
Georgia Tech PHYS 6124 Fall 2012

Mathematical Methods of Physics I
Instructor: Predrag Cvitanović

Homework #12 due Tuesday November 29 2012

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

[All problems in this set are from Goldbart]

Problem 4) Kramers-Krönig relations
(a) The Debye form of the frequency-dependent generalized response func-

tion ε(ω) is given by

ε(ω) = ε∞ +
ε0 − ε∞

1− iωT
,

where ε0, ε∞ and T are real parameters. Show that this form corresponds
to the time-dependent generalized reponse function

α(τ) = ε∞ δ(+)(τ) +
(
ε0 − ε∞

)
T−1 e−τ/T ,

where δ(+)(τ) is understood to mean limτ0→0+ τ−1
0 exp(−τ/τ0) with τ0

real. Confirm that the Debye form obeys the Kramers-Krönig relations.
(b) The Van Vleck-Weisskopf-Fröhlich form of the time-dependent general-

ized response function α(τ) is given by
α(τ) = ε∞ δ(+)(τ) + ∆ε T−1 e−τ/T (cos ω0τ + ω0T sin ω0τ) ,

where ∆ε and ω0 are further real parameters. Determine the correspond-
ing frequency-dependent generalized response function, and confirm that
it obeys the Kramers-Krönig relations.

Problem 5) More applications of Cauchy’s theorem
(Ablowitz & Fokas, p. 90-91, p. 231-233)

(a) We wish to evaluate the Fresnel integral I =
∫ ∞

0 exp
(
ix2) dx. To do this,

consider the contour integral IR =
∫

C(R) exp
(
iz2) dz, where C(R) is the

closed circular sector in the upper half-plane with boundary points 0, R
and R exp(iπ/4). Show that IR = 0 and that limR→∞

∫
C1(R) exp

(
iz2) dz =

0, where C1(R) is the contour integral along the circular sector from R to
R exp(iπ/4). [Hint: use sin x ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then, by
breaking up the contour C(R) into three components, deduce that

lim
R→∞

(∫ R

0
exp

(
ix2) dx− eiπ/4

∫ R

0
exp

(
− r2) dr

)
= 0
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and, from the well-known result of real integration
∫ ∞

0 exp
(
− x2) dx =√

π/2, deduce that I = eiπ/4√π/2.
.

Optional problems

Problem 1) Winding numbers and topology (Needham, p. 369-372)
(a) Envisage an arbitrarily complicated but nevertheless simple contour. By

considering the collection of possible values taken by the winding num-
bers for off-contour points, devise a fast algorithm for establishing whether
or not an arbitrary off-contour point lies inside or outside the contour.
[Note: You may use this algorithm to impress your friends at dinner par-
ties.]

(b) For each of the following functions f (z), find all the p-points lying inside
the specified disc and determine their multiplicities.

(i) f (z) = exp 3πz and p = i for the disc |z| ≤ 4/3;
(ii) f (z) = cos z and p = 1 for the disc |z| ≤ 5;

(iii) f (z) = sin
(
z4) and p = 0 for the disc |z| ≤ 2.

In each case, use a computer to draw the image of the boundary of the
circle and, hence, verify the argument principle

(c) Use Rouché’s theorem to establish the following results:
(i) If a is greater than 1 then the equation znea = ez has n solutions

inside the unit circle.
(ii) If f (z) = 2z5 and g(z) = 8z− 1 then all five of the solutions of the

equation f (z) + g(z) = 0 lie in the disc |z| < 2.
(iii) By reversing the roles of f and g, show that there is only one root in

the unit disc. Hence, deduce that there are four roots in the annulus
1 < |z| < 2.

Problem 2) Cauchy’s theorem (Needham, p. 421-423)
(a) Let K be a contour that winds once around z = 1, once around z = 0,

twice around z = −1, and not around z = 1 + i.
(i) Evaluate the following integral by factoring the denominator and

putting the integrand into partial fractions:∮
K

z dz
z2 − iz− 1− i

.

(ii) Write down the Laurent series (centered at the origin) for z−11 cos z.
Hence find∮

K

cos z
z11 dz.

(b) This exercise illustrates how one type of integral may be evaluated easily
using a complex integral. Let L be the straight contour along the real axis
from −R to R, and let J be the semicircular contour in the upper half-
plane back from R to −R. The complete contour L + J is thus a closed
loop.
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(i) By using partial fractions, show that the integral∮
L+J

dz
z4 + 1

vanishes if R < 1, and find its value if R > 1.
(ii) By using the fact that z4 + 1 is the complex number from −1 to z4,

write down the minimum of |z4 + 1| as Z travels around J. Now
think of R as large, and use the Darboux inequality to show that the
integral of J dies away to zero as R grows to infinity.

(iii) From the previous parts, deduce the value of∫ ∞

−∞

dx
x4 + 1

.

(iv) Although it can be evaluated easily by ordinary means, evaluate the
integral∫ ∞

−∞

dx
x2 + 1

by the method used in the previous parts of this exercise.
(v) Likewise, evaluate∫ ∞

−∞

dx
(x2 + 1)2 .

(c) (i) Write down the value of
∫ a+ib

0 dz ez.
(ii) By equating your answer to part (i) to the parametric form of the in-

tegral taken along the straight contour from z = 0 to z = a + ib, de-
duce the values of the integrals

∫ 1
0 dx eax sin bx and

∫ 1
0 dx eax cos bx.

(d) (i) Show that when integrating a product of holomorphic functions we
may use the method of integration by parts.

(ii) Let L be a contour between the real numbers±θ. Evaluate
∫

L dz z eiz.
Verify your result via parametric integration along the line segment
between ±θ.

(e) Let f (z) = z−1 (z + z−1)n, where n is a positive integer.
(i) Use the binomial theorem to find the residue of f at the origin when

n is even or odd.
(ii) If n is odd, determine the value of the integral of f around any con-

tour.
(iii) If n is even (and equal to 2m) and K is a simple contour winding

once around the origin, deduce from part (i) that the integral of f
around K is given by 2πi (2m)!/(m!)2.

(iv) By taking K to be the unit circle, deduce Wallis’ result:∫ 2π

0
dθ cos2m θ =

2π(2m)!
22m(m!)2 .

(v) Similarly, by considering functions of the form zk f (z) with integral
k, evaluate

∫ 2π
0 dθ cosn θ cos kθ and

∫ 2π
0 dθ cosn θ sin kθ.

(f) Let E be the elliptical orbit z(t) = a cos t + ib sin t, where a and b are
positive and t varies from 0 to 2π. By considering the integral of 1/z
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around E, show that∫ 2π

0

dt
a2 cos2 t + b2 sin2 t

=
2π

ab
.

Problem 3) Cauchy’s integral formula (Needham, p. 446)
(a) (i) If C is the unit circle, show that∫ 2π

0

dt
1− 2a cos t + a2 =

∮
C

i dz
(z− a)(az− 1)

.

(ii) Use Cauchy’s integral formula to deduce that if 0 < a < 1 then the
above integrals are given by 2π/

(
1− a2).

(b) Let f (z) be holomorphic on and inside a circle K defined by |z− a| = ρ,
and let M be the maximum value of | f (z)| on K.

(i) Use Cauchy’s integral formula for derivatives to show that | f (n)(a)| ≤
n! M/ρn.

(ii) Suppose that | f (z)| ≤ M for all z, where M is some positive con-
stant. By choosing n = 1 in the above inequality, derive Liouville’s
theorem.

(iii) (optional) Suppose that | f (z)| ≤ M |zn| for all z, where n is some
positive integer. Show that f (n+1)(z) = 0, and hence deduce that
f (z) must be a polynomial whose degree does not exceed n.

(c) (optional)
(i) Show that if C is any simple loop around the origin then

1
2πi

∮
C

(1 + z)n

zr+1 dz =

(
n
r

)
.

(ii) By taking C to be the unit circle, deduce that
(

2n
n

)
≤ 4n.

Problem 6-2) Evaluation of definite integrals (Ablowitz & Fokas, p. 235-237)
(a) Evaluate the following real integrals via residues (for a2, b2, k > 0):

(i)
∫ ∞

0

dx
x6 + 1

(ii)
∫ ∞

−∞

dx cos kx(
x2 + a2

)(
x2 + b2

) (iii)
∫ ∞

0

dx x sin x
x2 + a2

(iv)
∫ ∞

0

dx x3 sin kx
x4 + a4 (v)

∫ 2π

0

dθ

1 + cos2 θ
(vi)

∫ 2π

0

dθ

(5− 3 sin θ)2

(b) (optional) Evaluate the following real integrals via residues (for a2, b2, k, m >
0):

(i)
∫ ∞

0

dx
x2 + a2 (ii)

∫ ∞

0

dx(
x2 + a2

)2 (iii)
∫ ∞

0

dx(
x2 + a2

)(
x2 + b2

)
(iv)

∫ ∞

−∞

dx x cos kx
x2 + 4x + 4

(v)
∫ ∞

−∞

dx cos kx cos mx
x2 + a2 (vi)

∫ π/2

0
dθ sin4 θ

(c) (optional) Use an origin-centered sector contour of radius R and angle
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2π/5 to show that (for a > 0)∫ ∞

0

dx
x5 + a5 =

π

5a4 sin(π/5)
.

(d) (i) Via a rectangular contour with corners at b± iR and b+ 1± iR, show
that

lim
R→∞

∫ b+iR

b−iR

dz
2πi

eaz

sin πz
=

1
π

1
1 + exp(−a)

(0 < b < 1, |Im a| < π).

(ii) (optional) By using a rectangular contour with corners at ±R and
±R + i, show that∫ ∞

0
dx
(
cosh ax/cosh πx

)
= (1/2) sec(a/2) (|a| < π).

(e) (optional)
(i) Use a rectangular contour CN with corners

(
N + 1

2
)(
± 1± i

)
to eval-

uate
1

2πi

∮
CN

dz π cot πz coth πz
z3 .

(ii) By considering the N → ∞ limit of your answer to part (i) show
that
∑∞

n=1 n−3 coth nπ = (7/180)π3.
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