(e) The stretch is

$$
\begin{aligned}
s+v t-x & =r s+\frac{v}{\omega} \sin \omega t+(1-r) s \cos \omega t \\
& =r s+(1-r) s \frac{\cos (\omega t-\alpha)}{\cos \alpha}
\end{aligned}
$$

The minimum stretch is $s(r-(1-r) / \cos \alpha)$ for $\omega t=\pi+\alpha$. For the minimum stretch to be positive, one must require that $r>(1-r) / \cos \alpha$, or

$$
\frac{v^{2}}{s^{2} \omega^{2}}<(1-r)(2 r-1)
$$

This inequality can only be fulfilled for $r>1 / 2$.
(f) When the block stops the stretch is $s_{0}=s(r-(1-r) \cos 3 \alpha / \cos \alpha)$. The stretch grows to $s_{0}+v \Delta t$ a time Δt after the body stops. The body starts to move again when the stretch is s, or $v \Delta t=s-s_{0}$. If this is negative, the body never stops.
9.8 Writing out the 6 terms of the determinant, the characteristic equation becomes $\operatorname{det}[\boldsymbol{\sigma}-\lambda \mathbf{1}]=-\lambda^{3}+I_{1} \lambda^{2}-I_{2} \lambda+I_{3}$. An asymmetric stress tensor also has the invariant $I_{4}=\sum_{i j} \sigma_{i j}\left(\sigma_{i j}-\sigma_{j i}\right)$ which vanishes for a symmetric stress tensor.

10 Strain

10.3 We must solve

$$
\begin{aligned}
& \nabla_{x} u_{x}=\nabla_{y} u_{y}=\nabla_{z} u_{z}=0 \\
& \nabla_{y} u_{z}+\nabla_{z} u_{y}=\nabla_{z} u_{x}+\nabla_{z} u_{z}=\nabla_{x} u_{y}+\nabla_{y} u_{x}=0
\end{aligned}
$$

From the first we get that u_{x} can only depend on y and z, and for the second derivatives we get

$$
\begin{aligned}
& \nabla_{y}^{2} u_{x}=-\nabla_{y} \nabla_{x} u_{y}=-\nabla_{x} \nabla_{y} u_{y}=0 \\
& \nabla_{z}^{2} u_{x}=-\nabla_{z} \nabla_{x} u_{z}=-\nabla_{x} \nabla_{z} u_{z}=0 \\
& \nabla_{y} \nabla_{z} u_{x}=-\nabla_{y} \nabla_{x} u_{z}=-\nabla_{x} \nabla_{y} u_{z}=\nabla_{x} \nabla_{z} u_{y}=\nabla_{z} \nabla_{x} u_{y}=-\nabla_{z} \nabla_{y} u_{x}
\end{aligned}
$$

From the last equation we get $\nabla_{y} \nabla_{z} u_{x}=0$. Consequently, we must have $u_{x}=A+$ $D y+E z$ and similar results for u_{y} and u_{z}. The vanishing of the shear strains relates some of the constants.
10.4 The strain gradients become

$$
\left\{\nabla_{j} u_{i}\right\}=\alpha\left(\begin{array}{ccc}
0 & 2 y & 0 \tag{10-A1}\\
y & x & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and are small for $|\alpha| \ll 1 / L$. Cauchy's strain tensor becomes in the same approximation

$$
\left\{u_{i j}\right\}=\alpha\left(\begin{array}{ccc}
0 & \frac{3}{2} y & 0 \tag{10-A2}\\
\frac{3}{2} y & x & 0 \\
0 & 0 & 0
\end{array}\right)
$$

10.5 The eigenvalue equation becomes $\lambda^{2}-x \lambda-\frac{9}{4} y^{2}=0$, and has the solution $\lambda=\frac{1}{2}\left(x \pm \sqrt{x^{2}+9 y^{2}}\right)$. The corresponding (unnormalized) eigenvectors are ($3 y, x \pm$ $\left.\sqrt{x^{2}+9 y^{2}}, 0\right)$ and $(0,0,1)$.
10.6 Successive needle transformations

$$
a_{i}^{\prime \prime}=\sum_{j}\left(\delta_{i j}+\nabla_{j}^{\prime} u_{i}^{\prime}\right) a_{j}^{\prime}=\sum_{j k}\left(\delta_{i j}+\nabla_{j}^{\prime} u_{i}^{\prime}\right)\left(\delta_{j k}+\nabla_{k} u_{j}\right) a_{k} .
$$

Then

$$
\delta_{k m}+2 \widetilde{u}_{k m}=\sum_{i j l}\left(\delta_{i j}+\nabla_{j}^{\prime} u_{i}^{\prime}\right)\left(\delta_{j k}+\nabla_{k} u_{j}\right)\left(\delta_{i l}+\nabla_{l}^{\prime} u_{i}^{\prime}\right)\left(\delta_{l m}+\nabla_{m} u_{l}\right),
$$

and finally

$$
\widetilde{u}_{k m}=u_{k m}+\sum_{j l} u_{j l}^{\prime}\left(\delta_{j k}+\nabla_{k} u_{j}\right)\left(\delta_{l m}+\nabla_{m} u_{l}\right) .
$$

$10.10 \quad \kappa^{3}-1$.
10.12

$$
\left\{u_{i j}\right\}=\frac{1}{2}\left(\begin{array}{ccc}
2 A+A^{2}+C^{2} & (A-B+2) C & 0 \\
(A-B+2) C & 2 B+C^{2}+B^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

10.13 Use the general transformation (10-34) and write the condition for vanishing strain as

$$
\begin{equation*}
\sum_{k} F_{i k} F_{j k}=\sum_{k} F_{k i} F_{k j}=\delta_{i j} \tag{10-A3}
\end{equation*}
$$

which shows that \mathbf{F} is everywhere an orthogonal matrix. Differentiating after x_{l} we get

$$
\begin{equation*}
\sum_{k} \frac{\partial F_{i k}}{\partial x_{l}} F_{j k}+\sum_{k} F_{i k} \frac{\partial F_{j k}}{\partial x_{l}}=0 \tag{10-A4}
\end{equation*}
$$

or after multiplying with $F_{j m}$ and summing

$$
\begin{equation*}
\frac{\partial F_{i m}}{\partial x_{l}}=-\sum_{j k} F_{i k} F_{j m} \frac{\partial F_{j k}}{\partial x_{l}} \tag{10-A5}
\end{equation*}
$$

Now we use that

$$
\begin{equation*}
\frac{\partial F_{j k}}{\partial x_{l}}=\frac{\partial^{2} x_{j}^{\prime}}{\partial x_{k} \partial x_{l}}=\frac{\partial F_{j l}}{\partial x_{k}} \tag{10-A6}
\end{equation*}
$$

and by repeated applications of the rules we find

$$
\begin{aligned}
\frac{\partial F_{i m}}{\partial x_{l}} & =-\sum_{j k} F_{i k} F_{j m} \frac{\partial F_{j l}}{\partial x_{k}}=\sum_{j k} F_{i k} F_{j l} \frac{\partial F_{j m}}{\partial x_{k}} \\
& =\sum_{j k} F_{i k} F_{j l} \frac{\partial F_{j k}}{\partial x_{m}}=-\sum_{j k} F_{i k} F_{j k} \frac{\partial F_{j l}}{\partial x_{m}} \\
& =-\frac{\partial F_{i l}}{\partial x_{m}}=-\frac{\partial F_{i m}}{\partial x_{l}}
\end{aligned}
$$

