mechanics from deeper principles most often do not ever get to “inter-
acting fields”. Why is that?

Mathematical physics equals three tricks: 1) Gaussian integral, 2) integration
by parts, and 3) (your own more sophisticated trick). As we shall now see, 1)
suffices to solve free field theories.

2.5 Free field theory

There are field theory courses in which months pass while free non-interacting
fields are beaten to pulp. This text is an exception, but even so we get our first
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Figure 2.2: Plot of the saddle-point estimate of Zn

vs. the exact result (2.23) for g = 0.1, g = 0.02,
g = 0.01.

glimpse of the theory by starting with no interactions, SI[φ] = 0. The free-
field partition function (which sometimes ekes living under the name “Gaussian
model”) is

Z0[J] = eW0[J] =

∫
[dφ]e−

1
2φ

T ·M−1·φ+φ·J = |det M| 12 e
1
2 JT ·M·J

W0[J] =
1
2

JT · M · J + 1
2

tr ln M . (2.27)

The full n-point correlation functions (2.9) vanish for n odd, and for n even they
are given by products of distinct combinations of 2-point correlations

G��′ = (M)��′

G�1�2�3�4 = (M)�1�2(M)�3�4 + (M)�1�3(M)�2�4 + (M)�1�4(M)�2�3

G�1�2···�n = (M)�1�2 · · · (M)�n−1�n + (M)�1�3 · · · (M)�n−1�n + · · · (2.28)

Keeping track of all these dummy indices (and especially when they turn into a zoo
of of continuous coordinates and discrete indices) is a pain, and it is much easier
to visualize this diagrammatically. Defining the propagator as a line connecting
2 lattice sites, and the probe J� as a source/sink from which a single line can
originate

(M)�1�2 = �1 �2 , J� = � , (2.29)

we expand the free-field theory partition function (2.27) as a Taylor series in JT ·
M−1 · J

Z0[J]
Z0[0]

= 1 + · · · . (2.30)

In the diagrammatic notation the non-vanishing n-point correlations (2.28) are
drawn as

version 3.6 - Dec 9 2012 lattPathInt - 9dec2012



26 CHAPTER 2. PATH INTEGRALS

(11 terms) . (2.31)

The total number of distinct terms contributing to the noninteracting full n-point
exercise 1.1

correlation is 1 ·3 ·5 · · · (n−1) = (n−1)!!, the number of ways that n source terms
J can be paired into n/2 pairs M.

2.6 Feynman diagrams

For field theories defined at more than a single point the perturbative corrections
can be visualized by means of Feynman diagrams. It is not clear that this is the
intelligent way to proceed [5], as both the number of Feynman diagrams and the
difficulty of their evaluation explodes combinatorially, but as most physicist stop
at a 1-loop correction, for the purpose at hand this is a perfectly sensible way to
proceed.

2.6.1 Hungry pac-men munching on fattened J’s

The saddle-point expansion is most conveniently evaluated in terms of Feynman
diagrams, which we now introduce. Expand both exponentials in (2.20)

eS I [ d
dJ ] e

1
2 JT ·M·J =

⎧⎪⎪⎨⎪⎪⎩1 +
1
4!

+
1
2

1

(4!)2
+ · · ·

⎫⎪⎪⎬⎪⎪⎭
×
⎧⎪⎪⎨⎪⎪⎩1 + · · ·

⎫⎪⎪⎬⎪⎪⎭ (2.32)

Here we have indicated d
dJ as a pac-man [6] that eats J, leaving a delta function in

its wake

d
dJ j

J� = δ j�

. (2.33)

For example, the rightmost pac-man in the
∑
�(

d
dJ �)

4 interaction term quartic in

derivative has four ways of munching a J from the free-field theory 1
2

(
1
2 JT · M · J

)2
term, the next pac-man has three J’s to bite into in two distinct ways, and so forth:

1
4!

1

23
=

1
3!

1

23
=

1
3!

1

23

⎛⎜⎜⎜⎜⎝ + 2

⎞⎟⎟⎟⎟⎠
=

1
23

=
1
8

. (2.34)

In the hum-drum field theory textbooks this process of tying together vertices by
propagators is called the Wick expansion. Professionals have smarter ways of

exercise 1.7
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2.6. FEYNMAN DIAGRAMS 27

generating Feynman diagrams [2], but this will do for the problem at hand.
It is easy enough to prove this to all orders [7], but to this order you can simply

check by expanding the exponential (2.8) that the free energy W[J] perturbative
corrections are the connected, diagrams with J = 0

exercise 1.6

W[0] = S [φc]+
1
2

tr ln M+
1
8

+
1
16

+
1
48

.(2.35)

According to its definition, every propagator line M connecting two vertices car-
ries a factor of T = 1/β, and every vertex a factor of 1/T . In the φ4 theory the
diagram with n vertices contributes to the order Tn of the perturbation theory. In
quantum theory, the corresponding expansion parameter is �.

To proceed, we have to make sense of M, and learn how to evaluate diagram-
matic perturbative corrections.

Commentary

Remark 2.1 Asymptotic series.

• The Taylor expansion in g fails, as g is precisely on the border of analyticity. The
situation can sometimes be rescued by a Borel re-summation.

• If you really care, an asymptotic series can be improved by resumations “beyond
all orders”, a technically daunting task (see M. Berry’s papers on such topics as
re-summation of the Weyl series for quantum billiards).

• Pairs of nearby and coalescing saddles should be treated by uniform approxima-
tions, where the Airy integrals

Z0[J] =
1

2πi

∫
C

dx e−x3/3!+Jx

play the role the Gaussian integrals play for isolated saddles [9]. In case at hand,
the phase transition φc = 0 → ±φc � 0 is a quartic inflection of this type, and in
the Fourier representation of the partition function one expects instead of |det M| 1

2

explicit dependence on the momentum k
1
4 . Whether anyone has tried to develop a

theory of the critical regime in this way I do not know.

• If there are symmetries that relate terms in perturbation expansions, a perturbative
series might be convergent. For example, individual Feynman diagrams in QED
are not gauge invariant, only their sums are, and QED α n expansions might still
turn out to be convergent series [10].

• Expansions in which the field φ is replaced by N copies of the original field are
called 1/N expansions. The perturbative coefficients in such expansions are con-
vergent term by term in 1/N.
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Chapter 3

Path integral formulation of
Quantum Mechanics

3.1 Quantum mechanics: a brief review . . . . . . . . . . . . 30

3.2 Matrix-valued functions . . . . . . . . . . . . . . . . . . . 32

3.3 Short time propagation . . . . . . . . . . . . . . . . . . . 34

3.4 Path integral . . . . . . . . . . . . . . . . . . . . . . . . . 35

We introduce Feynman path integral and construct semiclassical approximations
to quantum propagators and Green’s functions.

Have: the Schrödinger equation, i.e. the (infinitesimal time) evolution law for
any quantum wavefunction:

i�
∂

∂t
ψ(t) = Ĥψ(t) . (3.1)

Want: ψ(t) at any finite time, given the initial wave function ψ(0).
As the Schrödinger equation (3.1) is a linear equation, the solution can be

written down immediately:

ψ(t) = e−
i
�

Ĥtψ(0) , t ≥ 0 .

Fine, but what does this mean? We can be a little more explicit; using the con-
figuration representation ψ(q, t) = 〈q|ψ(t)〉 and the configuration representation
completness relation

1 =
∫

dqD |q〉〈q| (3.2)

we have

ψ(q, t) = 〈q|ψ(t)〉 =
∫

dq′ 〈q|e− i
�

Ĥt |q′〉〈q′|ψ(0)〉 , t ≥ 0 . (3.3)

In sect. 3.1 we will solve the problem and give the explicit formula (3.9) for
the propagator. However, this solution is useless - it requires knowing all quantum
eigenfunctions, i.e. it is a solution which we can implement provided that we have
already solved the quantum problem. In sect. 3.4 we shall derive Feynman’s path
integral formula for K(q, q′, t) = 〈q|e− i

�
Ĥt |q′〉.

29
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3.1 Quantum mechanics: a brief review

We start with a review of standard quantum mechanical concepts prerequisite to
the derivation of the semiclassical trace formula: Schrödinger equation, propaga-
tor, Green’s function, density of states.

In coordinate representation the time evolution of a quantum mechanical wave
function is governed by the Schrödinger equation (3.1)

i�
∂

∂t
ψ(q, t) = Ĥ(q,

�

i
∂

∂q
)ψ(q, t), (3.4)

where the Hamilton operator Ĥ(q,−i�∂q) is obtained from the classical Hamilto-
nian by substitution p→ −i�∂q. Most of the Hamiltonians we shall consider here
are of form

H(q, p) = T (p) + V(q) , T (p) =
p2

2m
, (3.5)

appropriate to a particle in a D-dimensional potential V(q). If, as is often the
case, a Hamiltonian has mixed terms such as q̇ p, consult any book on quantum
mechanics. We are interested in finding stationary solutions

ψ(q, t) = e−iEnt/�φn(q) = 〈q|e−iĤt/�|n〉 ,
of the time independent Schrödinger equation

Ĥψ(q) = Eψ(q) , (3.6)

where En, |n〉 are the eigenenergies, respectively eigenfunctions of the system. For
bound systems the spectrum is discrete and the eigenfunctions form an orthonor-
mal ∫

dqD φ∗n(q)φm(q) =
∫

dqD 〈n|q〉〈q|m〉 = δnm (3.7)

and complete∑
n

φn(q)φ∗n(q′) = δ(q − q′) ,
∑

n

|n〉〈n| = 1 (3.8)

set of Hilbert space functions. For simplicity we will assume that the system is
bound, although most of the results will be applicable to open systems, where one
has complex resonances instead of real energies, and the spectrum has continuous
components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/�φn(q) ,

where the expansion coefficient cn is given by the projection of the initial wave
function onto the nth eigenstate

cn =

∫
dqD φ∗n(q)ψ(q, 0) = 〈n|ψ(0)〉.

The evolution of the wave function is then given by

ψ(q, t) =
∑

n

φn(q)e−iEn t/�
∫

dq
′Dφ∗n(q′)ψ(q′, 0).
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Figure 3.1: Path integral receives contributions from
all paths propagating from q′ to q in time t = t′ + t′′,
first from q′ to q′′ for time t′, followed by propagation
from q′′ to q in time t′′.

We can write this as

ψ(q, t) =
∫

dq
′DK(q, q′, t)ψ(q′, 0),

K(q, q′, t) =
∑

n

φn(q) e−iEn t/�φ∗n(q′)

= 〈q|e− i
�

Ĥt |q′〉 =
∑

n

〈q|n〉e−iEn t/�〈n|q′〉 , (3.9)

where the kernel K(q, q′, t) is called the quantum evolution operator, or the propa-
gator. Applied twice, first for time t1 and then for time t2, it propagates the initial
wave function from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (3.10)

forward in time, hence the name “propagator”, see figure 3.1. In non-relativistic
quantum mechanics the range of q′′ is infinite, meaning that the wave can propa-
gate at any speed; in relativistic quantum mechanics this is rectified by restricting
the forward propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, the propagator itself also satisfies the Schrödinger equa-
tion

i�
∂

∂t
K(q, q′, t) = Ĥ(q,

i
�

∂

∂q
)K(q, q′, t) . (3.11)

The propagator is a wave function defined for t ≥ 0 which starts out at t = 0 as a
delta function concentrated on q′

lim
t→0+

K(q, q′, t) = δ(q − q′) . (3.12)

This follows from the completeness relation (3.8).
The time scales of atomic, nuclear and subnuclear processes are too short for

direct observation of time evolution of a quantum state. For this reason, in most
physical applications one is interested in the long time behavior of a quantum
system.
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In the t → ∞ limit the sharp, well defined quantity is the energy E (or fre-
quency), extracted from the quantum propagator via its Laplace/Fourier transform,
the energy dependent Green’s function

G(q, q′, E + iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

tK(q, q′, t) =
∑

n

φn(q)φ∗n(q′)
E − En + iε

. (3.13)

Here ε is a small positive number, ensuring that the propagation is forward in time.

This completes our lightning review of quantum mechanics.
Feynman arrived to his formulation of quantum mechanics by thinking of fig-

ure 3.1 as a “multi-slit” experiment, with an infinitesimal “slit” placed at every q′
point. The Feynman path integral follows from two observations:

1. Sect. 3.3: For short time the propagator can be expressed in terms of classi-
cal functions (Dirac).

2. Sect. 3.4: The group property (3.10) enables us to represent finite time evo-
lution as a product of many short time evolution steps (Feynman).

3.2 Matrix-valued functions

How are we to think of the quantum operator

Ĥ = T̂ + V̂ , T̂ = p̂2/2m , V̂ = V(q̂) , (3.14)

corresponding to the classical Hamiltonian (3.5)?
Whenever you are confused about an “operator”, think “matrix”. Expressed

in terms of basis functions, the propagator is an infinite-dimensional matrix; if we
happen to know the eigenbasis of the Hamiltonian, (3.9) is the propagator diago-
nalized. Of course, if we knew the eigenbasis the problem would have been solved
already. In real life we have to guess that some complete basis set is good starting
point for solving the problem, and go from there. In practice we truncate such
matrix representations to finite-dimensional basis set, so it pays to recapitulate a
few relevant facts about matrix algebra.

The derivative of a (finite-dimensional) matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j(x) =

d
dx

Ai j(x) . (3.15)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (3.16)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A + A
dA
dx

. (3.17)

The derivative of the inverse of a matrix follows from d
dx (AA−1) = 0:

d
dx

A−1 = − 1
A

dA
dx

1
A
. (3.18)
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As a single matrix commutes with itself, any function of a single variable
that can be expressed in terms of additions and multiplications generalizes to a
matrix-valued function by replacing the variable by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1
k!

Ak , A0 = 1 (3.19)

= lim
N→∞

(
1 +

1
N

A

)N

(3.20)

The first equation follows from the second one by the binomial theorem, so these
indeed are equivalent definitions. For finite N the two expressions differ by or-
der O(N−2). That the terms of order O(N−2) or smaller do not matter is easy to
establish for A→ x, the scalar case. This follows from the bound(

1 +
x − ε

N

)N
<
(
1 +

x + δxN

N

)N

<
(
1 +

x + ε
N

)N
,

where |δxN | < ε accounts for extra terms in the binomial expansion of (3.20). If
lim δxN → 0 as N → ∞, the extra terms do not contribute. I do not have equally
simple proof for matrices - would probably have to define the norm of a matrix
(and a norm of an operator acting on a Banach space) first.

The logarithm of a matrix is defined by the power series

ln(1 − B) = −
∞∑

k=0

Bk

k!
. (3.21)

Consider now the determinant

det eA = lim
N→∞ (det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)

)N

= etr A (3.22)

Defining M = eA we can write this as

ln det M = tr ln M . (3.23)

Due to non-commutativity of matrices, generalization of a function of sev-
eral variables to a function is not as straightforward. Expression involving several
matrices depend on their commutation relations. For example, the BakerCamp-
bellHausdorff commutator expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (3.24)
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sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics, follows by recursive evaluation of t derivaties

d
dt

(
etABe−tA

)
= etA[A,B]e−tA .

Expanding exp(A + B), exp A, exp B to first few orders using (3.19) yields

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] + O(N−3) , (3.25)

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
. (3.26)

3.3 Short time propagation

Split the Hamiltonian into the kinetic and potential termsĤ = T̂ + V̂ and consider
the short time propagator

K(q, q′,Δt) = 〈q|e− i
�

ĤΔt |q′〉 = 〈q|e−T̂λe−V̂λ|q′〉 + O(Δt2) . (3.27)

where λ = i
�
Δt. The error estimate follows from (3.25). In the coordinate repre-

sentation the operator

e−V̂λ|q〉 = e−V(q)λ|q〉

is diagonal (a “c-number”). In order to evaluate 〈q|e−T̂λ|q′〉, insert the momentum
eigenstates sum in a D-dimensional configuration space

1 =
∫

dpD |p〉〈p| , 〈p|q〉 = (2π�)−D/2e−
i
�

p·q , (3.28)

and evaluate the Gaussian integral

〈q|e−λT̂ |q′〉 =
∫

dpD 〈q|e−T̂λ|p〉〈p|q′〉 =
∫

dpD

(2π�)D/2
e−λp2/2me

i
�

p·(q−q′)

=

( m
2πi�Δt

) D
2

e
i
�

m
2Δt (q−q′)2

. (3.29)

Replacement (q − q′)/Δt → q̇ leads (up to an error of order of Δt2) to a purely
classical expression for the short time propagator

K(q, q′,Δt) =
( m
2πi�Δt

)D/2
e

i
�
Δt L(q,q̇) + O(Δt2) , (3.30)

where L(q, q̇) is the Lagrangian of classical mechanics

L(q, q̇) =
mq̇2

2
− V(q) . (3.31)
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3.4 Path integral

Next we express the finite time evolution as a product of many short time evolution
steps.

Splitting the Hamiltonian into the kinetic and potential terms Ĥ = T̂ + V̂ and
using the Trotter product formula (3.26) we have

e−
i
�

Ĥt = lim
N→∞

(
e−

i
�

T̂Δte−
i
�

V̂Δt
)N

, Δt = t/N (3.32)

Turn this into matrix multiplication by inserting the configuration representation
completeness relations (3.2)

K(q, q′, t) = 〈q|e− i
�

Ĥt |q′〉 (3.33)

=

∫
dqD

1 · · · dqD
N−1〈q|e−Ĥλ|qN−1〉 · · · 〈q1|e−Ĥλ|q′〉

= lim
N→∞

∫
dqD

1 · · · dqD
N−1〈q′|e−T̂λe−V̂λ|qN−1〉 · · · 〈q1|e−T̂λe−V̂λ|q〉 .

The next step relies on convolution of two Gaussians being a Gaussian. Substitut-
ing (3.30) we obtain that the total phase shift is given by the Hamilton’s principal
function, the integral of (3.31) evaluated along the given path p from q′ = q(0) to
q = q(t):

R[q] = lim
N→∞

N−1∑
j=0

Δt

(
m
2

(qj+1 − qj

Δt

)2
− V(q j)

)
, q0 = q′

=

∫
dτ L(q(τ), q̇(τ)) , (3.34)

where functional notation [q] indicates that R[q] depends on the vector q = (q′, q1, q2, . . . , qN−1, q)
defining a given path q(τ) in the limit of N →∞ steps, and the propagator is given
by

K(q, q′, t) = lim
N→∞

∫
[dq] e

i
�

R[q] (3.35)

[dq] =
N−1∏
j=1

dqD
j

(2πi�Δt/m)D/2
.

We assume that the energy is conserved, and that the only time dependence of
L(q, q̇) is through (q(τ), q̇(τ)).

Path integral receives contributions from all paths propagating forward from
q′ to q in time t, see figure 3.1. The usual, more compact notation is

K(q, q′, t) =
∫
Dq e

i
�

R[q] , or, more picturesquely

= C
∑

p

e
i
�

R[qp] , q′ = qp(0), q = qp(t) , (3.36)

where
∫ Dq is shorthand notation for the N → ∞ limit in (3.35),∫
Dq = lim

N→∞

∫
[dq] , (3.37)

and the “sum over the paths C
∑

p” is whatever you imagine it to be.
What’s good and what’s bad about path integrals? First the virtues:
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• conceptual unification of

– quantum mechanics

– statistical mechanics

– chaotic dynamics

• yields analytic solutions to classes of quantum problems

• quantum-classical correspondence

– semiclassical theory

• theory of perturbative corrections

– Feynman diagrams

• relativistic quantum field theory

And now for the bad news:

• N → ∞ continuum limit

– fraught with perils - sides of the road are littered with corpses of the
careless
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WKB quantization
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The wave function for a particle of energy E moving in a constant potential V
is

ψ = Ae
i
�

pq (4.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/�, and
p = ±√2m(E − V) is the momentum. Here we generalize this solution to the case
where the potential varies slowly over many wavelengths. This semiclassical (or
WKB) approximate solution of the Schrödinger equation fails at classical turning
points, configuration space points where the particle momentum vanishes. In such
neighborhoods, where the semiclassical approximation fails, one needs to solve
locally the exact quantum problem, in order to compute connection coefficients
which patch up semiclassical segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classi-
cal mechanics computations yield surprisingly accurate estimates of quantal spec-
tra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs of
coordinate points, and the topological phase loss at every turning point, a topolog-
ical property of the classical flow that plays no role in classical mechanics.

4.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− �
2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) , (4.2)

37
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Figure 4.1: A 1-dimensional potential, location of the
two turning points at fixed energy E.

with potential V(q) growing sufficiently fast as q → ±∞ so that the classical
particle motion is confined for any E. Define the local momentum p(q) and the
local wavenumber k(q) by

p(q) = ±√2m(E − V(q)), p(q) = �k(q) . (4.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (4.4)

sugests that the wave function be written as ψ = Ae
i
�

S , A and S real functions of
q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S ′)2 = p2 + �2
A′′

A
(4.5)

S ′′A + 2S ′A′ =
1
A

d
dq

(S ′A2) = 0 . (4.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation consists
of dropping the �2 term in (4.5). Recalling that p = �k, this amounts to assuming
that k2 � A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical, �� 1 approximation to quantum mechanics.

Setting � = 0 and integrating (4.5) we obtain the phase increment of a wave
function initially at q, at energy E

S (q, q′, E) =
∫ q

q′
dq′′p(q′′) . (4.7)

This integral over a particle trajectory of constant energy, called the action, will
play a key role in all that follows. The integration of (4.6) is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)| 12ψ(q′) , (4.8)

where the integration constant C is fixed by the value of the wave function at the
initial point q′. The WKB (or semiclassical) ansatz wave function is given by

ψsc(q, q
′, E) =

C

|p(q)| 12
e

i
�

S (q,q′,E) . (4.9)

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′, E)→ (q).
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4.2. METHOD OF STATIONARY PHASE 39

Figure 4.2: A 1-dof phase space trajectory of a parti-
cle moving in a bound potential.

The WKB ansatz generalizes the free motion wave function (4.1), with the
probability density |A(q)|2 for finding a particle at q now inversely proportional
to the velocity at that point, and the phase 1

�
q p replaced by 1

�

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except at any turning point q0,
figure 4.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (4.10)

so that the assumption that k2 � A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In the q coordinate, the turning points are defined by the zero kinetic energy con-
dition (see figure 4.1), and the motion appears singular. This is not so in the full
phase space: the trajectory in a smooth confining 1-dimensional potential is al-
ways a smooth loop (see figure 4.2), with the “special” role of the turning points
qL, qR seen to be an artifact of a particular choice of the (q, p) coordinate frame.
Maslov proceeds from the initial point (q′, p′) to a point (qA, pA) preceding the
turning point in the ψ(q) representation, then switch to the momentum represen-
tation

ψ̃(p) =
1√
2π�

∫
dq e−

i
�

qpψ(q) , (4.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1√
2π�

∫
dp e

i
�

qp ψ̃(p) , (4.12)

and so on.
The only rub is that one usually cannot evaluate these transforms exactly. But,

as the WKB wave function (4.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in � accuracy. This is accomplished by the
method of stationary phase.

4.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type

I =
∫

dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (4.13)

where s is a real parameter, and Φ(x) is a real-valued function. In our applications
s = 1/� will always be assumed large.
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For large s, the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called the method of stationary phase. Consider
first the case of a 1-dimensional integral, and expand Φ(x0 + δx) around x0 to
second order in δx,

I =
∫

dx A(x) eis(Φ(x0 )+ 1
2Φ
′′(x0)δx2+...) . (4.14)

Assume (for time being) that Φ′′(x0) � 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =
±1. If in the neighborhood of x0 the amplitude A(x) varies slowly over many
oscillations of the exponential function, we may retain the leading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (4.15)

The one integral that we know how to integrate is the Gaussian integral
∫

dx e− x2
2b =√

2πb For for pure imaginary b = i a one gets instead the Fresnel integral formula

exercise 4.1
1√
2π

∫ ∞

−∞
dx e−

x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (4.16)

we obtain

I ≈ A(x0)
∣∣∣∣∣ 2π
sΦ′′(x0)

∣∣∣∣∣1/2 eisΦ(x0)±i π4 , (4.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

4.3 WKB quantization

We can now evaluate the Fourier transforms (4.11), (4.12) to the same order in �
as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C√
2π�

∫
dq

|p(q)| 12
e

i
�
(S (q)−qp)

≈ C√
2π�

e
i
�
(S (q∗)−q∗p)

|p(q∗)| 12
∫

dq e
i

2� S ′′(q∗)(q−q∗)2
, (4.18)

where q∗ is given implicitly by the stationary phase condition

0 = S ′(q∗) − p = p(q∗) − p

and the sign of S ′′(q∗) = p′(q∗) determines the phase of the Fresnel integral (4.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
�
[S (q∗)−q∗ p]+ iπ

4 sgn[S ′′(q∗)] . (4.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurs - p(q∗) is
finite, and so is the acceleration p′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃ (p) = S (q(p)) − q(p)p
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Figure 4.3: S p(E), the action of a periodic orbit p at
energy E, equals the area in the phase space traced out
by the 1-dof trajectory.

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d

dq
q = 1 =

dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (4.20)

As the classical trajectory crosses qL, the weight in (4.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV ′(q) , (4.21)

is finite, and S ′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, in-
cluding (qA, pA). Hence, the phase loss in (4.19) is −π4 . To go back from the p
to the q representation, just turn figure 4.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
�
(S̃ (p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p∗) =

C

|p(q)| 12
e

i
�

S (q)− iπ
2 . (4.22)

The extra |p′(q∗)|1/2 weight in (4.19) is cancelled by the |q′(p∗)|1/2 term, by the
Legendre relation (4.20).

The message is that going through a smooth potential turning point the WKB
wave function phase slips by −π2 . This is equally true for the right and the left
turning points, as can be seen by rotating figure4.2 by 180o, and flipping coordi-
nates (q, p) → (−q,−p). While a turning point is not an invariant concept (for a
sufficiently short trajectory segment, it can be undone by a 45o turn), for a com-
plete period (q, p) = (q′, p′) the total phase slip is always −2·π/2, as a loop always
has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. With the normalization (4.8),
we obtain

ψ(q′) = ψ(q) =
∣∣∣∣∣ p(q′)

p(q)

∣∣∣∣∣
1
2

ei( 1
�

∮
p(q)dq−π)ψ(q′) .

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must be a
multiple of 2π,

1
�

∮
p(q)dq = 2π

(
n +

m
4

)
, (4.23)

where m is the number of turning points along the trajectory - for this 1-dof prob-
lem, m = 2.
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The action integral in (4.23) is the area (see figure 4.3) enclosed by the classi-
cal phase space loop of figure 4.2, and the quantization condition says that eigen-
energies correspond to loops whose action is an integer multiple of the unit quan-
tum of action, Planck’s constant �. The extra topological phase, which, although
it had been discovered many times in centuries past, had to wait for its most recent
quantum chaotic (re)birth until the 1970’s. Despite its derivation in a noninvari-
ant coordinate frame, the final result involves only canonically invariant classical
quantities, the periodic orbit action S , and the topological index m.

4.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 4.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = �ω(n + 1/2) (4.24)

turns out to be the exact harmonic oscillator spectrum. The stationary phase condi-
tion (4.18) keeps V(q) accurate to order q2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the �2 term in (4.5) as a short wavelength
approximation.

4.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by a π/2 for each turning point.
This π/2 came from a

√
i in the Fresnel integral (4.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (4.14) fails whenever Φ′′(x) = 0, or, in
our the WKB ansatz (4.18), whenever the momentum p′(q) = S ′′(q) vanishes.
In that case we have to go beyond the quadratic approximation (4.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) � 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞
dx eisΦ′′′(x0)

(x−x0)3

6 . (4.25)

Airy functions can be represented by integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (4.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization

WKB - 4nov2010 version 3.6 - Dec 9 2012



4.4. BEYOND THE QUADRATIC SADDLE POINT 43

Figure 4.4: Airy function Ai(q).

condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q − q0)V ′(q0) + · · · ,
solving the Airy equation (with V′(q0)→ z after appropriate rescalings),

ψ′′ = zψ , (4.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of the WKB connection formulas. That requires
staring at Airy functions (see (4.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization.

The physical origin of the topological phase is illustrated by the shape of the
Airy function, figure 4.4. For a potential with a finite slope V′(q) the wave function
penetrates into the forbidden region, and accommodates a bit more of a stationary
wavelength then what one would expect from the classical trajectory alone. For
infinite walls (i.e., billiards) a different argument applies: the wave function must
vanish at the wall, and the phase slip due to a specular reflection is −π, rather than
−π/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in the q-representation the WKB
ansatz at a turning point is singular, along the p direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow the classical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in the p-space until you encounter
the next p-space turning point; go back to the q-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extra e−iπ/4 phase shift, for
a total of e−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning point a, V(q) =
V(a)+(q−a)V′(a)+· · ·, and solve the quantum mechanical constant linear potential
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V(q) = qF problem exactly, in terms of an Airy function. An approximate wave
function is then patched together from an Airy function at each turning point, and
the WKB ansatz wave-function segments in-between via the WKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such as
wedges, bifurcation points, creeping and tunneling: patch together the WKB seg-
ments by means of exact QM solutions to local approximations to singular points.

Commentary

Remark 4.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso that D in (??) has no zero eigen-
values. The zero eigenvalue case would require going beyond the Gaussian saddle-point
approximation, which typically leads to approximations of the integrals in terms of Airy
functions [9].

exercise 4.4

Remark 4.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condi-
tion was the key result of the old quantum theory, in which the electron trajectories were
purely classical. They were lucky - the symmetries of the Kepler problem work out in
such a way that the total topological index m = 4 amount effectively to numbering the
energy levels starting with n = 1. They were unlucky - because the hydrogen m = 4
masked the topological index, they could never get the helium spectrum right - the semi-
classical calculation had to wait for until 1980, when Leopold and Percival [?] added the
topological indices.
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Exercises

4.1. WKB ansatz. Try to show that no other
ansatz other than (??) gives a meaningful definition of
the momentum in the �→ 0 limit.

4.2. Fresnel integral. Derive the Fresnel integral

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2ei π4
a
|a| .

4.3. Sterling formula for n!. Compute an approximate
value of n! for large n using the stationary phase approx-
imation. Hint: n! =

∫ ∞
0

dt tne−t.

4.4. Airy function for large arguments. Impor-
tant contributions as stationary phase points may arise

from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-
ners, waves creeping around obstacles, etc.). In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (4.28)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the
stationary phase approximation breaks down.

References

[4.1] D. J. Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1994).

[4.2] J. W. S. Rayleigh, The Theory of Sound (Macmillan, London 1896; reprinted
by Dover, New York 1945).

[4.3] J. B. Keller, “Corrected Bohr-Sommerfeld quantum conditions for nonsep-
arable systems,” Ann. Phys. (N.Y.) 4, 180 (1958).

[4.4] J. B. Keller and S. I. Rubinow, Ann. Phys. (N.Y.) 9, 24 (1960).

[4.5] J. B. Keller, “A geometrical theory of diffraction,” in Calculus of variations
and its applications, Proc. Sympos. Appl. Math. 8, pp. 27-52 (Amer. Math.
Soc., Providence RI, 1958).
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A.1 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows, we
specialize to unitary and hermitian matrices.

A.1.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)

Here λi � λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (A.2)
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In the matrix C(M− λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j�1

(M − λ j1)C† =
∏
j�1

(λ1 − λ j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j�i

M − λ j1
λi − λ j

, (A.3)

which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (A.4)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (A.5)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (A.6)
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As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (A.7)

It follows from the characteristic equation (A.2) and the form of the projection
operator (A.3) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (A.8)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (A.9)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

A.1.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · ·. Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (A.10)

or, equivalently, if projection operators Pj constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (A.11)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M
(i)
2 ,P j] = 0 . (A.12)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.
An invariant matrix M induces a decomposition only if its diagonalized form

(A.1) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

According to (??), an invariant matrix M commutes with group transforma-
tions [G,M] = 0. Projection operators (A.3) constructed from M are polynomials
in M, so they also commute with all g ∈ G:

[G,Pi] = 0 (A.13)
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Hence, a [d×d] matrix rep can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (A.14)

In the diagonalized rep (A.4), the matrix g has a block diagonal form:

CgC† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1 0 0
0 g2 0

0 0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =
∑

i

CigiCi . (A.15)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors Piq,
q ∈ V . In this way an invariant [d×d] hermitian matrix M with r distinct eigenval-
ues induces a decomposition of a d-dimensional vector space V into a direct sum
of di-dimensional vector subspaces Vi:

V
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (A.16)
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