Georgia Tech PHYS 6124
 Fall 2011 Mathematical Methods of Physics I

Instructor: Predrag Cvitanović

Homework \#12
due Tuesday November 22 2011, in class
== show all your work for maximum credit,
== put labels, title, legends on any graphs
$==$ acknowledge study group member, if collective effort
[All problems in this set are from Goldbart]
Problem 3) Cauchy's integral formula (Needham, p. 446)
(a) (i) If C is the unit circle, show that

$$
\int_{0}^{2 \pi} \frac{d t}{1-2 a \cos t+a^{2}}=\oint_{C} \frac{i d z}{(z-a)(a z-1)}
$$

(ii) Use Cauchy's integral formula to deduce that if $0<a<1$ then the above integrals are given by $2 \pi /\left(1-a^{2}\right)$.
(b) Let $f(z)$ be holomorphic on and inside a circle K defined by $|z-a|=\rho$, and let M be the maximum value of $|f(z)|$ on K.
(i) Use Cauchy's integral formula for derivatives to show that $\left|f^{(n)}(a)\right| \leq$ $n!M / \rho^{n}$.
(ii) Suppose that $|f(z)| \leq M$ for all z, where M is some positive constant. By choosing $n=1$ in the above inequality, derive Liouville's theorem.
(iii) (optional) Suppose that $|f(z)| \leq M\left|z^{n}\right|$ for all z, where n is some positive integer. Show that $f^{(n+1)}(z)=0$, and hence deduce that $f(z)$ must be a polynomial whose degree does not exceed n.
(c) (optional)
(i) Show that if C is any simple loop around the origin then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{(1+z)^{n}}{z^{r+1}} d z=\binom{n}{r}
$$

(ii) By taking C to be the unit circle, deduce that $\binom{2 n}{n} \leq 4^{n}$.

Problem 6-2) Evaluation of definite integrals (Ablowitz \& Fokas, p. 235-237)
(a) Evaluate the following real integrals via residues (for $a^{2}, b^{2}, k>0$):
(i) $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$
(ii) $\int_{-\infty}^{\infty} \frac{d x \cos k x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
(iii) $\int_{0}^{\infty} \frac{d x x \sin x}{x^{2}+a^{2}}$
(iv) $\int_{0}^{\infty} \frac{d x x^{3} \sin k x}{x^{4}+a^{4}}$
(v) $\int_{0}^{2 \pi} \frac{d \theta}{1+\cos ^{2} \theta}$
(vi) $\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \sin \theta)^{2}}$
(b) (optional) Evaluate the following real integrals via residues (for $a^{2}, b^{2}, k, m>$ $0)$:
(i) $\int_{0}^{\infty} \frac{d x}{x^{2}+a^{2}}$
(ii) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$
(iii) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
(iv) $\int_{-\infty}^{\infty} \frac{d x x \cos k x}{x^{2}+4 x+4}$
(v) $\int_{-\infty}^{\infty} \frac{d x \cos k x \cos m x}{x^{2}+a^{2}}$
(vi) $\int_{0}^{\pi / 2} d \theta \sin ^{4} \theta$
(c) (optional) Use an origin-centered sector contour of radius R and angle $2 \pi / 5$ to show that (for $a>0$)

$$
\int_{0}^{\infty} \frac{d x}{x^{5}+a^{5}}=\frac{\pi}{5 a^{4} \sin (\pi / 5)}
$$

(d) (i) Via a rectangular contour with corners at $b \pm i R$ and $b+1 \pm i R$, show that

$$
\lim _{R \rightarrow \infty} \int_{b-i R}^{b+i R} \frac{d z}{2 \pi i} \frac{\mathrm{e}^{a z}}{\sin \pi z}=\frac{1}{\pi} \frac{1}{1+\exp (-a)} \quad(0<b<1,|\operatorname{Im} a|<\pi)
$$

(ii) (optional) By using a rectangular contour with corners at $\pm R$ and $\pm R+i$, show that

$$
\int_{0}^{\infty} d x(\cosh a x / \cosh \pi x)=(1 / 2) \sec (a / 2) \quad(|a|<\pi)
$$

(e) (optional)
(i) Use a rectangular contour C_{N} with corners $\left(N+\frac{1}{2}\right)(\pm 1 \pm i)$ to evaluate

$$
\frac{1}{2 \pi i} \oint_{C_{N}} \frac{d z \pi \cot \pi z \operatorname{coth} \pi z}{z^{3}}
$$

(ii) By considering the $N \rightarrow \infty$ limit of your answer to part (i) show that

$$
\sum_{n=1}^{\infty} n^{-3} \operatorname{coth} n \pi=(7 / 180) \pi^{3} .
$$

Optional problems

Problem 1) Winding numbers and topology (Needham, p. 369-372)
(a) Envisage an arbitrarily complicated but nevertheless simple contour. By considering the collection of possible values taken by the winding numbers for off-contour points, devise a fast algorithm for establishing whether or not an arbitrary off-contour point lies inside or outside the contour. [Note: You may use this algorithm to impress your friends at dinner parties.]
(b) For each of the following functions $f(z)$, find all the p-points lying inside the specified disc and determine their multiplicities.
(i) $f(z)=\exp 3 \pi z$ and $p=i$ for the disc $|z| \leq 4 / 3$;
(ii) $f(z)=\cos z$ and $p=1$ for the disc $|z| \leq 5$;
(iii) $f(z)=\sin \left(z^{4}\right)$ and $p=0$ for the disc $|z| \leq 2$.

In each case, use a computer to draw the image of the boundary of the circle and, hence, verify the argument principle
(c) Use Rouché's theorem to establish the following results:
(i) If a is greater than 1 then the equation $z^{n} \mathrm{e}^{a}=\mathrm{e}^{z}$ has n solutions inside the unit circle.
(ii) If $f(z)=2 z^{5}$ and $g(z)=8 z-1$ then all five of the solutions of the equation $f(z)+g(z)=0$ lie in the disc $|z|<2$.
(iii) By reversing the roles of f and g, show that there is only one root in the unit disc. Hence, deduce that there are four roots in the annulus $1<|z|<2$.

Problem 2) Cauchy's theorem (Needham, p. 421-423)
(a) Let K be a contour that winds once around $z=1$, once around $z=0$, twice around $z=-1$, and not around $z=1+i$.
(i) Evaluate the following integral by factoring the denominator and putting the integrand into partial fractions:

$$
\oint_{K} \frac{z d z}{z^{2}-i z-1-i}
$$

(ii) Write down the Laurent series (centered at the origin) for $z^{-11} \cos z$. Hence find

$$
\oint_{K} \frac{\cos z}{z^{11}} d z
$$

(b) This exercise illustrates how one type of integral may be evaluated easily using a complex integral. Let L be the straight contour along the real axis from $-R$ to R, and let J be the semicircular contour in the upper halfplane back from R to $-R$. The complete contour $L+J$ is thus a closed loop.
(i) By using partial fractions, show that the integral

$$
\oint_{L+J} \frac{d z}{z^{4}+1}
$$

vanishes if $R<1$, and find its value if $R>1$.
(ii) By using the fact that $z^{4}+1$ is the complex number from -1 to z^{4}, write down the minimum of $\left|z^{4}+1\right|$ as Z travels around J. Now think of R as large, and use the Darboux inequality to show that the integral of J dies away to zero as R grows to infinity.
(iii) From the previous parts, deduce the value of

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}
$$

(iv) Although it can be evaluated easily by ordinary means, evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}
$$

by the method used in the previous parts of this exercise.
(v) Likewise, evaluate

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}
$$

(c) (i) Write down the value of $\int_{0}^{a+i b} d z \mathrm{e}^{z}$.
(ii) By equating your answer to part (i) to the parametric form of the integral taken along the straight contour from $z=0$ to $z=a+i b$, deduce the values of the integrals $\int_{0}^{1} d x \mathrm{e}^{a x} \sin b x$ and $\int_{0}^{1} d x \mathrm{e}^{a x} \cos b x$.
(d) (i) Show that when integrating a product of holomorphic functions we may use the method of integration by parts.
(ii) Let L be a contour between the real numbers $\pm \theta$. Evaluate $\int_{L} d z z \mathrm{e}^{i z}$. Verify your result via parametric integration along the line segment between $\pm \theta$.
(e) Let $f(z)=z^{-1}\left(z+z^{-1}\right)^{n}$, where n is a positive integer.
(i) Use the binomial theorem to find the residue of f at the origin when n is even or odd.
(ii) If n is odd, determine the value of the integral of f around any contour.
(iii) If n is even (and equal to $2 m$) and K is a simple contour winding once around the origin, deduce from part (i) that the integral of f around K is given by $2 \pi i(2 m)!/(m!)^{2}$.
(iv) By taking K to be the unit circle, deduce Wallis' result:

$$
\int_{0}^{2 \pi} d \theta \cos ^{2 m} \theta=\frac{2 \pi(2 m)!}{2^{2 m}(m!)^{2}} .
$$

(v) Similarly, by considering functions of the form $z^{k} f(z)$ with integral k, evaluate $\int_{0}^{2 \pi} d \theta \cos ^{n} \theta \cos k \theta$ and $\int_{0}^{2 \pi} d \theta \cos ^{n} \theta \sin k \theta$.
(f) Let E be the elliptical orbit $z(t)=a \cos t+i b \sin t$, where a and b are positive and t varies from 0 to 2π. By considering the integral of $1 / z$ around E, show that

$$
\int_{0}^{2 \pi} \frac{d t}{a^{2} \cos ^{2} t+b^{2} \sin ^{2} t}=\frac{2 \pi}{a b} .
$$

Problem 4) Kramers-Krönig relations

(a) The Debye form of the frequency-dependent generalized response function $\epsilon(\omega)$ is given by

$$
\epsilon(\omega)=\epsilon_{\infty}+\frac{\epsilon_{0}-\epsilon_{\infty}}{1-i \omega T},
$$

where $\epsilon_{0}, \epsilon_{\infty}$ and T are real parameters. Show that this form corresponds to the time-dependent generalized reponse function

$$
\alpha(\tau)=\epsilon_{\infty} \delta^{(+)}(\tau)+\left(\epsilon_{0}-\epsilon_{\infty}\right) T^{-1} \mathrm{e}^{-\tau / T}
$$

where $\delta^{(+)}(\tau)$ is understood to mean $\lim _{\tau_{0} \rightarrow 0^{+}} \tau_{0}^{-1} \exp \left(-\tau / \tau_{0}\right)$ with τ_{0} real. Confirm that the Debye form obeys the Kramers-Krönig relations.
(b) The Van Vleck-Weisskopf-Fröhlich form of the time-dependent generalized response function $\alpha(\tau)$ is given by

$$
\alpha(\tau)=\epsilon_{\infty} \delta^{(+)}(\tau)+\Delta \epsilon T^{-1} \mathrm{e}^{-\tau / T}\left(\cos \omega_{0} \tau+\omega_{0} T \sin \omega_{0} \tau\right),
$$

where $\Delta \epsilon$ and ω_{0} are further real parameters. Determine the correspond-
ing frequency-dependent generalized response function, and confirm that it obeys the Kramers-Krönig relations.

