7.8 Write
$$f(r)(3\cos^2\theta - 1) = \frac{f(r)}{r^2}(2z^2 - x^2 - y^2)$$
 and use $\nabla^2(uv) = u\nabla^2 v + v\nabla^2 u + 2\nabla u \cdot \nabla v$. Result $g = \frac{d^2f}{dr^2} + \frac{2}{r}\frac{df}{dr} - 6\frac{f}{r^2}$.

8 Surface tension

8.1 The pressure jump across the bubble surface is $\Delta p = 4\alpha/a \approx 20$ Pa. The capillary length is as for massive spheres defined by the length scale where the hydrostatic pressure change inside the bubble matches the pressure jump, $R_c = \sqrt{2\alpha/\rho_0 g_0}$, where ρ_0 is the density of air. Numerically it becomes $R_c = 16$ cm. The bubble radius a = 3 cm is much smaller than this, and the bubble should be quite spherical.

8.2 (a) Put $x = r \cos \phi$ and $y = r \sin \phi$. A circle with radius R and center at z = R has in the rz-plane the equation $R^2 = r^2 + (z - R)^2 \approx r^2 + R^2 - 2zR$ for $r \ll R$, or $z = r^2/2R$. Comparing with the polynomial one finds $1/R = \partial^2 z/\partial r^2 = 2(a\cos^2\phi + b\sin^2\phi + 2c\cos\phi\sin\phi)$. (b) The extrema are determined from the vanishing of $\partial(1/R)/\partial\phi = 2(-(a-b)\sin 2\phi + 2c\cos 2\phi)$, or $\tan 2\phi = (a-b)/2c$. The solutions are $\phi = \phi_0$ and $\phi = \phi_0 + \pi/2$ where $\phi_0 = \frac{1}{2}\arctan[(a-b)/2c]$.

8.3 Expanding to second order around $(x, y, z) = (x_0, 0, z_0)$ we find

$$\Delta z = \alpha \Delta x + \frac{1}{2} \beta \Delta x^2 + \frac{\alpha}{2x_0} y^2 , \qquad (8-A1)$$

where $\Delta z = z - z_0$, $\Delta x = x - x_0$, $\alpha = f'(x_0) = \tan \theta$, and $\beta = f''(x_0)$. Introduce a local coordinate system with coordinates ξ and η in $(x_0, 0, z_0)$

$$\Delta x = \xi \cos \theta + \eta \sin \theta \tag{8-A2}$$

$$\Delta z = -\xi \sin \theta + \eta \cos \theta \tag{8-A3}$$

Substituting and solving for η keeping up to second order terms,

$$\eta = \frac{1}{2}\beta\cos^3\theta\,\xi^2 + \frac{\sin\theta}{2x_0}y^2\tag{8-A4}$$

Hence

$$\frac{1}{R_1} = \frac{\partial^2 \eta}{\partial \xi^2} = \beta \cos^3 \theta , \qquad \qquad \frac{1}{R_2} = \frac{\partial^2 \eta}{\partial y^2} = \frac{\sin \theta}{x_0}$$
(8-A5)

But

$$\beta = \frac{d^2 z}{dx^2} = \frac{d \tan \theta}{dx} = \frac{1}{\cos^2 \theta} \frac{d\theta}{dx} = \frac{1}{\cos^2 \theta} \frac{ds}{dx} \frac{d\theta}{ds} = \frac{1}{\cos^3 \theta} \frac{d\theta}{ds}$$
(8-A6)

proving that $1/R_1 = d\theta/ds$.

9 Stress

9.1 The normal reaction is the weight N and the tangential reaction is $T = \mu N$. The angle is given by $\tan \alpha = T/N = \mu$.

9.2 The kinetic energy of the car is $\mathcal{T} = \frac{1}{2}mv^2$ and the maximal friction without skidding is $\mathcal{F} = \mu_0 m g_0$. Since the force is constant the braking distance is $d_0 = v^2/2\mu_0 g_0 \approx 44 \ m$. Skidding we have $\mathcal{F} = \mu m g_0$, so the distance becomes $d = d_0 \mu_0/\mu \approx 56 \ m$.

9.3 (a) $\sigma = F/NA = 391$ Pa. (b) $\sigma = 80,000$ Pa = 0.8 bar.

9.4 The pressure at the bottom in the middle of the mountain where it is highest is $p \approx \rho g_0 h$ where h is its height. Consequently, the maximal value of h is $\sigma/\rho g_0 = 10$ km. On Mars the maximal height is 27 km.

9.5 The characteristic equation is $-\lambda^3 + 3\tau\lambda^2 = 0$. Eigenvalues $\lambda = 3\tau$ and $\lambda = 0$ (doubly degenerate). Eigenvectors $\mathbf{e}_1 = (1, 1, 1)/\sqrt{3}$, $\mathbf{e}_2 = (-2, 1, 1)/\sqrt{6}$ and $\mathbf{e}_3 = (0, -1, 1)/\sqrt{2}$, or any linear combination of the last two.

 $\mathbf{9.6}$ Let the stress tensor be diagonal in a given coordinate system. Under a small rotation through an angle ϕ

$$x' = x - \phi y \qquad \qquad y' = y + \phi x \qquad (9-A1)$$

we find

$$\sigma'_{yx} = \phi \sigma_{xx} - \phi \sigma_{yy} = \phi (\sigma_{xx} - \sigma_{yy}) \tag{9-A2}$$

Since that has to vanish, we must have $\sigma_{xx} = \sigma_{yy}$ and similarly for the other components.

9.7

- (a) The body starts to move when the elastic force equals the maximal static friction, *i.e.* $ks = \mu_0 mg_0$ or $s = \mu_0 mg_0/k$.
- (b) When the body is at the point x at time t, the actual stretch is s + vt x. The equation of motion becomes

$$m\ddot{x} = k(s + vt - x) - \mu m g_0 \; .$$

- (c) Define $y = x vt s + \mu mg/k = x vt (1 r)s$. Then $m\ddot{y} = -\omega^2 y$ which has the solution $y = A \cos \omega t + B \sin \omega t$. The particular solution follows from the initial conditions $x = \dot{x} = 0$ for t = 0.
- (d) The velocity is

$$\dot{x} = v(1 - \cos \omega t) + (1 - r)s\omega \sin \omega t = 2v \sin^2 \frac{\omega t}{2} + 2(1 - r)s\omega \sin \frac{\omega t}{2} \cos \frac{\omega t}{2} ,$$

which vanishes for the first time after start when

$$\tan\frac{\omega t}{2} = -\frac{(1-r)s\omega}{v}$$

so that $\omega t_0 = 2\pi - 2\alpha$ where

$$\alpha = \arctan \frac{v}{(1-r)s\omega}$$
.

The other possibility is $\sin(\omega t/2) = 0$ happens later, for $\omega t = 2\pi$.