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Computational fluid
dynamics
Computational fluid dynamics (CFD) is a whole field in its own right [38, 39, 41].
Swift modern computers have to a large extent replaced wind tunnels and wave
tanks for the design of airplanes, ships, cars, bridges, and in fact any human
construction that is meant to operate in a fluid. The same richness of phenomena
which makes analytic solutions to the equations of fluid mechanics difficult to
obtain, also makes these equations hard to handle by direct numerical methods.
Secondary flows, instabilities, vortices of all sizes, and turbulence complicate
matters and may require numerical precision that can be hard to attain. The
infinite speed of sound in incompressible fluids creates its own problems, and on
top of that there are intrinsic approximation errors and instabilities.

As in numeric elastostatics (chapter 14) there is a number of steps that must
be carried out in any simulation. First of all, it is necessary to clarify which equa-
tions one wishes to solve and already there make simplifications to the problem
or class of problems at hand. Secondly, continuous space must be discretized,
and here there is a variety of methods based on finite differences, finite elements,
or finite volumes. Thirdly, a discrete dynamic process must be set up which
guides the initial field configuration towards the desired solution. Most often
this process emulates the time evolution of fluid dynamics itself, as described by
the Navier-Stokes equations. Finally, convergence criteria and error estimates
are needed to monitor and gain confidence in the numerical solutions.

The methods presented in this chapter are applicable to a variety of steady and
unsteady flow problems. Here we shall only compute two-dimensional laminar
flow in a channel of finite length between parallel plates and determine how
it turns into the well-known parabolic Poiseuille profile downstream from the
entrance, and how far the influence of the entrance reaches.
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21.1 Unsteady, incompressible flow

In numeric elastostatics (chapter 14) we were able to set up an artificial dissipative
dynamics, called gradient descent, that guided the displacement field towards a
static solution with minimal elastic energy. This technique cannot be transferred
to computational fluid dynamics, because a solution to the steady-state equations
does not correspond to an extremum of any bounded quantity (problem 21.1).
Instead we shall attempt to copy nature by simulating the complete set of time-
dependent Navier-Stokes equations (18-28). Appealing to the behavior of real
fluids, the natural viscous dissipation built into these equations should hopefully
guide the velocity field towards a steady-state solution.

There is, however, no guarantee — neither from Nature nor from the equations —
that the flow will always settle down and become steady, even when the boundary
conditions are time-independent. We are all too familiar with the unsteady and
sometimes turbulent flow that may spontaneously arise under even the steadiest
of circumstances, as for example a slow river narrowing down or even worse,
coming to a water fall. But this is actually not so bad, because a forced steady-
state solution is completely uninteresting when the real fluid refuses to end up
up in that state. We do, for example, not care much for the Poiseuille solution
(19-21) to pipe flow at a Reynolds number beyond the transition to turbulence,
or for that matter the laminar flow around a sphere in an ideal fluid (section
16.6). If steady flow is desired, one must keep the Reynolds number so low that
there is a chance for it to become established.

Field equations

In order not to complicate matters we shall only consider incompressible fluids
with constant density ρ = ρ0, implying the vanishing of the divergence at all
times,

∇ · v = 0 . (21-1)

The Navier-Stokes equation (18-28) is written as an equation of motion for the
velocity field,

∂v

∂t
= F −∇p̃, (21-2)

with

F = −(v ·∇)v + ν∇2v + g , (21-3)

where ν = η/ρ0 is the kinematic viscosity, and p̃ = p/ρ0 is the ‘kinematic pres-
sure’. For convenience we have also introduced a special symbol F to denote the
local acceleration arising from inertia, viscosity and gravity, but not pressure.
The gravitational field could in principle be included as an effective pressure
p∗ = p + ρ0Φ, although that would obscure the boundary conditions we might
want to impose on the real pressure. In the following we shall simply assume
that the field of gravity is constant.
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Poisson equation for pressure

In incompressible flow the pressure is determined indirectly through the vanishing
of the divergence of the velocity field. Calculating the divergence of both sides
of (21-2), we find

∇2p̃ = ∇ · F . (21-4)

This is the condition which must be fulfilled in order that the velocity field
remains free of divergence at all times. Knowing the velocity field v at a given
time we can calculate the right hand side and solve this equation with suitable
boundary conditions to determine the pressure everywhere in the fluid at that
particular instant of time.

Solutions to the Poisson equation are, however, non-local functions of the
source, basically of the same form as the gravitational potential (3-24). Any
local change in the velocity field at a point x′ is via the Poisson equation above
instantaneously communicated to the pressure at any other point x in the fluid,
albeit damped by the |x− x′|−1-dependence on distance. The non-local changes
in pressure are then communicated back to the velocity field via the Navier-
Stokes equation (21-2). The pressure thus links the velocity field at any instant
of time non-locally to its immediately preceding values, even for infinitesimally
small time intervals. Pressure informs the world at large about the present state
of the incompressible velocity field faster than even gossip could!

Physically, the unpleasant non-local behavior can be traced back to the assump-
tion of absolute incompressibility (21-1), which is just as untenable in the real
world of local interactions as absolute rigidity. So, we have again come up against
a physical limit arising from our simplifying assumptions. As pointed out before,
incompressibility should be viewed as a property of the flow rather than of the
fluid itself. The unavoidable compressibility of real matter will in fact limit the
rate at which pressure changes can propagate through a fluid to the speed of
sound. Nevertheless, such a conclusion does not detract from the practical use-
fulness of the divergence condition (21-1) for ‘normal’ flow speeds well below the
speed of sound.

Boundary conditions

In many fluid dynamics problems, fixed impermeable walls guide the fluid be-
tween openings where it enters and leaves the system. On fixed walls the velocity
field must vanish at all times, because of the impermeability and no-slip condi-
tions which respectively require the normal and tangential components to vanish.
Setting v = 0 on the left hand side of the equation of motion (21-2) we obtain a
boundary condition for pressure, ∇p̃ = F . The same is the case at a fluid inlet,
where the velocity field is fixed to an externally defined constant value, v = v0.
Outlet velocities are usually not controlled externally, and as a boundary condi-
tion on the velocity field one may choose the vanishing of the normal derivative,
(n · ∇)v = 0. Alternatively, the stress vector may be required to vanish, but
that is harder to implement.
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21.2 Temporal discretization

Suppose the current velocity field is v(x, t) and the current pressure field p̃(x, t).
From these fields we may calculate the current acceleration field F (x, t) and
then use the equation of motion (21-2) to move the velocity field forward in time
through a small but finite time step ∆t,

v(x, t + ∆t) = v(x, t) +
(
F (x, t)−∇p̃(x, t)

)
∆t . (21-5)

Taylor expansion of the left hand side shows that the error is O (
∆t2

)
, but less

error-prone higher-order schemes are also possible [39, 38]. Provided the velocity
field is free of divergence and the pressure satisfies (21-4), the new velocity field
obtained from this equation will also be free of divergence.

Divergence suppression

But approximation errors cannot be avoided in any finite step algorithm. Since
the current velocity field may not be perfectly free of divergence, it is more
appropriate to demand that the new velocity field is free of divergence, i.e. ∇ ·
v(x, t + ∆t) = 0. Calculating the divergence of both sides of (21-5) we obtain a
modified Poisson equation for the pressure

∇2p̃ = ∇ · F +
∇ · v
∆t

. (21-6)

The factor 1/∆t amplifies the divergence errors, so that this Poisson equation
will primarily be concerned with correction of divergence errors and only when
they have been suppressed will the acceleration field F gain influence on the
pressure. In practice, the stepping algorithm (21-5) can get into trouble if the
divergence becomes too large. It is for this reason important to secure that the
initial velocity field is reasonably free of divergence, but in a complicated flow
geometry that can in fact be quite hard to attain.

Stability conditions

There are essentially only two possibilities for what can happen to the approx-
imation errors in the course of many time steps. Either the errors will become
systematically larger, in which case the computation goes straight to the land
of meaningless results, or the errors will diminish or at least stay constant and
‘small’, thereby keeping the computation on track. It takes careful mathematical
analysis to determine a precise value for the upper limit to the size of the time
step. The result depends strongly on both the spatial and temporal discretization
(see for example [39, 35]), and may range from zero to infinity depending on the
particular algorithm that is implemented.

Here we shall present an intuitive argument for the stability conditions that
apply to the straight-forward numerical simulation (21-5) on a spatial grid with
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typical coordinate spacings ∆x, ∆y, and ∆z. These conditions may be under-
stood from the physical processes that compete in displacing fluid particles in,
say, the x-direction. One is momentum diffusion due to viscosity which effectively
displaces the particle by

√
ν∆t in a time interval ∆t (see page 333). Another is

advection with velocity vx which displaces the particle a distance |vx|∆t. Finally,
there is the gravitational field which typically displaces the particle by gx∆t2.
Intuitively, it seems reasonable to demand that all these displacements be smaller
than the grid spacing,

√
ν∆t . ∆x , |vx|∆t . ∆x , gx∆t2 . ∆x (21-7)

Taking into account that the maximal velocity provides the most stringent ad-
vective condition, the global condition may be taken to be

∆t . min

(
∆x2

ν
,

∆x

|vx|max

,

√
∆x

gx

)
, (21-8)

and similarly for the other coordinate directions. In practice trial-and-error may
be used to determine where in the neighborhood of the smallest of these limits
instability actually sets in.

The diffusive condition is most restrictive for large viscosity, the advective for
high velocities, and the gravitational in strong gravity. The allowed time step is
generally largest for the coarsest spatial grid, which on the other hand is blind to
finer details of the flow. Thus there is a payoff between the detail desired in the
simulation and its rate of progress. High detail entails slow progress, and thus a
high cost in computer time.

21.3 Spatial discretization

In the discussion of numeric elastostatics we described a method based on finite
differences with errors of only second order in the grid spacings (section 14.2
on page 225). Although it is possible to solve simple flow problems using this
method, most such problems will benefit from a somewhat more sophisticated
treatment. The method of staggered grids to be presented here comes at essen-
tially no cost in computer memory or time, but does complicate matters a bit.
A number of applications of this method are given in [38].

Restriction to two dimensions

For simplicity we shall limit the following discussion to two-dimensional flow in
the xy-plane, as exemplified by the flow in a channel between parallel plates
(section 19.2 on page 351). The restriction to two dimensions still leaves ample
room for interesting applications. Generalization to three dimensions is straight-
forward.
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Two-dimensionality is taken to mean that the fields can only depend on x
and y and that vz = 0. The equations of motion now simplify to

∂vx

∂t
= Fx −∇xp̃ ,

∂vy

∂t
= Fy −∇yp̃ , (21-9)

with

Fx = −vx∇xvx − vy∇yvx + ν
(∇2

x +∇2
y

)
vx + gx , (21-10a)

Fy = −vx∇xvy − vy∇yvy + ν
(∇2

x +∇2
y

)
vy + gy , (21-10b)

and the divergence condition becomes

∇xvx +∇yvy = 0 . (21-11)

The stresses may of course be calculated, but are not as important here as in nu-
meric elastostatics, because boundary conditions most often are specified directly
in terms of the velocities.

Midpoint differences

The main objection to the central difference ∇̂xf(x) defined in (14-4) is that it
spans twice the fixed interval ∆x around the central point x to which it ‘be-
longs’. As was remarked there, this opens for ‘leapfrog’ or ‘flipflop’ instabilities
in which neighboring grid points behave quite differently. The problem becomes
particularly acute in the interplay between the equations of motion and the in-
stantaneous Poisson equation for pressure.

-

6

r r r r r r r r

BB¶¶L
L
L¶¶L

L
L¶¶L

L
LBB

x

f(x)

The fully drawn zigzag-curve
f(x) between the two straight
lines has constant central
difference (14-4) on the
grid! Such zigzag behavior
is typical of the ‘leapfrog’
errors that may arise when
using the naive central dif-
ferencing scheme of section
14.2.

One way out is to recognize that the difference in field values between two
neighboring grid-points properly ‘belongs’ to the midpoint of the line that con-
nects them. If we denote the coordinates of the points by x ± 1

2∆x the central
difference around the midpoint x,

- xt t×
x x + 1

2
∆xx− 1

2
∆x

The finite difference between
the grid points x ± 1

2
∆x

belongs to the point x.

∇̂xf(x) =
f

(
x + 1

2∆x
)− f

(
x− 1

2∆x
)

∆x
, (21-12)

has errors of only second order in the grid spacing. This is what is really meant
by saying that the difference ‘belongs’ to the midpoint.

But the midpoints between grid points are not themselves part of the grid. We
could of course double the grid and use 1

2∆x as grid-spacing, thereby including
the midpoints, but that would just bring us back to the situation we started
out to correct. Instead we shall think of the midpoint values of fields and their
derivatives as being virtual, meaning that they may arise during a calculation
but are not retained as part of the information kept about the fields on the grid.

Staggered grids

To see how this works out, let us discretize the divergence condition (21-11)
writing it in terms of midpoint differences in the point (x, y)

∇̂xvx(x, y) + ∇̂yvy(x, y) = 0 . (21-13)
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Figure 21.1: Staggered grids. Four rectangular grids with uniform coordinate spacings
∆x and ∆y are shifted with respect to each other by half intervals. Three of the grids
are naturally associated with the fundamental fields: the 00-grid (crosses) carries p, the
01-grid (full circles) carries vx, and the 10-grid (open circles) carries vy. The 11-grid
(asterisks) carries only derivatives of the fundamental fields. The whole grid may be
viewed as as a tiling of the plane with congruent cells of size ∆x × ∆y, numbered by
integers ix and iy, as shown.

Since (x, y) has to be the common midpoint for both coordinate directions, we
should have direct access to vx in

(
x± 1

2∆x, y
)

and vy in
(
x, y ± 1

2∆y
)
, but not

necessarily in (x, y). Repeating this argument throughout space (see fig. 21.1),
we conclude that the grids for the fields vx and vy do not overlap anywhere, but
are systematically shifted, or staggered, with respect to each other.

×s s

c
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�
x, y − 1
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�

�
x, y + 1

2 ∆y
�

�
x − 1

2 ∆x, y
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x + 1
2 ∆x, y

�vxvx

vy
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The grid for vx (full circles)
and the grid for vy (open
circles) do not overlap but
have common midpoints
(crosses) in which the
divergence condition can be
imposed.

In effect we have doubled the grid in both spatial directions, but the new grid
is viewed as composed of four interlaced grids of the original type, each carrying
some of the fields and their derivatives. Systematically, the coordinates of the
four grids may be written

x = x0 + ix∆x + jx
1
2
∆x (21-14a)

y = y0 + iy∆y + jy
1
2
∆y (21-14b)

where ix, iy are integers and jx, jy are binary, taking only the values 0 or 1. The
grid of common midpoints used in calculating the divergence is arbitrarily chosen
to be jx = jy = 0, so that we may denote the four grids by 00, 10, 01, and 11
(marked with different symbols in fig. 21.1). Thus, vx is defined on the 10-grid
and vy on the 01-grid. We shall see below that the pressure p naturally belongs
to the 00-grid, whereas there is no fundamental field associated with the 11-grid,
but only derivatives of the fields (see however problem 21.3).
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- xu u u× ×
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2∆x x + ∆x

f ff∇̂xf ∇̂xf

∇̂2
xf

Figure 21.2: A double derivative is represented by the midpoint difference of the two
neighboring single derivatives, themselves represented by midpoint differences. Conve-
niently, it ends up on the same grid as the field itself.

The four staggered grids create a tiling of the plane with rectangular cells
numbered by ix and iy, each cell containing four grid points numbered by jx

and jy. Generalization of this scheme to three dimensions is straightforward,
though harder to visualize. In three dimensions there will be eight staggered
grids characterized by three integers and three binary variables.

Double differences

A double derivative, say ∇2
x, is particularly simple when represented by midpoint

differences. Combining the two levels of midpoint differencing we obtain (see fig.
21.2)

∇̂2
xf(x) =

f(x + ∆x) + f(x−∆x)− 2f(x)
∆x2

, (21-15)

and because of the symmetry in ∆x the errors are of second order only. Geomet-
rically the two levels of midpoint differences bring the double derivative back to
the point it ‘originated in’, so that both ∇̂2

xvx and ∇̂2
yvx belong to the same grid

as vx (i.e. 10).

Discretized equations of motion

The local acceleration fields Fx and Fy should be discretized on the same grids
as vx and vy (i.e. on 10 and 01) for the equations of motion (21-9) to be fulfilled
with fields and derivatives calculated in the same point.

× ×s

c

c

c

c

vy vy

vy vy

∇xvx∇xvx vx

∗

∗
∇yvx

∇yvx

The differences b∇xvx andb∇yvx in a 10-point (filled
circle) may be found as
averages of the neighboring
values on the 00 and 11-
grids, respectively marked by
crosses and asterisks. The
value of vy on the 10-grid is
obtained by averaging over
all four nearest neighbors on
the 01-grid (open circle).

The double derivatives in the viscous terms present in this respect no prob-
lems, and neither does the gravitational acceleration nor the pressure gradient
which automatically ends up on the right grids. In the inertial term, −vx∇xvx,
there is the problem that ∇̂xvx belongs to the 00-grid and not to the 10-grid as
we would like it to. In order to keep errors to second order one must form the
average of ∇̂xvx over the two neighboring 00-values. Similarly, in the inertial
term, −vy∇yvx, the derivative ∇̂yvx is naturally found on the 11-grid, it must
also be averaged over the two nearest neighbors to get its 10-value. The worst
case is vy for which the value on the 10-grid is obtained as the average over the
four nearest neighbors on the 01-grid.
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Marking the averaged quantities with brackets we may write the discretized
acceleration fields in the form (see problem 21.4 for the explicit expressions)

Fx = −vx

〈
∇̂xvx

〉
− 〈vy〉

〈
∇̂yvx

〉
+ ν

(
∇̂2

x + ∇̂2
y

)
vx + gx , (21-16a)

Fy = −〈vx〉
〈
∇̂xvy

〉
− vy

〈
∇̂yvy

〉
+ ν

(
∇̂2

x + ∇̂2
y

)
vy + gy . (21-16b)

It must be remarked that there is more than one way of calculating the inertial
terms, even if errors are required to be of second order only.

Finally, the discretized equations of motion (21-5) become

vx(x, y, t + ∆t) = vx(x, y, t) +
(
Fx(x, y, t)− ∇̂xp̃(x, y, t)

)
∆t , (21-17a)

vy(x, y, t + ∆t) = vy(x, y, t) +
(
Fy(x, y, t)− ∇̂yp̃(x, y, t)

)
∆t , (21-17b)

to be evaluated on the 10 and 01-grids, respectively.

Solving the discrete Poisson equation

During an iteration cycle the accelerations (21-16) are calculated from the current
values of the discrete fields at time t, and afterwards the corresponding pressure
at time t is calculated by solving the discretized version of the Poisson equation
(21-6),

(
∇̂2

x + ∇̂2
y

)
p̃ = ∇̂xFx + ∇̂yFy +

∇̂xvx + ∇̂yvy

∆t
. (21-18)

The solution to this equation may be found by means of relaxation methods, for
example gradient descent (see section 14.1 on page 224), in which the pressure
p̃(x, y, t) undergoes successive changes of the form

δp̃ = ε
((
∇̂2

x + ∇̂2
y

)
p̃− s

)
, (21-19)

where ε > 0 the step size and s(x, y, t) is the source (the right hand side of
(21-18)). The relaxation algorithm converges towards a solution to ∇2p̃ = s for
sufficiently small ε because it descends along the steepest downwards gradient
towards the unique minimum of a quadratic ‘energy’-function (see problem 21.2).

Denoting the n’th approximation to the solution by p̃n(x, y, t) and replacing
the derivatives by differences, the discretized relaxation process may be written
explicitly as

p̃n+1(x, y, t) = p̃n(x, y, t) + ε
((
∇̂2

x + ∇̂2
y

)
p̃n(x, y, t)− s(x, y, t)

)
. (21-20)

Starting with some field configuration p̃0(x, y, t) and imposing boundary condi-
tions after each step, this process will eventually lead to the desired solution,
p̃(x, y, t). The problem is, however, that simple gradient descent is slow, too slow
in fact to be applied inside every time step. Conjugate gradient descent [35, p.
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420] offers considerable speed-up by calculating the optimal step-size directly,
but as it turns out there are still faster methods.

From the double difference operator (21-15) we see that the coefficient of p̃n in
(21-20) is 1− 2ε(1/∆x2 +1/∆y2), and this suggests the following reparametriza-
tion of the step-size

ε =
ω

2

(
1

∆x2
+

1
∆y2

)−1

, (21-21)

where ω is the dimensionless convergence parameter. This choice allows a precise
definition of what is meant by underrelaxation (ω < 1) and overrelaxation (ω >
1). Straightforward gradient descent, in which the new field (p̃n+1) is calculated
all over the grid before replacing the old (p̃n), only converges when underrelaxed.

In successive overrelaxation or SOR (see [39, p. 231] and [38, p. 35]), the
new value p̃n+1(x, y, t) in a grid point replaces the old value p̃n(x, y, t) as soon as
it is calculated during a sweep of the grid. The method converges for 1 < ω < 2
and in practice the best value for ω may be located by trial-and-error, usually
not far below the upper limit, say ω = 1.7 − 1.9. Since this algorithm sweeps
sequentially through the grid, one should be aware that it may create small
asymmetry errors in an otherwise symmetric situation. But fast it is, on small
grids often converging in just a few iterations, after an initial phase has passed.

21.4 Channel entrance flow

A simple and — from the look of it — well-behaved problem concerns the steady
flow pattern in a pipe or channel of width d in the vicinity of the entrance.
Directly at the entrance, the flow is thought to be uniform with a flat velocity
distribution which downstream smoothly turns into the characteristic parabolic
Poiseuille shape. The typical distance for this to happen is the so-called entrance
length, L′.

Sketch of the expected shape
of the velocity profile at var-
ious distances downstream
from the entrance.

Momentum diffusion due to viscosity (page 333) tends to iron out all velocity
gradients unless they are maintained by external forces. Near the entrance to
the channel where the fluid speed is uniformly U , the velocity gradients and
stresses on the sides are very large but soften progressively as the fluid moves
downstream. The action of viscosity slows the fluid down near the sides of the
channel, and since the volume flux must be the same everywhere in the channel,
it has to speed up in the center.

Estimates

We have previously seen (page 333) that the diffusive momentum spread in a
time interval t has a typical (90%) range of δ ≈ 3

√
νt and reaches the middle of

the channel from both sides for 3
√

νt ≈ d/2, or t ≈ 0.03 d2/ν. Multiplying with
the velocity U we obtain an estimate for the entrance length, L′ ≈ 0.03 Ud2/ν,
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and introducing the Reynolds number Re = Ud/ν, we get

L′

d
≈ k Re , (21-22)

with k ≈ 0.03. For Re ≈ 100 which is squarely in the laminar region, the
entrance length is thus estimated to be about 3 times the channel width, and
about 60 times for Re ≈ 2000. In the turbulent regime the entrance length
on the contrary decreases with growing Reynolds number (as Re−1/4) [?]. The
influence of the entrance is always expected to be noticeable at least for a length
of the same size as the channel width d. For smaller values of the Reynolds
number, say for kRe . 1, we consequently expect that L′/d becomes a fixed
constant, independent of the Reynolds number.

In the present numerical simulation we shall attempt to verify the linear
growth with Reynolds number in the laminar regime and determine the magni-
tude of the coefficient k as well as the constant value of L′/d for k Re . 1.

Boundary conditions

For simplicity we shall only consider a channel between parallel plates, so that
we may apply the two-dimensional formalism of the preceding section. At the
western entrance to the channel, x = 0, the velocity field is uniform vx = U with
no cross flow, vy = 0. The exit flow at x = L is determined by the dynamics,
and we shall just assume that the flow has stabilized in this region with longitu-
dinally constant velocities, ∇xvx = ∇xvy = 0, as in ideal Poiseuille flow. On the
impermeable southern and northern walls of the channel we must of course have
vy = 0, together with the no-slip condition, vx = 0. In velocity-driven flow, the
boundary conditions on pressure follow from the velocity conditions, and will be
discussed below.

vx = vy = 0

vx = vy = 0

vx = U
vy = 0

∇xvx = 0
∇xvy = 0

Boundary conditions for
channel flow.

Initial data

The equations of motion must be supplied with initial data that fulfill the spatial
boundary conditions and the condition of vanishing divergence. This is not nearly
as simple as it sounds, even if there is great freedom in the choice of initial data
and even if the final steady state is supposed to be independent of this choice.
The problem becomes particularly acute if the boundaries are of irregular shape
which they will always be in any realistic fluid flow problem.

Here we shall choose the initial velocity and pressure fields (at t = 0) to be

vx = U , vy = 0 , p̃ = 0 (21-23)

everywhere inside the channel. This certainly fulfills the divergence condition, but
has a discontinuous jump on the sides of the channel due to the no-slip boundary
conditions. The initial fields also fulfill the Poisson equation for pressure (21-6).
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Figure 21.3: A rectangular region (fully drawn) is discretized using staggered grids,
here with Nx = 5 and Ny = 3. Boundary conditions necessitate one layer of data
outside the region on all sides, requiring 7× 5 basic cells. The velocity vx is defined on
the 10-points (filled circles), vy on the 01-points (open circles) and the pressure ep on
the 00-points (crosses).

The grid

The rectangular region of size L × d is discretized using staggered grids with
coordinate intervals ∆x = L/Nx and ∆y = d/Ny, where Nx and Ny are integers.
This requires an array of (Nx + 2) × (Ny + 2) basic cells to cover the region
of interest. In a computer program, any field value belonging to a basic cell is
represented by an array, f(x, y) ↔ f [ix, iy], indexed by the cell indices. At the
‘eastern’ and ‘northern’ borders only half the cell data is needed, as indicated in
fig. 21.3.

The discrete boundary conditions have to reflect that not all field values
are known precisely on the border. At the entrance, the vx-condition remains
vx = U because this field is known on the border, but the vy-condition must be
implemented as 〈vy〉 = 0, where the average is over the nearest points on both
sides of the border. On the northern and southern walls, the roles are reversed,
and we have 〈vx〉 = 0 and vy = 0. At the eastern exit, the condition ∇xvy = 0
become ∇̂xvy = 0. Since there is no data on vx east of the border, the condition
∇̂xvx = 0 can only be approximatively implemented as a backwards difference,
∇̂−x vx = 0.

s

s

∗

∗

∗

×

×

×

×

c

c

c

c

c

c

vx

vx

vy vy

On the western boundary the
value of the velocity vx may
be implemented directly,
whereas the boundary value
of the velocity vy is calcu-
lated as an average over the
two nearest neighbors on
both sides.

General theory of the Poisson equation tells us that we either need to know
the pressure itself or its normal derivative on the boundary. Since at all times
vx = U on the western border, the time-step equation (21-17) implies that ∇̂xp̃ =
Fx. The value of Fx on the western boundary (obtained from (21-16)) requires
knowledge of vx further to the west, data that is not available on the grid. As
it turns out, we do in fact not need to know Fx on the border. To see this, the
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discretized Poisson equation (21-18) is written as

∇̂x

(
∇̂xp̃− Fx

)
+ ∇̂y

(
∇̂yp̃− Fy

)
=
∇̂xvx + ∇̂yvy

∆t
. (21-24)

Since ∇̂xp̃ = Fx on the border, the boundary value of ∇̂xp̃ − Fx is always zero
wherever it appears in the first term, independently of the boundary value of Fx.
Thus, the value of Fx at the fluid inlet never appears in the Poisson equation and
has therefore no influence on the solution. In practice, it is convenient to choose
the boundary value Fx = 0, and correspondingly ∇̂xp̃ = 0.

s

s

s

∗

∗

×

×

×

×

×

×

c

c

c

c

Fx
ep ep

On the western boundary
the normal difference of the

pressure b∇xep is determined
by Fx.

On the solid walls y = 0, d, similar arguments lead to ∇̂yp̃ = 0. Finally,
at x = L we only know that ∇̂xvx = 0 and consequently ∇̂2

xp̃ = ∇̂xFx from
the equation of motion (21-17). Again it follows from analysis of the Poisson
equation that the actual boundary value of Fx cannot influence the solution. In
this case one may either choose the pressure to be constant, 〈p̃〉 = 0, or better
require Fx = 0 and ∇̂xp̃ = 0 at the exit.

Summarizing, the discrete boundary conditions are taken to be

vx = U , 〈vy〉 = 0 , ∇̂xp̃ = 0 , for x = 0 , (21-25a)

∇̂xvx = 0 , ∇̂xvy = 0 , ∇̂xp̃ = 0 , for x = L , (21-25b)

〈vx〉 = 0 , vy = 0 , ∇̂yp̃ = 0 , for y = 0, d . (21-25c)

In the second line the difference ∇̂xvx actually belongs to the points inside the
channel with x = L−∆x/2.

Monitoring the process

The most important quantity to monitor is the divergence which ideally should
vanish. A convenient parameter is

χ =

√ ∑
(∇̂xvx + ∇̂yvy)2∑

(∇̂xvx)2 + (∇̂yvy)2
(21-26)

where the sum runs over all internal grid points. It is dimensionless, independent
of the grid for Nx, Ny → ∞, and measures how well the two differences cancel
each other in the divergence.

The convergence of the Poisson relaxation process (21-20) may be monitored
by a similar parameter

χ′ = ∆t

√√√√
∑

((∇̂2
x + ∇̂2

y)p̃− s)2
∑

(∇̂xvx)2 + (∇̂yvy)2
, (21-27)

because this quantity is a dimensionless estimate of the average of the future
divergence, ∇ · v(t + ∆t) = −(∇2p̃− s)∆t.

Copyright c© 1998–2004, Benny Lautrup Revision 7.7, January 22, 2004



406 21. COMPUTATIONAL FLUID DYNAMICS

Iteration cycle

The grid arrays for all the fields, vx[ix, iy], vy[ix, iy], p̃[ix, iy], Fx[ix, iy], and
Fy[ix, iy] are first cleared to zero, and then the velocity is initialized to vx[ix, iy] =
U for ix = 0, . . . , Nx and iy = 1, . . . , Ny.

Assuming that we have obtained a current set of discrete fields at time t, the
following iteration cycle produces a new set of fields at t + ∆t:

1. Calculate the new velocities vx and vy at time t + ∆t from (21-17) in all
internal points (i.e. not on the boundary). Explicitly the internal grid
points are given by ix = 1, . . . , Nx − 1 and iy = 1, . . . , Ny for vx, and
ix = 1, . . . , Nx and iy = 1, . . . , Ny − 1 for vy.

2. Use the boundary conditions (21-25) to determine boundary values of the
velocities. Explicitly they become

vx[0, iy] = U , vx[Nx, iy] = vx[Nx − 1, iy] , iy = 1, . . . , Ny

vy[0, iy] = −vy[1, iy] , vy[Nx + 1, iy] = vy[Nx, iy] , iy = 1, . . . , Ny − 1
vx[ix, 0] = −vx[ix, 1] , vx[ix, Ny + 1] = −vx[ix, Ny] , ix = 0, . . . , Nx

vy[ix, 0] = 0 , vy[ix, Ny] = 0 , ix = 0, . . . , Nx + 1

Notice the care that is necessary in the specifications of index ranges.

3. Calculate the new acceleration fields, Fx and Fy, in all internal points
(with the same index ranges as for the velocities) from (21-16) using the
new velocity fields. The boundary values of the accelerations remain zero.

4. Calculate the source of the Poisson equation (21-18) from the new fields in
all internal points.

5. Solve the Poisson equation iteratively by means of the following subcycle

(a) Apply the boundary conditions to the pressure. Explicitly they are

p̃[0, iy] = p̃[1, iy] , p̃[Nx + 1, iy] = p̃[Nx, iy] , iy = 1, . . . , Ny

p̃[ix, 0] = p̃[ix, 1] , p̃[ix, Ny + 1] = p̃[ix, Ny] , ix = 0, . . . , Nx + 1

(b) Calculate the new pressure in all internal points using successive over-
relaxation (SOR).

(c) Repeat until the desired precision (χ′) or the iteration limit are
reached.

6. Repeat until the required time or iteration limits are reached.

At chosen intervals the grid arrays may be displayed graphically or written out
to a file for later treatment.
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Figure 21.4: Transformation of the steady velocity profile from the initial square shape
to the parabolic Poiseuille shape (dashed) downstream from the entrance. The Reynolds
number is chosen to be Re = 100, the channel length L = 10 and width d = 1, and the
curves are separated by ∆x = 1/Nx (with Nx = 40) in the interval 0 ≤ x ≤ L/2.

Results

We shall fix the mass scale by choosing unit density ρ0 = 1, the length scale
by choosing unit plate distance d = 1, and the time scale by setting the entry
velocity U = 1. With these units the only parameter left in the problem are the
(now dimensionless) kinematic viscosity ν and the (also dimensionless) length L
of the channel. The Reynolds number is, for example, nothing but the reciprocal
viscosity, Re = 1/ν. Here we shall mainly present results for Re = 100. In view
of the estimate (21-22) which predicts the entrance length to be 3 in this case,
we choose L = 10. For Re & 20 the length is chosen to be L = Re/10 whereas
for Re . 20 it is chosen to be L = 2, because the entrance length is expected to
be constant. The grid dimensions are everywhere chosen to be Nx = Ny = 40.

In fig. 21.5 (left) the time evolution of the exit velocity is plotted together
with the rise of the velocity in the channel. Allowing for maximally 100 SOR
iterations, the process converges to χ′ = 1% in about 50 time steps, corresponding
to t = 0.3. It reaches 95% of the Poiseuille maximal velocity 1.5U in 400 time
steps corresponding to t = 2.48. The same is the case for the downstream rise
of the velocity (fig. 21.5 right) which reaches 95% of its maximum at x = 2.34.
The downstream evolution of the velocity profile towards the parabolic Poiseuille
shape is shown in fig. 21.4. In fig. 21.6 (left) the pressure in the middle of the
channel is plotted as a function of x, and it also reaches the Poiseuille form with
constant gradient for x ≈ 2.5.

Finally, in fig. 21.6 (right) the entrance length, defined as the point where
vx has reached 95% of maximum, has been plotted as a function of Reynolds
number. It is remarkable that the same program with the identical convergence
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Figure 21.5: The graph on the left shows the rise of the exit velocity vx(L, d/2, t) as
a function of time, whereas the graph on the right shows the steady state velocity along
the middle of the channel vx(x, d/2) as a function of x. The Reynolds number is 100.
Both curves approach the Poiseuille maximal velocity of 1.5 times the average velocity.

parameters covers a range of Reynolds numbers from nearly 0 to 5000. Below
Re = 1 the entrance length becomes constant, L′ = 0.43d, and this makes sense
because the influence of the entrance must always be noticeable at a distance
compared to the channel width. At high Reynolds numbers (Re & 200) the
linearity of the estimate (21-22) is confirmed and we obtain k = 0.0197 in good
agreement with the rough estimate. There seems to be no sign of turbulence for
Reynolds number between 2000 and 5000, but that could be due to the boundary
conditions that impose too much smoothness of the velocity fields at the exit.
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Figure 21.6: The pressure is shown on the left as a function of distance x from the
entrance. Its gradient becomes constant at about x = 2.5. The (95%) entrance length
is plotted as a function of Reynolds number on the right. The dashed line corresponds
to L′/d = k Re with k = 0.0197. For Re . 10 the curve approaches the constant value
0.43.
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Problems

∗ 21.1 Show that it is not possible to find an integrated quantity F for which the
equation for incompressible steady flow (19-4) corresponds to an extremum. Hint:
show that there is no integral F for which the variation is of the form

δF =

Z
[(v ·r)v − νr2v +rp/ρ0] · δv dV (21-28)

(which vanishes for all v satisfying (19-4)).

21.2 Show that the Poisson equation

r2q = s (21-29)

is the minimum of the quadratic ‘energy’ function

E =

Z
V

�
1

2
(rq(x))2 + q(x)q(x)

�
dV , (21-30)

under suitable boundary conditions. Use this result to devise a gradient descent algo-
rithm towards the minimum. What is the discrete form of the ‘energy’?

21.3 Indicate in fig. 21.1 which staggered grids naturally carry the various stress
components, σxx, σyy, and σxy.

21.4 Verify that the various averages in Fx in terms of the grid arrays becomeDb∇xvx

E
[ix, iy] =

vx[ix + 1, iy]− vx[ix − 1, y]

2∆x

〈vy〉 [ix, iy] =
vy[ix, iy] + vy[ix + 1, iy] + vy[ix, iy − 1] + vy[ix + 1, iy − 1]

4Db∇yvx

E
[ix, iy] =

vx[ix, iy + 1]− vx[ix, y − 1]

2∆y

And in Fy

〈vx〉 [ix, iy] =
vx[ix, iy] + vx[ix − 1, iy] + vx[ix, iy + 1] + vx[ix − 1, iy + 1]

4Db∇xvy

E
[ix, iy] =

vy[ix + 1, iy]− vy[ix − 1, y]

2∆xDb∇yvy

E
[ix, iy] =

vy[ix, iy + 1]− vy[ix, y − 1]

2∆y
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