Gravity

The force of gravity is all around us and determines to a large extent the way we
live. Tt is certainly the force about which we have the best intuitive understand-
ing. We learn the hard way to rise against it as small children, to keep it at bay as
adults, only to be brought down by it in the end. A few people have experienced
true absence of gravity for longer periods of time in satellites orbiting the Earth
or rockets coasting towards the Moon.

Newton gave us the theory of gravity and the mathematics to deal with it.
In a world where things only seem to get done by push and pull, man suddenly
had to accept that the Earth could act on the distant Moon — and the Moon
back on Earth. After Newton everybody had to suppress the feeling of horror for
action at a distance and accept that gravity instantaneously could jump across
the emptiness of space and tug at distant bodies. It took more than two centuries
and the genius of Einstein to undo this learning. There is no action at a distance.
As we understand it today, gravity is mediated by a field which emerges from
massive bodies and in the manner of light takes time to travel through a distance.
If the Sun were suddenly to blink out of existence, it would take eight long minutes
before daylight was switched off and the Earth set free in space.

In this chapter we shall study the interplay between mass and the instanta-
neous Newtonian field of gravity, and derive the equations governing this field
and its interactions with matter. Some basic knowledge of gravity is assumed in
advance, and the presentation in this chapter aims mainly at developing elemen-
tary aspects of field theory in the comfortable environment of Newtonian gravity.
More advanced concepts will be developed in chapter 6.
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dM

; dv

The wvolume dV  occupied
by a material particle may
take any shape, here cubical.
The nominal position of the
particle & may be chosen
anywhere within the volume.

The total mass in a volume
is obtained by integrating
(“summing”) over all mate-
rial particles in the volume.
The integral sign [ is in
fact a stylized version of the
letter S (for “sum”).

3.1 Mass density

In the continuum approximation the mass density is a field, p(x,t), assumed to
exist everywhere in space and at all times. If there is no mass in a region, the
mass density simply vanishes. Knowing this field, we may calculate the mass of
a material particle occupying a small volume dV around the point x at time ¢,

dM = p(z,t)dV . (3-1)

We shall permit ourselves to suppress the space and time variables and just write
dM = pdV, whenever such notation is unambiguous.

Although we usually think of the mass density field as varying smoothly
throughout space, it is sometimes convenient to allow for discontinuous bound-
aries in material bodies (an example is shown in fig. 3.1 on page 39). Often
these discontinuities are “real” in the sense that the transition between different
materials may happen on the molecular scale, as for example at the interface
between two solid bodies that touch each other.

In section 1.2 we discussed the continuum approximation and concluded that
there are two length scales, Lmicro and Lmacro, that depend on the measurement
precision. If dV 2> L3..., the molecular structure may be disregarded, and if
the length scale for major density changes is larger than Lmacro, the density is
effectively continuous and the shape of the minimal volume dV does not matter.

Total mass and center of mass

Mass density is a local quantity, defined in every point of space. The total mass
in a volume V is a global quantity obtained mathematically by integrating the
mass density over V,

M= / M = / oz, t)dV . (3-2)
1% 1%

Physically the integral should be understood as an approximation to a huge sum
over the tiny, though not truly infinitesimal, material particles contained in the
volume. If the density depends on time or if the volume changes shape and size
with time, the total mass may depend on time.

In continuum physics the material contained in any volume V may be viewed
as a “body” , and the center of mass of such a body is naturally defined from
the average of the position & over all material particles,

1 1
wM:M/V:ch:M/va(w,t)dV.

In the Newtonian mechanics of particles and stiff bodies, the center of mass of
a body plays an important role, because it moves like a point particle under the
influence of the total force acting on the body (see appendix B). Although this

(3-3)
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Figure 3.1: The mass density of the Earth as a function of distance v from the center
with the surface at v = 6371 km (from the standard Farth model [3]) . There is a
sharp break in the density at the transition between the iron core and the stone mantle
at r = 3485 km, and a smaller break at r = 1216 km between the outer liquid iron core
and the inner solid iron core. The dashed lines indicate the average densities in mantle
and core.

is also true in continuum mechanics, it is not nearly as useful because the shape
of a body may change drastically over longer time-spans. Think for example of a
bucket of oil thrown into a waterfall. It may not always be physically meaningful
to speak about a well-defined “body of 0il” at later times.

Spherical systems

Planets like Earth or stars like the Sun are in the first approximation spherically
symmetric. Spherical symmetry implies that the mass density p in any point x
only depends on the distance r = |x — ¢| to the center ¢, which for symmetry
reasons must also be the center of mass. Usually the origin of the coordinate
system is chosen to be at the center such that ¢ = 0. For a simple spherical
planet with radius a and constant density py we have

plr) = {po ree (3-4)

0 r>a

Such a distribution might be used for analytic calculations for a small rock planet
like the Moon, but definitely not for the Earth.

In fig. 3.1 the mass density of the Earth is plotted (fully drawn) as a function
of the central distance. It cannot be measured directly, but is inferred from a
combination of surface observations and modelling. For analytic calculations,
its mass distribution may be approximated with two layers of constant density,
p1 = 10.9 g/cm3 in the core and py = 4.4 g/cm? in the mantle (see problem 3.7).
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Galileo Galilei (1564-1642).
Italian natural philosopher,
astronomer, mathematician,
and craftsman. Carried
out gravity experiments with
falling objects and inclined
planes.  Built better tele-
scopes than any before him.
Saw as the first the moun-
tains of the Moon, the large
moons of Jupiter, and that
the Milky Way is made from
stars.  Considered the fa-
ther of the modern scientific
method.

e’

av

The weight of the matter
in a volume element dV is
dF = pgdV.

The moment of force for
a wvolume element dV is
dM =x x pgdV.

3.2 Gravitational acceleration

Galileo found empirically that all bodies fall in the same way, independently of
their mass. In Newton’s language this shows that the force of gravity on a body
is proportional to its mass. For a material particle of mass dM = pdV the force
of gravity may be written

dF =g(x,t)dM = pgdV (3-5)

where g(x,t) is called the gravitational acceleration field, or just gravity. The
last form shows that gravity is a body force (also called a volume force) which
acts everywhere in a body with a density of force f = dF/dV = pg. In fig.
3.3 on page 45 the magnitude of Earth’s gravity is plotted as a function of the
distance from the center of the Earth.

In Newtonian physics the gravitational field imparts a common acceleration to
all bodies. Given the same initial conditions all material bodies will follow the
same orbits in a gravitational field. As a consequence there is no way we can dis-
tinguish between gravitational forces and the inertial (so-called fictitious) forces
experienced in accelerated motion. The identical behavior of all bodies in a field
of gravity also allows one to look upon the gravitational field as a property of
space and time, rather than simply a vehicle for gravitational interaction. The
indistinguishability of gravity and acceleration was raised to a fundamental law,
the Principle of Equivalence, by Einstein in his General Theory of Relativity from
1915, in which gravity expresses the geometric curvature of space and time.

Total gravitational force and total moment of gravity

The field of gravity specifies the gravitational acceleration in every point of space
and every instant of time. The total gravitational force on a body of volume V,
the weight of the body, is

F= / pgdV . (3-6)
\%
The total force determines how the body as a whole moves. It is independent of
the choice of origin of the coordinate system, but depends like any other vector
on its orientation. If p, g, or V' change in the course of time, the total force may
also change.
The total moment of force of gravity relative to the coordinate origin is

M:/wxpng. (3-7)
1%

The total moment determines how a body as a whole rotates around the origin.
The moment depends not only on the orientation of the coordinate system, but
also on its origin. It is an improper axial vector. In a translated coordinate
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system with origin in & = ¢, the coordinates are *’ = = — ¢, and the moment
becomes
M’z/ m'xp’g’dV’:/(:c—c)xpng:M—cX.’F, (3-8)
’ v
where the primed quantities all refer to the translated system. This shows that
the total moment is independent of the choice of origin of the coordinate system
if (and only if) the total force vanishes.
z
y
Constant gravity
g
In a constant gravitational field g(x) = g, the weight (3-6) becomes the familiar ’
F = Mg, , (3-9) -y
where M is the total mass (3-2). In constant gravity, it is customary to choose

a “flat-earth” coordinate system with vertical z-axis, such that g, = (0,0, —go)
where gq is a positive constant.

At the surface of Earth, gravity is very close to being constant with magni-
tude equal to the standard gravity, defined by convention to be exactly go =
9.80665 m/s? with no uncertainty. The actual gravitational acceleration at the
surface of the Earth depends on many factors, for example local mass concentra-
tions and the positions of the Moon and Sun (see fig. 7.1 on page 117). It has
been determined with a relative precision of 3x 1079 in an experiment using atom
interferometry [19]. Galileo’s law was verified in the same experiment to within
7x 1079 by comparing the measured values of the gravitational acceleration for a
macroscopic body and for a cesium atom, in effect a modern version of his famous
“leaning tower in Pisa” experiment.

The moment of force may be expressed in terms of the center of mass (3-3),

M:/xxpgodV:(/ pade) X gy =am X Mg, . (3-10)
v v

This shows that in constant gravity, the total moment is the same as that of point
particle with mass equal to the total mass of the body, situated at the center of
mass. In a constant gravitational field, the moment of gravity calculated in a
coordinate system with origin in the center of mass must vanish because xy = 0
in these coordinates. The moment of force in constant gravity is important for
understanding the stability of floating bodies (chapter 5).

Visualizing the gravitational field

A visual impression of the gravitational field may be given by a picture of the
field lines, defined to be families of curves that at a given instant ¢ty have the
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Field lines follow the instan-
taneous field everywhere.
They are very different from
the orbits particles would
follow through the field.
A thrown stone follows a
parabolic orbit as it falls to
the ground, whereas the field
lines on the surface of the
Earth are vertical.
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Figure 3.2: The gravitational field (and some nearly circular equipotential surfaces)
between Earth and Moon. You should imagine rotating this picture around the Farth-
Moon axis. The drawing is to scale, except for two regions of 10 times the sizes of the
FEarth and the Moon that have been cut out for technical reasons. The field lines are
everywhere plotted with a density proportional to the field strength. The numbers on
the frame are coordinates centered on Farth in units of 1000 km. The Moon appears to
have a streaming “mane of hair” because all the field lines ending on its surface have
to come in from spatial infinity and cannot cross the lines of Earth’s field.

gravitational field as tangent (see fig. 3.2). This means that the curves are
solutions to the first order differential equation

dx

= (3-11)

= g(wv tO) )
where s is a running parameter along the curve. This parameter is not the time,
but has dimension of time squared because g has dimension of length per unit of
time squared. The solutions are of the form x = x(s, g, tg) with o being the
starting point at s = 0. The field lines form an instantaneous picture of the field
at time %y, and cannot be directly related to particle orbits, as illustrated by the
nearly circular orbit of a planet which is everywhere orthogonal to the field lines.

Field lines have the very important property that they can never cross. For
if two field lines crossed in a point @, then by (3-11) there would have to be two
different values of the gravitational field in the same point, and that is impossible
(except when the field vanishes, as it does in one point of fig. 3.2). As will be
shown in the following section, all gravitational field lines have to come in from
infinity and end on masses, and we shall also see that field lines do not form
closed loops.
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3.3 Sources of gravity

The gravitational field tells us how gravity acts on material bodies. But what
generates the gravitational field? What is its source? The answer is — as most
people are aware — that the field is generated by mass. Quantitatively this
is expressed by Newton’s law of gravity which says that the field from a point
particle of mass M at the origin of the coordinate system is

g(x) = GM@P, (3-12)

where G is the universal gravitational constant. The negative sign asserts that
gravitation is always attractive, or equivalently that field lines always run towards
masses. The last factor shows that the strength of gravity decreases with the
inverse square of the distance.

The gravitational constant is hard to determine to high precision. The recom-
mended [1] 1998 value, G = 6.673(10) x 107** Nm?/kg?, has an embarrassingly
large uncertainty of more than one part in 10°. The inverse square law has been
well tested at planetary distances during the last centuries, but only recently at
the submillimeter scale (see for example Long et al, Nature 421, 922 (2003)). The
force of gravity is terribly weak compared to other forces. In the hydrogen atom
the ratio of the force of gravity to the electrostatic force (between electron and
proton) is 4.4 x 1074, The only reason gravity can be observed at all is the nearly
complete electric neutrality of macroscopic bodies. Electrostatic and “gravistatic”
forces seem superficially alike in that they are both inversely proportional to the
square of the distance (which gives them infinite range; they are in fact the only
fundamental forces in nature with infinite range). But where electric charge can
be both positive and negative, mass is always positive, implying that there are
no “neutral” bodies unaffected by gravity, nor bodies that are repelled by the
gravity of other bodies (antigravity). Gravity and electromagnetism are in fact
very different at a deeper level, only completely revealed in General Relativity.

Another basic property of gravity is that it is additive, so that matter —
also from the point of view of its gravity — may be viewed as a collection of
material particles of mass dM = pdV, each contributing its own little point-like
field to the total. Using (3-12) but shifting the position of the source particle
from the origin to an arbitrary point x’, the collective gravitational field due to
all material particles in a volume V becomes an integral,

-G / | (x')dV’ | (3-13)

:c—:c’|3p

Notice that the integrand has a singularity at @’ = x (for p(x) # 0). This
singularity is, however, integrable and creates no problem (except problem 3.8).
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Forces between extended bodies

The expression for the field (3-13) brings us full circle. We are now able to
calculate the gravitational field from a mass distribution, as well as the force
that this field exerts on another mass distribution, even on itself. Substituting
the field (3-13) into the force (3-6), and renaming the integration variables, the
total force by which a mass distribution ps in the volume V5, acts on a mass
distribution p; in V; becomes,

L] — T2
Fu-=G[ [ BZon@mE s, (314

Newton’s third law is fulfilled, F15 = —F51, because the integrand is antisym-
metric under exchange of 1 < 2 due to the first factor. Consequently, the force
from a mass distribution acting on itself vanishes, as it ought to. For if the
self-force did not vanish a body could, so to speak, lift itself by its bootstraps.

Asymptotic behavior

The gravitational field from the matter contained in a volume of finite extent has
a particularly simple form at large distances. Since x’ then only ranges over a
finite region in (3-13), it follows for |x| — oo that

r—x T
s L F
|w_w/|3 |§C|3

Taking this expression outside the integral we obtain

T
g(x) — _GMW ) (3-15)

where M is the total mass. At sufficiently large distances the field of an arbitrary
spatially bounded mass distribution always approaches that of a point particle
containing the total mass of body.

Field of a spherical body

The mass distribution p(r) of a spherically symmetric body is only a function of
the distance r = || from its center, which here is taken to be at the origin of
the coordinate system. Since gravity according to (3-13) is caused by the mass
distribution, it should also be spherically symmetric. For a vector field this means
that it is everywhere directed radially away from the center,

g(x) =g(r)er (3-16)

where e, = x/r is the radial unit vector and g(r) is a function of r alone. In
fig. 3.3 the value of —g(r) is plotted for the Earth as a function of the radial
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Figure 3.3: The strength of gravity —g(r) inside and outside the Earth as a function
of distance from the center. The solid curve is obtained from the standard Earth data
[8]. The strength of gravity grows roughly linearly from the center to the core/mantle
boundary at r = 3485 km, and decreases slightly in the mantle due to the sharp drop
in mass density at the boundary. The dotted dropping line is the core field itself. The

dashed lines are obtained from the two-layer model of the Earth (problem 3.7).

distance. One notices the surprising fact that the strength of gravity actually is
larger inside Earth’s mantle than on the surface.

In chapter 6 we shall see that spherical gravity takes an extremely simple
form. We shall prove that the field strength g(r) is everywhere — inside and
outside the distribution — equal to the field of a point particle situated at the
center of the distribution,

M(r
g(r)=-G T(Q ) ; (3-17)
with a mass equaling the total mass inside the radius r,
M(r) = / p(ranr dr’ . (3-18)
0

It is also possible to prove this by direct integration of (3-13) (see problem 3.11).
For a planet with constant density we find from (3-4) that

r r<a

4
9(r) = =3mGpo | 43

r2

(3-19)
r>a

The strength of gravity grows linearly with r inside the planet because the total
mass grows with the third power of  whereas the field strength decreases with
the second power.
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It follows from (3-18) that for every point in the vacuum outside a spherical
mass distribution where M (r) equals the total mass, the field (3-17) is ezactly
the same as that of a point particle at the center with mass equal to the total
mass of the body. We have seen above that the field at great distances from
an arbitrary body is always approximately that of a point particle, but now we
learn that the field is of this form everywhere around a perfectly spherical body.
There are no near-field corrections to the gravitational field of a spherical body.
Without this wonderful property, Newton could never have related the strength
of gravity at the surface of the Earth — iconized by the fall of an apple — to the
strength of gravity in the Moon’s orbit.

3.4 Gravitational potential

Although the field of gravity is a vector field with three components, there is
really only one functional degree of freedom underlying the field, namely the mass
distribution giving rise to it. The relationship between these two fields expressed
by (3-13) is, however, non-local, meaning that g(x) in a point & depends on a
physical quantity p(«’) in points ' that may be arbitrarily far away.

Gravity as a gradient field

We shall now prove that the acceleration field can be derived locally from a single
scalar field ®(x), called the gravitational potential. The relation between the
acceleration field and the potential is

g=-Vo (3-20)

with a conventional minus sign in front. The gradient operator (nabla) has been
defined in (2-54). Because of the gradient, the potential is defined only up to an
undetermined additive constant.

In order to demonstrate (3-20) we first calculate the gradient of the central
distance (see also problem 2.9)

1 1 x
Viz|=VVa?=_-—Vz’=_—V (2] +25+2}) = — 3-21
and from this
1 1 T
= Vl|z|=-— . (3-22)
|| || |[?

Comparing with (3-12) we conclude that the potential of a point particle of mass
M is
GM

B

d(x) = (3-23)
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Figure 3.4: The gravitational potential —®(r) of the Earth as a function of distance
from the center. The fully drawn curve is obtained by numerically integrating the stan-
dard Earth data [3]. The dotted curve is the potential of the core alone, and the dashed
curve is obtained from the two-layer model (problem 3.7). The vertical dashed lines

indicate the positions of the sharp transitions in the mass density (see fig. 3.1), which
have completely disappeared from view in this plot.

apart from the arbitrary additive constant which we here choose so that the
potential vanishes at spatial infinity. In the same way we derived (3-13), we find
the potential from a mass distribution in V'

o(z) = -G [ L&) gy (3-24)
v |z — 2|

Since the mass density is always positive, the gravitational potential is always
negative, a direct consequence of the attractive nature of gravity and the nor-
malization to zero potential at infinity.

Even if the mass distribution may jump discontinuously, the gravitational field
will always be continuous (as is evident from fig. 3.3), because of the integration
over the mass distribution in (3-13) or (3-18). The potential is still smoother,
because its definition (3-20) requires it to have a continuous derivative. This is
also borne out by fig. 3.4 which shows the potential of the Earth as a function of
central distance. Almost all traces of the original discontinuities have vanished
from sight.

The gravitational potential may be visualized by means of surfaces of constant
potential, also called equipotential surfaces. The field lines are always orthogonal
to the equipotential surfaces, and if they are plotted with constant potential
difference, the strength of the field will be inversely proportional to the distances
between them. A few equipotential surfaces have been shown in the Earth-Moon
plot in fig. 3.2 on page 42.
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air

Sea

The flat-earth  coordinate
system with the sea level at
z=0.

Asymptotic behavior

For a mass distribution of finite extent, the denominator will for || — oo become
independent of x’, so that

(x) — —G% (3-25)

where M is the total mass, in complete accordance with (3-15). At large distances
the potential of a body thus approaches that of a point mass carrying the total
mass of the body (see however problems 3.14 and 3.15).

The flat Earth limit

For a constant gravitational field g(x) = g, we may take
O(x)=—x-g, - (3-26)

This seems to be at variance with the expression (3-24) and does certainly not
vanish at infinity. Constant gravitational fields should, however, always be un-
derstood as an approximation valid within limited regions of space and time, and
then the difficulty disappears.

For length scales much smaller than the radius of the Earth, the surface of
the sea may be considered to be flat and the gravitational field constant. In a
flat-earth coordinate system with the z-axis vertical and the sea level at z = 0,
we may take g, = (0,0, —go) and find

D =gpz . (3-27)
The gravitational acceleration in the z-direction becomes g, = —0®/0z = —go

and is directed downwards everywhere, as it should.

The spherical case

The potential of a spherical mass distribution can only depend on r = |z|. Using
that V®(r) = (d®(r)/dr) Vr and Vr = x/|x| = e,, we find by comparison
with (3-16)

g(r) = — : (3-28)

Conversely, integrating this from r to co and using that the potential vanishes
at infinity, we obtain

B(r) = /Toog(s) ds = —G[O M) 4| (3-20)

S
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where we have also made use of (3-17). Performing a partial integration we obtain

O(r) = G/TOO M(s)d <i) = —G@ — 447G /TOO sp(s)ds . (3-30)

The final expression is not quite as pretty as (3-17) because of the second term,
which is necessary to secure the continuity of the derivative of ®(r). But outside
the mass distribution the second term vanishes, and the potential becomes as
expected that of a point particle carrying the total mass of the body.

For a planet with constant mass density we obtain from the above expression
and (3-19),

9 3a% —r? r<a
O(r) = —57mGpo | a® : (3-31)
2— r>a
r

One may avoid integrating and instead verify that the potential is continuous at
r = a and that the derivative —d®/dr indeed is identical to (3-19).

3.5 Potential energy

According to the laws of elementary particle mechanics, work is calculated from
the product of a force and the distance it moves a particle. It is important to
make completely clear who does work on whom. When a particle falls freely in a
gravitational field, it is the force of gravity which performs work on the particle
while the particle follows the path of its natural motion and gains kinetic energy.
If we want the particle to follow any other path, we must “by hand” cancel the
force of gravity with an equal and opposite force, and slowly move the particle
along the desired path.

For so-called conservative forces, the work we perform on the particle while
moving it along the path depends only on its end points and not on where the
path goes between the end points. The work we must perform in moving the
particle from a fixed position to any desired point « in space is only a function of
the end point x of the path. This function, V(x), is called the potential energy
of the particle in the point @ because it represents the work that a particle in x
would potentially perform on us, should we move it back to the fixed position.

Gravitational work

Suppose we move a point particle of mass m from position x; to x5 along a
path P in a static field of gravity, g(x). To keep the particle on this path, we
must provide a force —mg to counter gravity. The work performed by us on
the particle while moving it along the curved path is the sum of all the tiny
contributions —mg - d€ from each little path element df, and the total work we
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A path x(s) with s1 < s < s2
running from x1 to x2.

c

A gravitational field line
cannot form a closed path

C.

Place km/s
Earth surface 11.2
Mars surface 5.0
Moon surface 2.4
Sun surface 617.6
Earth orbit 42.1
Moon orbit 14
Neutron star 1 x 10°
Black hole 3 x 10°

Escape velocities from some
places in the solar system,
and a couple of exotic ones.
Notice that escaping from
the orbit of Earth means es-
caping from the solar sys-
tem whereas escaping from
the orbit of the Moon only
gets you free of Earth’s grav-
ity. The neutron star is as-
sumed to have solar mass.

perform becomes a line integral,

B B 2 dz(s)
W = —-/ng -dl=—m /81 g(xz(s)) - I ds . (3-32)

In the last expression the line integral along the path x(s) from x; = x(s1) to
xo = x(s2) has been made explicit by means of a running parameter s varying
in the interval s; < s < s along the path.

Because the field of gravity is the gradient of the gravitational potential, the
line integral may be carried out. Inserting (3-20) we find

W:m/wzvé(m)'dfzm/sz%s(s))ds (3-33)

= mq)(CCQ) — m‘b(a}l) . (3—34)

Since this result is independent of the actual path of the particle, it follows that
the gravitational potential energy of the particle is V() = m®(x), and that the
gravitational potential ®(x) is the potential energy per unit of mass.

No closed loops of gravity

For a closed path, C, which begins in the same point as it ends, the line integral
must vanish

7{ g-de=0 (3-35)
C

because the potential is the same in the end-points of the path.

This result is true for all gradient fields, such as gravity g and the electrostatic
field E. It implies that there can be no closed loops of field lines. For if there
were, the product g - d€ would have the same sign all around the loop, because
the tangent of a field line is everywhere proportional to the field, i.e. d€ ~ g, and
such an integral cannot vanish.

Escape velocity

The total energy of a point particle in @ with velocity v is the sum of its kinetic
energy and its potential energy, %mv2 +m®(x). From elementary mechanics we
know that the total energy is conserved, i.e. constant in time. In other words,
a particle starting in the point g with velocity vy must at all times obey the
equation

1 1
51;2 + &(x) = 51:3 + ®(x0) . (3-36)

Taking x( at infinity, where the potential vanishes, it follows immediately that
in order to escape the grip of gravity with |vg| # 0 from a point & with potential
®, an object at & must be given a velocity that is larger than

Vese = V—20 . (3-37)
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3.5. POTENTIAL ENERGY

Knowing the potential in a point is simply equivalent to knowing the escape
velocity from that point.

A particularly interesting case happens when the potential becomes so deep that
the escape velocity equals or surpasses the velocity of light c. In that case the
body has turned into a black hole. Using the potential of a point mass (3-23) we
find that this happens when the radius a of a spherical mass distribution satisfies

2GM

a <
2

(3-38)

Being a non-relativistic calculation this is of course highly suspect, but acciden-
tally it is exactly the same as the correct condition obtained in general relativity
[4], where the right hand side is called the Schwarzchild radius. For the Earth
the Schwarzchild radius is about a centimeter, and for the Sun three kilometers.
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3. GRAVITY

The strength of gravity for
a two-layer planet with a
dense core.

Problems

3.1 Show that the gravitational field outside a spherical planet may be written

CL2

9(r) = —g905 . (3-39)

where «a is the radius of the planet and go the magnitude of the surface gravity.

3.2 Show that a satellite moving in a circular orbit around a spherical planet has ve-
locity v = /—®, where ® is the gravitational potential in the satellite’s orbit. Calculate
the velocity of a satellite moving at ground level.

3.3 Arthur C. Clarke proposed (Wireless World, October 1945, pages 305-308) that
communication satellites should be put into a circular equatorial orbit with revolution
time equal to Earth’s rotation period, so that the satellites would stay fixed over a point
at equator. Calculate the height of the orbit above the ground, taking also into account
that the Earth circles the Sun in one year.

3.4 A space elevator (fictionalized by Arthur C. Clarke in Fountains of Paradise
(1978)) can be created if it becomes technically feasible to lower a line down to Earth
from a geostationary satellite at height h (see problem 7.5). Assume that the line
is unstretchable and has constant cross section A and constant density p. Calculate
the maximal tension ¢ = —F/A (force per unit of area) in the line. Determine the
numerical value of the ratio of tension to density, o/p, and compare with the tensile
strength (breaking tension) of a known material.

3.5 A comet consisting mainly of ice falls to Earth. a) Estimate the minimum energy
released in the fall per unit of mass. b) Compare with the an estimate of the energy
needed to evaporate the comet.

3.6 A stone is set in free fall from rest through a mine shaft going right through the
center of a planet with constant density. a) Calculate the speed with which the stone
passes the center. b) Calculate the time it takes to fall to the center.

3.7 A planet consists of two layers with constant mass density,

pr T S ai
p(r)=4¢p2 a1<r<a . (3-40)
0 r>a

a) Calculate the strength of gravity and the potential. b) Show that the strength of
gravity at the boundary between the layers is greater than at the surface when
p1—p2 a?

> . 3-41
P2 ai(a+ ar) (3-41)

Verify that this is fulfilled for the Earth.
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3.8 Show by direct integration in a small spherical volume around the singularity in
(3-13) that it gives a finite contribution to the integral.

3.9 Show that the mass density is a scalar field.
3.10 Show that the gravitational field is a vector field.

3.11 Show that gravitational field of a spherical body (3-17) may be derived by inte-
gration of (3-13).

3.12 A spherical planet with mass distribution of the form p(r) = Ar® for r < a. a)
Calculate the gravitational field strength and the potential inside the planet for this
distribution. b) For what values of « is the problem solvable with finite planet mass.
¢) For what value of o does gravity grow stronger towards the center.

3.13 An “exponential star” has a mass density p = pmf””7 where pg is the central
mass density and a is the “radius”. Calculate the gravitational field and potential.

3.14 a) Calculate the gravitational potential and field from a mass distribution shaped
like a very thin line (a model of a cosmic string) of length 2a with uniform mass A per
unit of length. b) Calculate the behaviour of the potential at infinity orthogonally to
the line. ¢) Discuss what happens in the limit of a — co.

3.15 a) Write an expression for the gravitational potential from a mass distribution
shaped like a very thin circular plate of radius a with uniform mass o per unit of area
(a model of the luminous matter of a galaxy). b) Calculate the value of the potential
along the central normal of the plate. ¢) Calculate its form far from the disk. d) What
happens for a — co?

Copyright © 1998-2004, Benny Lautrup Revision 7.7, January 22, 2004



54

3. GRAVITY
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