
Georgia Tech PHYS 6124
Mathematical Methods of Physics I
Instructor: Predrag Cvitanović
Fall semester 2012

Homework Set #6a due Thursday, October 25, 2012

Notes for lectures 14 and 15: Calculus on smooth manifolds

[based on Deirdre Shoemaker PHYS 479 notes and J. B. Hartle, Gravity: An In-
troduction to Einstein’s General Relativity]

Metric and line element describe spacetime such as the flat spacetime

ds2 = −dt2 + dx2 + dy2 + dz2 and ηαβ = diag(−1, 1, 1) (1)

BUT, line elements and metrics are written in terms of a coordinate system,
such that different line elements/metrics may describe the same geometry. Ex-
amples:

• Transformed line elements under a coordinate transformation are the
same as flat spacetime (i.e. Cartesian and polar-spherical)

• The static, weak-field gravitational line element cannot be transformed
to flat spacetime under any coordinate transformation; it is described by
curved spacetime.

The choice of coordinates is arbitrary as long as the uniquely label each point.
For example: start with flat spacetime (t, x, y, dz), do the following coordinate
transformation, and find a new line element for flat spacetime

x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ

where

dx =
∂x
∂r

dr +
∂x
∂θ

dθ +
∂x
∂φ

dφ

= sin θ cos φ dr + r cos θ cos φ dθ − r sin θ sin φ dφ

dy =
∂y
∂r

dr +
∂y
∂θ

dθ +
∂y
∂φ

dφ

= sin θ sin φ dr + cos θ sin φ dθ + r sin θ cos φ dφ

dz =
∂z
∂r

dr +
∂z
∂θ

dθ +
∂z
∂φ

dφ = cos θ dr− r sin θ dθ
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Doing the same for dy and dz leads to

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dφ2

This line element might not "look" flat but it is since it can be transformed back
to the original flat spacetime under a coordinate transformation.

The Good and The Bad

• Good Coordinates uniquely label each point in spacetime, but many co-
ordinates systems fail somewhere. Example:
Polar coordinates (r, θ, φ): the point θ = 0 labels more than one point, dif-
ferent φ and r values exist at θ = 0. This is a (mild) coordinate singularity.

• Bad Coordinates exhibit coordinate singularities. Example:

dS2 = dr2 + r2dφ2

is the line element for a 2d plane in polar coordinates. Under a coordinate
transform of form r = a2/r′

dS2 =
a4

r′4
(dr′2 + r′2dφ2)

blows up at r′ = 0 but still describes a flat plane! This is another example
of a bad coordinate singularity. There are not many physical singularities,
but we one in black holes.

Two coordinate systems in general are labeled by α, β and α′, β′. How does dxα

transform?
dxα =

∂xα

∂xα′
dxα′

Examples were the dx, dy, and dz that we just did. But what about an arbitrary
metric tensor gαβ?

gα′β′ = gαβ
∂xα

∂xα′
∂xβ

∂xβ′

You can see why this is true by looking at the line element

ds2 = gαβ
∂xα

∂xα′
dxα′ ∂xβ

∂xβ′
dxβ′ = gα′β′dxα′dxβ′ .

ds2 = gαβdxαdxβ is a general line element and metric where gαβ ≡ gαβ(x) is the
symmetric matrix

gαβ =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33
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called the metric. The flat spacetime metric is one example, ds2 = ηαβdxαdxβ

and ηαβ in Cartesian coordinates is

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The metric is a [4×4] matrix with 10 independent components because it is
symmetric gαβ = gβα.

ds2 = gαβdxαdxβ

= g00dx0dx0 + g01dx0dx1 + g02dx0dx2 + g03dx0dx3

+ g10dx1dx0 + g11dx1dx1 + g12dx1dx2 + g13dx1dx3

+ g20dx2dx0 + g21dx2dx1 + g22dx2dx2 + g23dx2dx3

+ g30dx3dx0 + g31dx3dx1 + g32dx3dx2 + g33dx3dx3 (2)

but gαβ is symmetric

ds2 = gαβdxαdxβ

= g00dx0dx0 + 2g01dx0dx1 + 2g02dx0dx2 + 2g03dx0dx3

+ g11dx1dx1 + 2g12dx1dx2 + 2g13dx1dx3

+ g22dx2dx2 + 2g23dx2dx3

+ g33dx3dx3 (3)

If it were also a diagonal metric (i.e. like flat spacetime), it would have only
four components,

ds2 = gαβdxαdxβ = g00dx0dx0 + g11dx1dx1 + g22dx2dx2 + g33dx3dx3 .

If you want to find the form of a metric in a new coordinate system, you do not
need to go through the line element, we can transform the metric directly.

Index rules:

1. Free indices: gαβ = gβα represents 16 equations, there are free indices, not
summed over - they can only be summed on the same side of the equa-
tion. gδγ = gγδ is also fine and represents the same set of 16 equations.

2. Repeated indices: must be superscripts/subscript pairs. For example gαα

is incorrect but gα
α or gαβ dxαdxβ are fine.

3. Location of indices important: ds2 = gαβdxαdxβ the subscripts and su-
perscripts are summed over. A superscript in denominator acts like a
subscript when balancing indices in an equation.

dxα =
∂xα

∂xβ′
dxβ′
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Problem 1) Balancing indices

Which equations make sense?

gαβdxαdxβ = gαβdxαdxσ (4)

gαβaαbβ = gαβaαcβ (5)

Γα
αβ = Γβ

ββ (6)

Γα
αγaγ = gαβaαbβ (7)

Problem 2) Flat spacetime metric

Given the flat spacetime metric in Cartesian coordinates, show that the met-
ric in coordinates

t = t′, x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ

is

ηαβ =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 .

Notes: Covariant derivative

Consider a function f (xα) and a curve xα(σ) parameterized by curvilinear dis-
tance σ. The directional derivative along that curve is

d f
dσ

= limε→0

[
f (xα(σ + ε))− f (xα(σ))

ε

]
=

dxα

dσ

∂ f
∂xα

where
tα =

dxα

dσ

is the tangent vector to the curve. Thus the directional derivative is thus

d
dσ

= tα ∂

∂xα
.

So we can write any vector as a directional derivative as

a ≡ aα ∂

∂xα
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A dual vector (covector) ωα is a linear map from vectors to real numbers,

ω(a) = ωαaα .

Vectors and dual vectors are related by “lowering” or “raising” of indices,

aα = gαβaβ , aα = gαβaβ .

The relationship between the metric and its inverse is encoded in the Kronecker
delta

gαγgγβ = δα
β =

{
1 , α = β

0 , α 6= β .
(8)

We can express the scalar product between two vectors a and b as

a · b = gαβaαbβ = aαbβ = aαbβ = gαβaαbβ .

The gradient of a scalar function f (x) is an example of a dual vector

∇α f =
∂ f
∂xα

.

For example, the components of the gradient of the square of the Minkowski
‘distance’ d(x)2 = −t2 + z2 + y2 + z2 along xα are:

∂

∂xα
d2 = 2 (−t, x, y, z) = 2 xα .

Next, differentiate a vector vβ(x). We expect a “second-rank” tensor, ∇αvβ.

Trouble: The definition involves differences between vectors at nearby curved
manifold points. How do we define the difference between the two vectors
v(xα) and v(xα + dxα) defined in curved space? The two “nearby” points are
separated by dxα = tαε, where the vector t indicates the direction of displace-
ment. To construct the derivative, v(xα + dxα) is first transported back to xα, to
the vector we denote v||(xα). This is called parallel transport and is a key notion
for defining derivatives of vectors and tensors.

This leads us to the definition of covariant derivative

∇tv(xα) = limε→0
[v(xα + tαε)]||trans to xα − v(xα)

ε
.

Here the subscript t indicates that the direction of the derivative is along t. The
derivative of a vector necessarily involves the difference between vectors at
two different points which means in two different tangent spaces. To define
a derivative of a vector, we must transport vectors from one tangent space to
another. We will see first how to do so in flat space.

To construct the derivative, the vector v(xα + tαε) is first transported par-
allel to itself to the point xα and now called v||(xα). Now it lies in the tangent
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space of xα, and v(xα) can be subtracted from it. Calculating the covariant
derivative in Cartesian coordinates in flat space is straightforward because the
components, vα do not change as they are parallel transported in these coordi-
nates.

∇βvα =
∂vα

∂xβ
, flat space

But even in flat space, if coordinates are curvilinear, this formula does not hold
because the angles the vector makes with the basis vectors change. The prob-
lem is that we do not know how to implement the parallel transport in general.
It should look like

vα
||(x) = vα(x + εt) + Γ̃α

βγ(x)vγ(x)(εtβ) ,

where Γ̃α
βγ is an array of coefficients to be determined. Taking the components

of our definition of the covariant derivative

∇βvα =
∂vα

∂xβ
+ Γ̃α

βγvγ .

The first term comes from the change in the vector field as we go from xα to
xα + dxα. The second term is the change in the basis vectors. Taken together,
the covariant derivative is basis independent. If we always know the local in-
ertial frame, we could find a general coordinate transformation between our
coordinates and it, but that is not always so straightforward. In General Rel-
ativity we have another tool, the geodesic equation. We know that in a local
inertial frame, a geodesic is a straight line whose tangent vector is propagated
parallel to itself. If we let u be the tangent vector, then its covariant derivative
is its own direction has to be zero

(∇uu)α = uβ

(
∂uα

∂xβ
+ Γ̃α

βγuγ

)
= 0 .

The geodesic equation can be written as

uβ

(
∂uα

∂xβ
+ Γα

βγuγ

)
= 0 .

where we have expressed the geodesic equation in a coordinate basis. Thus
Γ̃’s are just the Christoffel symbols defined in a coordinate basis. The covariant
derivative in a coordinate basis

∇αvβ =
∂vβ

∂xα
+ Γβ

αγvγ . (9)

The covariant derivative of a scalar function is just the partial derivative,

∇α f ≡ ∂ f
∂xα
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We can use Leibnitz’ rule to extend the covariant derivative from vectors to
other tensors.

∇γ(vαwβ) = vα(∇γwβ) + (∇γvα)wβ .

Combining this with our definition of the covariant derivative we get

∇γtαβ =
∂tαβ

∂xγ
+ Γα

γδtδβ + Γα
γδtαδ .

Here’s the rule: differentiate the components and add terms with Γ’s for each
index (subtract them for subindices).

Problem 3) Covariant derivative

Show that the geodesic equation in terms of the covariant derivative is

∇uu = 0 , (10)

that

∇γ gαβ = 0 . (11)

and the dual quantities transform as

∇αvβ =
∂vβ

∂xα
− Γγ

αβvγ . (12)

Notes: Variational principle for free test particle motion

The worldline of a free test particle between two timelike separated points
extremizes the proper time between them. In flat space: A particle obeying
Newton’s or Einstein’s law of motion follows a path of extremal action.

• Geodesics: extremal world lines

• Geodesic equation: equation of motion

Variational Principle Equation of Motion
flat spacetime δ

∫
(−ηαβdxαdxβ)1/2 = 0 d2xα

dτ2 = 0

curved spacetime δ
∫
(−gαβdxαdxβ)1/2 = 0 d2xα

dτ2 = −Γα
βγ

dxβ

dτ
dxγ

dτ

The procedure for finding the equations for timelike geodesics in spacetime
starts with the proper time between two points

τAB =
∫ B

A
dt =

∫ B

A

[
−gαβdxαdxβ

]1/2
(13)
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The worldline of a timelike geodesic is parameterized by 4-coordinates xα(σ)
where σ varies from 0 to 1 at the endpoints. The proper time is then written as

τAB =
∫ 1

0
dσ

(
−gαβ(x)

dxα

dσ

dxβ

dσ

)1/2

(14)

The worldlines that extremize the proper time between A and B are those that
satisfy the Lagrange’s equation

− d
dσ

(
∂L

∂(dxα/dσ)

)
+

∂L
∂xα

= 0 (15)

for the Lagrangian

L
(

dxα

dσ
, xα

)
=

(
−gαβ(x)

dxα

dσ

dxβ

dσ

)1/2

. (16)

Problem 4) Equations for geodesic of the plane in polar coordinates

dS2 = dr2 + r2dφ2

Find the extremum of the action to get the curve in this 2d space (it would be
an equation of motion in a 4d space), show that it satisfies

d2r
dS2 = r

(
dφ

dS

)2
,

d
dS

(
r2 dφ

dS

)
= 0 . (17)

.

Optional problems

Problem 5) Equations for geodesics in wormhole geometry

Line element for the geometry of a wormhole

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin θ2dφ2) .

Show that the Lagrange’s equations give the following equations of motion:

d2t
dτ2 = 0

d2r
dτ2 = r

[(
dθ

dτ

)2
+ sin2 θ

(
dφ

dτ

)2
]

d
dτ

[
(b2 + r2)

dθ

dτ

]
= (b2 + r2) sin θ cos θ

(
dφ

dτ

)2

d
dτ

[
(b2 + r2) sin2 θ

dφ

dτ

]
= 0 (18)
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Notes: Equations for geodesics

This example motivates the form of the equation for geodesics in arbitrary
curved spacetimes

d2xα

dτ2 = −Γα
βγ

dxβ

dτ

dxγ

dτ
. (19)

This represents four equations - one for each value of the free index α. The coef-
ficients Γα

βγ are called Christoffel symbols and are constructed from the metric
and its first derivatives. Taken together, these four equations are called the
geodesic equation. This equation is the basic equation for motion of test particles
in curved spacetime.

duα

dτ
= −Γα

βγuβuγ (20)

is the geodesic equation for timelike geodesics. The Christoffel symbols are sym-
metric in the lower two indices

Γα
βγ = Γα

γβ

They are written out as

gαβΓβ
δγ =

1
2

(
∂gαδ

∂xγ
+

∂gαγ

∂xδ
−

∂gδγ

∂xα

)
. (21)

Notes: Using the geodesic equation to derive equations of motion

d2xα

dτ2 = −Γα
βγ

dxβ

dτ

dxγ

dτ

• Other way of writing the Christoffel symbols in terms of the inverse met-
ric, gαβ.

Γα
βγ =

1
2

gαε

(
∂gεβ

∂xγ
+

∂gεγ

∂xβ
−

∂gβγ

∂xε

)
• gαβ is the inverse of the metric - operationally, this is just the inverse of a

4x4 matrix. For a diagonal metric:

gαβ =


g00 0 0 0
0 g11 0 0
0 0 g22 0
0 0 0 g33

 .
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The inverse, gαβ is given by

gαβ =


g00 0 0 0
0 g11 0 0
0 0 g22 0
0 0 0 g33

 .

where g00 = 1
g00

and likewise.

• Example 8.1 Again, Modified - Use Geodesic Equations to find the straight
lines in polar coordinates

dS2 = dr2 + r2dφ2

1. Compute Christoffel symbols

Γα
βγ =

1
2

gαε

(
∂gεβ

∂xγ
+

∂gεγ

∂xβ
−

∂gβγ

∂xε

)
where α and β are running over 1 and 2 such that xα = (r, φ).

gαβ =

(
1 0
0 r2

)
and

gαβ =

(
1 0
0 r−2

)
In terms of components we have grr = grr = 1, gφφ = r2, gφφ = r−2

and grφ = grφ = 0. So the Christoffel symbols are

Γr
φφ =

1
2

grα(gαφ,φ + gαφ,φ − gφφ,α)

=
1
2

grr(grφ.φ + grφ,φ − gφφ,r) +
1
2

grφ(gφφ.φ + gφφ,φ − gφφ,φ)

=
1
2
(0 + 0− ∂r2

∂r
)

= −r

Γφ
rφ =

1
2

gφα(gαφ,r + gαφ,r − gφr,α)

=
1
2

gφφ(gφφ,r + grφφ,r − grφ,φ)

=
1
2

gφφ,r

=
1
2

r−2(2r) = 1/r

Γφ
φr = Γφ

rφ = 1/r. (22)

All other Christoffel symbols are 0.
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2. Now plug the Christoffel symbols into the geodesic equation for
spacelike geodesics

d2xα

ds2 = −Γα
βγ

dxβ

ds
dxγ

ds
(23)

We have two equations, one for r and one for φ.

d2xr

ds2 = −Γr
βγ

dxβ

ds
dxγ

ds
= −Γr

φφ

(
dφ

ds

)2

d2r
ds2 = r

(
dφ

ds

)2

d2xφ

ds2 = −Γφ
βγ

dxβ

ds
dxγ

ds
= −2Γφ

rφ

dr
ds

dφ

ds
d2φ

ds2 = −2
r

dr
ds

dφ

ds
(24)

• The geodesic equation is invariant under coordinate transformations.

• Consider the Special Relativity application of the equations, gαβ = ηαβ

and gαβ,γ = 0 which means that all the Christoffel symbols are 0. This
means that the geodesic equation in SR

d2xα

dτ2 = 0

Uniform motion extremizes proper time in Special Relativity (free-falling
motion does so in GR).
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