Roger Penrose

The RoAd To
 REALITY

A Complete Guide to the Laws
of the Universe

JONATHAN CAPE
LONDON

(a)

(c)

(b)

Fig. 8.2 (a) Constructing the Riemann surface for $\left(1-z^{3}\right)^{1 / 2}$ from two sheets, with branch points of order 2 at $1, \omega, \omega^{2}$ (and also ∞). (b) To see that the Riemann surface for $\left(1-z^{3}\right)^{1 / 2}$ is topologically a torus, imagine the planes of (a) as two Riemann spheres with slits cut from ω to ω^{2} and from 1 to ∞, identified along matching arrows. These are topological cylinders glued correspondingly, giving a torus. (c) To construct a Riemann surface (or a manifold generally) we can glue together patches of coordinate space-here open portions of the complex plane. There must be (open-set) overlaps between patches (and when joined there must be no 'non-Hausdorff branching', as in the final case above; see Fig. 12.5b, §12.2).

