Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Instructor: Predrag Cvitanović
Fall semester 2011
Homework Set \#3
due Tue, Sept 13 2011, in class
(with solutions, September 12, 2011)
== show all your work for maximum credit,
== put labels, title, legends on any graphs
$==$ acknowledge study group member, if collective effort
[problems from Stone and Goldbart]

Exercise 2.20 Test functions and distributions

Let $f(x)$ be a continuous function. Show that $f(x) \delta(x)=f(0) \delta(x)$. Deduce that

$$
\frac{d}{d x}[f(x) \delta(x)]=f(0) \delta^{\prime}(x)
$$

If $f(x)$ were differentiable we might also have used the product rule to conclude that

$$
\frac{d}{d x}[f(x) \delta(x)]=f^{\prime}(0) \delta(x)+f(0) \delta^{\prime}(x)
$$

Show, by integrating both against a test function, that the two expressions for the derivative of $f(x) \delta(x)$ are equivalent.

Exercise 2.21 Let $\phi(x)$ be a test function...

Using the definition of the principal part integrals, show that

$$
\frac{d}{d t}\left\{P \int_{-\infty}^{\infty} \frac{\phi(x)}{(x-t)} d x\right\}=P \int_{-\infty}^{\infty} \frac{\phi(x)-\phi(t)}{(x-t)^{2}} d x
$$

in two different ways:

1. Fix the value of the cutoff ϵ. Differentiate the resulting ϵ-regulated integral, taking care to include the terms arising from the t dependence of the limits at $x=t \pm \epsilon$.
2. First make a change of variables $y=x-t$, so that the singularity is fixed at $y=0$. Now differentiate with respect to t. Next integrate by parts to take the derivative off ϕ and onto the singular factor. (Take care to include the boundary contributions.) Finally change back to the original x, t variables.

Both methods should give the same result!

ChaosBook Exercise 16.1 (a) Integrating over Dirac delta functions

Check the delta function integrals in 1 dimension,

$$
\begin{equation*}
\int d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|h^{\prime}(x)\right|} \tag{1}
\end{equation*}
$$

and in d dimensions, $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d x \delta(h(x))=\sum_{j} \int_{\mathcal{M}_{j}} d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|\operatorname{det} \frac{\partial h(x)}{\partial x}\right|} . \tag{2}
\end{equation*}
$$

where \mathcal{M}_{j} are arbitrarily small regions enclosing the zeros x_{j} (with x_{j} not on the boundary $\partial \mathcal{M}_{j}$). For a refresher on Jacobian determinants, read, for example, Stone and Goldbart Sect. 12.2.2.

Solution

As long as the zero is not smack on the border of $\partial \mathcal{M}$, integrating Dirac delta functions is easy: $\int_{\mathcal{M}} d x \delta(x)=1$ if $0 \in \mathcal{M}$, zero otherwise. The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its argument evaluated at all of its zeros:

$$
\begin{equation*}
\int d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|h^{\prime}(x)\right|} \tag{3}
\end{equation*}
$$

and in d dimensions the denominator is replaced by

$$
\begin{align*}
\int d x \delta(h(x)) & =\sum_{j} \int_{\mathcal{M}_{j}} d x \delta(h(x))=\sum_{\{x: h(x)=0\}} \frac{1}{\left|\operatorname{det} \frac{\partial h(x)}{\partial x}\right|} . \tag{4}
\end{align*}
$$

(a) Whenever $h(x)$ crosses 0 with a nonzero velocity $\left(\operatorname{det}_{x} h(x) \neq 0\right)$, the delta function contributes to the integral. Let $x_{0} \in h^{-1}(0)$. Consider a small
neighborhood V_{0} of x_{0} so that $h: V_{0} \rightarrow V_{0}$ is a one-to-one map, with the inverse function $x=x(h)$. By changing variable from x to h, we have

$$
\begin{aligned}
\int_{V_{0}} d x \delta(h(x)) & =\int_{h\left(V_{0}\right)} d h\left|\operatorname{det} \partial_{h} x\right| \delta(h)=\int_{h\left(V_{0}\right)} d h \frac{1}{\left|\operatorname{det} \partial_{x} h\right|} \delta(h) \\
& =\frac{1}{\left|\operatorname{det} \partial_{x} h\right|_{h=0}}
\end{aligned}
$$

Here, the absolute value $|\cdot|$ is taken because delta function is always positive and we keep the orientation of the volume when the change of variables is made. Therefore all the contributions from each point in $h^{-1}(0)$ add up to the integral

$$
\int_{\mathbb{R}^{d}} d x \delta(h(x))=\sum_{x \in h^{-1}(0)} \frac{1}{\left|\operatorname{det}_{x} h\right|}
$$

Note that if $\operatorname{det} \partial_{x} h=0$, then the delta function integral is not well defined.

Optional problems

ChaosBook Exercise 16.1 (b) Integrating over $\delta\left(x^{2}\right)$

The delta function can be approximated by a sequence of Gaussians

$$
\int d x \delta(x) f(x)=\lim _{\sigma \rightarrow 0} \int d x \frac{e^{-\frac{x^{2}}{2 \sigma}}}{\sqrt{2 \pi \sigma}} f(x)
$$

Use this approximation to see whether the formal expression

$$
\int_{\mathbb{R}} d x \delta\left(x^{2}\right)
$$

makes sense.

Solution

(b) The formal expression can be written as the limit

$$
F:=\int_{\mathbb{R}} d x \delta\left(x^{2}\right)=\lim _{\sigma \rightarrow 0} \int_{\mathbb{R}} d x \frac{e^{-\frac{x^{4}}{2 \sigma}}}{\sqrt{2 \pi \sigma}}
$$

by invoking the approximation given in the exercise. The change of variable $y=x^{2} / \sqrt{\sigma}$ gives

$$
F=\lim _{\sigma \rightarrow 0} \sigma^{-3 / 4} \int_{\mathbb{R}^{+}} d y \frac{e^{-\frac{y^{2}}{2}}}{\sqrt{2 \pi y}}=\infty
$$

where \mathbb{R}^{+}represents the positive part of the real axis. So, the formal expression does not make sense. The zero derivative of x^{2} at $x=0$ invalidates the expression in (a).

ChaosBook Exercise 16.2 Derivatives of Dirac delta functions

Consider $\delta^{(k)}(x)=\frac{\partial^{k}}{\partial x^{k}} \delta(x)$.
Using integration by parts, determine the value of

$$
\begin{align*}
\int_{\mathbb{R}} d x \delta^{\prime}(y) & \text { where } y=f(x)-x \tag{5}\\
\int d x \delta^{(2)}(y)= & \sum_{\{x: y(x)=0\}} \frac{1}{\left|y^{\prime}\right|}\left\{3 \frac{\left(y^{\prime \prime}\right)^{2}}{\left(y^{\prime}\right)^{4}}-\frac{y^{\prime \prime \prime}}{\left(y^{\prime}\right)^{3}}\right\} \tag{6}\\
\int d x b(x) \delta^{(2)}(y)= & \sum_{\{x: y(x)=0\}} \frac{1}{\left|y^{\prime}\right|}\left\{\frac{b^{\prime \prime}}{\left(y^{\prime}\right)^{2}}-\frac{b^{\prime} y^{\prime \prime}}{\left(y^{\prime}\right)^{3}}\right. \\
& \left.+b\left(3 \frac{\left(y^{\prime \prime}\right)^{2}}{\left(y^{\prime}\right)^{4}}-\frac{y^{\prime \prime \prime}}{\left(y^{\prime}\right)^{3}}\right)\right\} \tag{7}
\end{align*}
$$

Solution

We do this problem by direct evaluation. Denote by Ω_{y} a small neighborhood of y.
(a)

$$
\begin{aligned}
\int_{\mathbb{R}} d x \delta^{\prime}(y) & =\sum_{x \in y^{-1}(0)} \int_{\Omega_{y}} d y\left|\frac{d x}{d y}\right| \delta^{\prime}(y) \\
& =\left.\sum_{x \in y^{-1}(0)} \frac{\delta(y)}{\left|y^{\prime}\right|}\right|_{-\epsilon} ^{\epsilon}-\int_{\Omega_{y}} d y \frac{\delta(y)}{y^{\prime 2}}\left(-y^{\prime \prime}\right) \frac{1}{y^{\prime}} \\
& =\sum_{x \in y^{-1}(0)} \frac{y^{\prime \prime}}{\left|y^{\prime}\right| y^{\prime 2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{\mathbb{R}} d x \delta^{(2)}(y) & =\sum_{x \in y^{-1}(0)} \int_{\Omega_{y}} d y \frac{\delta^{(2)}(y)}{y^{\prime}} \\
& =\left.\sum_{x \in y^{-1}(0)} \frac{\delta^{\prime}(y)}{\left|y^{\prime}\right|}\right|_{-\epsilon} ^{\epsilon}-\int_{\Omega_{y}} d y \frac{\delta^{\prime}(y)}{y^{\prime 2}}\left(-y^{\prime \prime}\right) \frac{1}{y^{\prime}} \\
& =\left.\sum_{x \in y^{-1}(0)} \frac{y^{\prime \prime} \delta(y)}{\left|y^{\prime}\right| y^{\prime 2}}\right|_{-\epsilon} ^{\epsilon}-\int_{\Omega_{y}} d y \delta(y) \frac{d}{d x}\left(\frac{y^{\prime \prime}}{y^{\prime 3}}\right) \frac{1}{y^{\prime}} \\
& =-\sum_{x \in y^{-1}(0)} \int_{\Omega_{y}} d y \delta(y)\left(\frac{y^{\prime \prime \prime}}{y^{\prime 3}}-3 \frac{y^{\prime \prime 2}}{y^{\prime 4}}\right) \frac{1}{y^{\prime}} \\
& =\sum_{x \in y^{-1}(0)}\left(3 \frac{y^{\prime \prime 2}}{y^{\prime 4}}-\frac{y^{\prime \prime \prime}}{y^{\prime 3}}\right) \frac{1}{\left|y^{\prime}\right|}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{\mathbb{R}} d x b(x) \delta^{(2)}(y) & =\sum_{x \in y^{-1}(0)} \int_{\Omega_{y}} d y b(x) \frac{\delta^{(2)}(y)}{y^{\prime}} \\
& =\left.\sum_{x \in y^{-1}(0)} \frac{b(x) \delta^{\prime}(y)}{\left|y^{\prime}\right|}\right|_{-\epsilon} ^{\epsilon}-\int_{\Omega_{y}} d y \delta^{\prime}(y) \frac{d}{d x}\left(\frac{b}{y^{\prime}}\right) \frac{1}{y^{\prime}} \\
& =\sum_{x \in y^{-1}(0)}-\left.\delta(y) \frac{d}{d x}\left(\frac{b}{y^{\prime}}\right) \frac{1}{y^{\prime}}\right|_{-\epsilon} ^{\epsilon}+\int_{\Omega_{y}} d y \delta(y) \frac{d}{d x}\left(\frac{d}{d x}\left(\frac{b}{y^{\prime}}\right) \frac{1}{y^{\prime}}\right) \frac{1}{y^{\prime}} \\
& \left.=\sum_{x \in y^{-1}(0)} \frac{1}{\left|y^{\prime}\right|} \frac{d}{d x}\left(\frac{b^{\prime}}{y^{\prime 2}}-\frac{b y^{\prime \prime}}{y^{\prime 3}}\right)\right) \\
& =\sum_{x \in y^{-1}(0)} \frac{1}{\left|y^{\prime}\right|}\left[\frac{b^{\prime \prime}}{y^{\prime 2}}-\frac{b^{\prime} y^{\prime \prime}}{y^{\prime 3}}-2 \frac{b^{\prime} y^{\prime \prime}}{y^{\prime 3}}+b\left(3 \frac{y^{\prime \prime 2}}{y^{\prime 4}}-\frac{y^{\prime \prime \prime}}{y^{\prime 3}}\right)\right]
\end{aligned}
$$

$$
=\sum_{x \in y^{-1}(0)} \frac{1}{\left|y^{\prime}\right|}\left[\frac{b^{\prime \prime}}{y^{\prime 2}}-3 \frac{b^{\prime} y^{\prime \prime}}{y^{\prime 3}}+b\left(3 \frac{y^{\prime \prime 2}}{y^{\prime 4}}-\frac{y^{\prime \prime \prime}}{y^{\prime 3}}\right)\right] .
$$

