Georgia Tech PHYS 6124 Fall 2012
Mathematical Methods of Physics I

Instructor: Predrag Cvitanovié

Homework #12 due Tuesday November 29 2012

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

[All problems in this set are from Goldbart]

Problem 4) Kramers-Kronig relations
(a) The Debye form of the frequency-dependent generalized response func-
tion €(w) is given by
€0 — €0
1—iwT’
where €y, € and T are real parameters. Show that this form corresponds
to the time-dependent generalized reponse function
4(T) = €00 (T) + (€0 — €00) T 1e ™7,
where 6(*) (1) is understood to mean lim; o+ Ty Lexp(—1/1) with 19
real. Confirm that the Debye form obeys the Kramers-Kronig relations.
(b) The Van Vleck-Weisskopf-Frohlich form of the time-dependent general-
ized response function «(7) is given by
1(7) = €0 6 (1) + Ae T e /T (cos wyT + woT'sin wyT),
where A€ and wy are further real parameters. Determine the correspond-
ing frequency-dependent generalized response function, and confirm that
it obeys the Kramers-Kronig relations.

€(w) = €co +

Problem 5) More applications of Cauchy’s theorem
(Ablowitz & Fokas, p. 90-91, p. 231-233)
(a) We wish to evaluate the Fresnel integral I = fooo exp (ix?) dx. To do this,

consider the contour integral Iz = [, C(R) &P (iz%) dz, where C(R) is the
closed circular sector in the upper half-plane with boundary points 0, R
and Rexp(irt/4). Show that Iz = 0and thatlimg fC] (R) ©XP (iz?) dz =
0, where C;(R) is the contour integral along the circular sector from R to
Rexp(irt/4). [Hint: use sinx > (2x/m) on 0 < x < 7t/2.] Then, by
breaking up the contour C(R) into three components, deduce that

R . R
lim </ exp (ix?) dx — e’”/4/ exp (—1%) dr) =0
0 0

R—o0



and, from the well-known result of real integration fooo exp (—x?)dx =
V71/2, deduce that [ = e™/4,/77/2.

Optional problems

Problem 1) Winding numbers and topology (Needham, p. 369-372)

(a) Envisage an arbitrarily complicated but nevertheless simple contour. By
considering the collection of possible values taken by the winding num-
bers for off-contour points, devise a fast algorithm for establishing whether
or not an arbitrary off-contour point lies inside or outside the contour.
[Note: You may use this algorithm to impress your friends at dinner par-
ties.]

(b) For each of the following functions f(z), find all the p-points lying inside
the specified disc and determine their multiplicities.

(i) f(z) =exp3mzand p =i for the disc |z| < 4/3;

(ii) f(z) =coszand p =1 for the disc |z| < 5;
(iii) f(z) =sin (z*) and p = 0 for the disc |z| < 2.
In each case, use a computer to draw the image of the boundary of the
circle and, hence, verify the argument principle

(c) Use Rouché’s theorem to establish the following results:

(i) If a is greater than 1 then the equation z"e? = e* has n solutions
inside the unit circle.
(ii) If f(z) = 2z° and g(z) = 8z — 1 then all five of the solutions of the
equation f(z) + g(z) = 0lie in the disc |z| < 2.
(iii) By reversing the roles of f and g, show that there is only one root in
the unit disc. Hence, deduce that there are four roots in the annulus
1<zl <2.

Problem 2) Cauchy’s theorem (Needham, p. 421-423)
(a) Let K be a contour that winds once around z = 1, once around z = 0,
twice around z = —1, and notaround z = 1 + 1.
(i) Evaluate the following integral by factoring the denominator and
putting the integrand into partial fractions:

% zdz
Kz2—iz—1—1i

(ii) Write down the Laurent series (centered at the origin) for z™~
Hence find
cosz
Zsz.

(b) This exercise illustrates how one type of integral may be evaluated easily
using a complex integral. Let L be the straight contour along the real axis
from —R to R, and let | be the semicircular contour in the upper half-
plane back from R to —R. The complete contour L + | is thus a closed
loop.

B COS zZ.



(i) By using partial fractions, show that the integral

f z
L+]z4+1
vanishes if R < 1, and find its value if R > 1.

(ii) By using the fact that z* + 1 is the complex number from —1 to z*,
write down the minimum of |z* + 1| as Z travels around ]. Now
think of R as large, and use the Darboux inequality to show that the
integral of | dies away to zero as R grows to infinity.

(iif) From the previous parts, deduce the value of
©  dx
./—oo x? +1 '
(iv) Although it can be evaluated easily by ordinary means, evaluate the
integral
©  dx
Loo x2 + 1
by the method used in the previous parts of this exercise.
(v) Likewise, evaluate

/°° dx
oo (X2 4+1)% '
(¢) (i) Write down the value of f0a+lb dz e*.

(if) By equating your answer to part (i) to the parametric form of the in-
tegral taken along the straight contour from z = 0 to z = a + ib, de-

duce the values of the integrals fol dx e™ sin bx and fol dx e™ cos bx.
(d) (i) Show that when integrating a product of holomorphic functions we
may use the method of integration by parts.

(ii) Let L be a contour between the real numbers £6. Evaluate f L dzz ez,
Verify your result via parametric integration along the line segment
between +6.

(e) Let f(z) =z ' (z+2z1)", where n is a positive integer.
(i) Use the binomial theorem to find the residue of f at the origin when
n is even or odd.

(i) If nis odd, determine the value of the integral of f around any con-
tour.

(iii) If n is even (and equal to 2m) and K is a simple contour winding
once around the origin, deduce from part (i) that the integral of f
around K is given by 27ti (2m)!/ (m!)2.

(iv) By taking K to be the unit circle, deduce Wallis’ result:

2 o 27t(2m)!
/0 df cos™ 6 = 22 ()2

(v) Similarly, by considering functions of the form z¥ f(z) with integral
k, evaluate fOZﬂ d6 cos™ 0 cos kb and fozn d6 cos™ 0 sin k6.

(f) Let E be the elliptical orbit z(t) = acost + ibsint, where a and b are

positive and t varies from 0 to 27r. By considering the integral of 1/z



around E, show that

/ T dt _2m
0 a2cos?t+b2sin®t ab’

Problem 3) Cauchy’s integral formula (Needham, p. 446)
(a) (i) If Cis the unit circle, show that

o dt B idz
./0 1—2acost+a2 }{c (z—a)(az—1)"

(ii) Use Cauchy’s integral formula to deduce that if 0 < a < 1 then the
above integrals are given by 271/ (1 — a?).

(b) Let f(z) be holomorphic on and inside a circle K defined by |z —a| = p,
and let M be the maximum value of |f(z)| on K.

(i) Use Cauchy’s integral formula for derivatives to show that | f() (a)|
n! M/p".

(ii) Suppose that |f(z)| < M for all z, where M is some positive con-
stant. By choosing n = 1 in the above inequality, derive Liouville’s
theorem.

(iii) (optional) Suppose that |f(z)| < M |z"| for all z, where 1 is some
positive integer. Show that f("*1)(z) = 0, and hence deduce that
f(z) must be a polynomial whose degree does not exceed n.
(c) (optional)
(i) Show that if C is any simple loop around the origin then

1 1+z)" . [n
2 oot dz—(r)-
2n

(if) By taking C to be the unit circle, deduce that M <4

IN

Problem 6-2) Evaluation of definite integrals (Ablowitz & Fokas, p. 235-237)
(a) Evaluate the following real integrals via residues (for a2, b2,k > 0):

@ /°° dx (i) / dx coskx (iif) / dx x sinx
0o x6+1 (2% 4 a2) (x2 + b2) 2 +a2
(iv) / dx x3 sinkx ) /2” do (vi) /2” de
Y 0 14cos?6 0o (5—3sinf)?

(b) (optional) Evaluate the following real integrals via residues (for a%, b2, k, m >

0):
L[ dx [ dx
K / x2 + az W /0 (x2 + a2)2 (1) /0 (x2 +a2) (x2 + b2)
* dxx coskx " dx coskx cos mx L
) / X2 +4x+4 / . 2+ a2 (vi) /0 d sin® 6

(c) (optional) Use an origin-centered sector contour of radius R and angle



27t/5 to show that (for a > 0)

/°° dx T
0o x5+a> b5atsin(n/5)
(d) (i) Viaarectangular contour with cornersat b £iR and b + 1 £+ iR, show

that

b+iR gz et 1 1
lim — = == (0<b<1,|Ima| < 7).
R—co Jp—ir 27ti sin;tz 711+ exp(—a)

(ii) (optional) By using a rectangular contour with corners at £R and
+R + i, show that
(e}

dx (coshax/coshmx) = (1/2)sec(a/2)  (|a] < m).

(e) (optional)
(i) Usearectangular contour Cy with corners (N + 1) (£ 1=£1) toeval-
uate

1 dz 7t cot tz coth 7tz
27Ti j{c z3 '
(ii) By considering the N — oo limit of your answer to part (i) show
that
Yo  n3cothnm = (7/180) 7.



