Problem 1

Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 2 & 1 \\
-1 & -1 & 1
\end{array}\right)
$$

Determine whether the matrix is diagonalizable or not. Find the similarity transformation which converts the matrix into a diagonal or Jordan normal form.

Problem 2

Three (very small) beads with masses m, m, and μ can slide without friction on a (very thin) fixed ring of radius a and are connected to each other by (weightless) springs of equal stiffness k and equilibrium length $l=\sqrt{3} a$. Find the normal frequencies and normal modes of vibration for this system. Interpret the physical meaning of the modes you have found.

Problem 3

Find the solution to the ordinary differential equation

$$
y^{\prime \prime \prime \prime}+4 y^{\prime \prime \prime}+5 y^{\prime \prime}+2 y^{\prime}=0
$$

subject to the initial conditions $y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=2, y^{\prime \prime \prime}(0)=-5$ using the technique developed in class.
a) Rewrite this equation as a system of first order equations, $\vec{y}^{\prime}=A \vec{y}$.
b) Find the eigenvalues and eigenvectors (or, failing that, generalized eigenvectors) of A.
c) Construct the Jordan normal form $\Lambda=S^{-1} A S$.
d) Solve the resulting system of equations in the new variables $\vec{u}=S^{-1} \vec{y}$.
e) Finally, use the backward transformation to find the solution $y(x)$.

