Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Instructor: Predrag Cvitanović
Fall semester 2012
Homework Set \#3
due Tue, Sept 182012
== show all your work for maximum credit,
$==$ put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
[problems from Stone and Goldbart]

Exercise 2.20 Test functions and distributions

Let $f(x)$ be a continuous function. Show that $f(x) \delta(x)=f(0) \delta(x)$. Deduce that

$$
\frac{d}{d x}[f(x) \delta(x)]=f(0) \delta^{\prime}(x)
$$

If $f(x)$ were differentiable we might also have used the product rule to conclude that

$$
\frac{d}{d x}[f(x) \delta(x)]=f^{\prime}(0) \delta(x)+f(x) \delta^{\prime}(x)
$$

Show, by integrating both against a test function, that the two expressions for the derivative of $f(x) \delta(x)$ are equivalent.

Exercise 2.21 Let $\phi(x)$ be a test function...

Using the definition of the principal part integrals, show that

$$
\frac{d}{d t}\left\{P \int_{-\infty}^{\infty} \frac{\phi(x)}{(x-t)} d x\right\}=P \int_{-\infty}^{\infty} \frac{\phi(x)-\phi(t)}{(x-t)^{2}} d x
$$

in two different ways:

1. Fix the value of the cutoff ϵ. Differentiate the resulting ϵ-regulated integral, taking care to include the terms arising from the t dependence of the limits at $x=t \pm \epsilon$.
2. First make a change of variables $y=x-t$, so that the singularity is fixed at $y=0$. Now differentiate with respect to t. Next integrate by parts to take the derivative off ϕ and onto the singular factor. (Take care to include the boundary contributions.) Finally change back to the original x, t variables.

Both methods should give the same result!

ChaosBook Exercise 16.1 (a) Integrating over Dirac delta functions

Check the delta function integrals in 1 dimension,

$$
\begin{equation*}
\int d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|h^{\prime}(x)\right|} \tag{1}
\end{equation*}
$$

and in d dimensions, $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d x \delta(h(x))=\sum_{j} \int_{\mathcal{M}_{j}} d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|\operatorname{det} \frac{\partial h(x)}{\partial x}\right|} . \tag{2}
\end{equation*}
$$

where \mathcal{M}_{j} are arbitrarily small regions enclosing the zeros x_{j} (with x_{j} not on the boundary $\partial \mathcal{M}_{j}$). For a refresher on Jacobian determinants, read, for example, Stone and Goldbart Sect. 12.2.2.

Optional problems

ChaosBook Exercise 16.1 (b) Integrating over $\delta\left(x^{2}\right)$

The delta function can be approximated by a sequence of Gaussians

$$
\int d x \delta(x) f(x)=\lim _{\sigma \rightarrow 0} \int d x \frac{e^{-\frac{x^{2}}{2 \sigma}}}{\sqrt{2 \pi \sigma}} f(x)
$$

Use this approximation to see whether the formal expression

$$
\int_{\mathbb{R}} d x \delta\left(x^{2}\right)
$$

makes sense.

ChaosBook Exercise 16.2 Derivatives of Dirac delta functions

Consider $\delta^{(k)}(x)=\frac{\partial^{k}}{\partial x^{k}} \delta(x)$.
Using integration by parts, determine the value of

$$
\begin{align*}
\int_{\mathbb{R}} d x \delta^{\prime}(y) & \text { where } y=f(x)-x \tag{3}\\
\int d x \delta^{(2)}(y)= & \sum_{\{x: y(x)=0\}} \frac{1}{\left|y^{\prime}\right|}\left\{3 \frac{\left(y^{\prime \prime}\right)^{2}}{\left(y^{\prime}\right)^{4}}-\frac{y^{\prime \prime \prime}}{\left(y^{\prime}\right)^{3}}\right\} \tag{4}\\
\int d x b(x) \delta^{(2)}(y)= & \sum_{\{x: y(x)=0\}} \frac{1}{\left|y^{\prime}\right|}\left\{\frac{b^{\prime \prime}}{\left(y^{\prime}\right)^{2}}-\frac{b^{\prime} y^{\prime \prime}}{\left(y^{\prime}\right)^{3}}\right. \\
& \left.+b\left(3 \frac{\left(y^{\prime \prime}\right)^{2}}{\left(y^{\prime}\right)^{4}}-\frac{y^{\prime \prime \prime}}{\left(y^{\prime}\right)^{3}}\right)\right\} \tag{5}
\end{align*}
$$

