7.8 Write $f(r)\left(3 \cos ^{2} \theta-1\right)=\frac{f(r)}{r^{2}}\left(2 z^{2}-x^{2}-y^{2}\right)$ and use $\boldsymbol{\nabla}^{2}(u v)=u \boldsymbol{\nabla}^{2} v+v \boldsymbol{\nabla}^{2} u+$ $2 \boldsymbol{\nabla} u \cdot \boldsymbol{\nabla} v$. Result $g=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}-6 \frac{f}{r^{2}}$.

8 Surface tension

8.1 The pressure jump across the bubble surface is $\Delta p=4 \alpha / a \approx 20 \mathrm{~Pa}$. The capillary length is as for massive spheres defined by the length scale where the hydrostatic pressure change inside the bubble matches the pressure jump, $R_{c}=\sqrt{2 \alpha / \rho_{0} g_{0}}$, where ρ_{0} is the density of air. Numerically it becomes $R_{c}=16 \mathrm{~cm}$. The bubble radius $a=3 \mathrm{~cm}$ is much smaller than this, and the bubble should be quite spherical.
8.2 (a) Put $x=r \cos \phi$ and $y=r \sin \phi$. A circle with radius R and center at $z=R$ has in the $r z$-plane the equation $R^{2}=r^{2}+(z-R)^{2} \approx r^{2}+R^{2}-2 z R$ for $r \ll R$, or $z=r^{2} / 2 R$. Comparing with the polynomial one finds $1 / R=\partial^{2} z / \partial r^{2}=$ $2\left(a \cos ^{2} \phi+b \sin ^{2} \phi+2 c \cos \phi \sin \phi\right)$. (b) The extrema are determined from the vanishing of $\partial(1 / R) / \partial \phi=2(-(a-b) \sin 2 \phi+2 c \cos 2 \phi)$, or $\tan 2 \phi=(a-b) / 2 c$. The solutions are $\phi=\phi_{0}$ and $\phi=\phi_{0}+\pi / 2$ where $\phi_{0}=\frac{1}{2} \arctan [(a-b) / 2 c]$.
8.3 Expanding to second order around $(x, y, z)=\left(x_{0}, 0, z_{0}\right)$ we find

$$
\begin{equation*}
\Delta z=\alpha \Delta x+\frac{1}{2} \beta \Delta x^{2}+\frac{\alpha}{2 x_{0}} y^{2} \tag{8-A1}
\end{equation*}
$$

where $\Delta z=z-z_{0}, \Delta x=x-x_{0}, \alpha=f^{\prime}\left(x_{0}\right)=\tan \theta$, and $\beta=f^{\prime \prime}\left(x_{0}\right)$. Introduce a local coordinate system with coordinates ξ and η in $\left(x_{0}, 0, z_{0}\right)$

$$
\begin{align*}
\Delta x & =\xi \cos \theta+\eta \sin \theta \tag{8-A2}\\
\Delta z & =-\xi \sin \theta+\eta \cos \theta \tag{8-A3}
\end{align*}
$$

Substituting and solving for η keeping up to second order terms,

$$
\begin{equation*}
\eta=\frac{1}{2} \beta \cos ^{3} \theta \xi^{2}+\frac{\sin \theta}{2 x_{0}} y^{2} \tag{8-A4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{1}{R_{1}}=\frac{\partial^{2} \eta}{\partial \xi^{2}}=\beta \cos ^{3} \theta, \quad \frac{1}{R_{2}}=\frac{\partial^{2} \eta}{\partial y^{2}}=\frac{\sin \theta}{x_{0}} \tag{8-A5}
\end{equation*}
$$

But

$$
\begin{equation*}
\beta=\frac{d^{2} z}{d x^{2}}=\frac{d \tan \theta}{d x}=\frac{1}{\cos ^{2} \theta} \frac{d \theta}{d x}=\frac{1}{\cos ^{2} \theta} \frac{d s}{d x} \frac{d \theta}{d s}=\frac{1}{\cos ^{3} \theta} \frac{d \theta}{d s} \tag{8-A6}
\end{equation*}
$$

proving that $1 / R_{1}=d \theta / d s$.

$9 \quad$ Stress

9.1 The normal reaction is the weight N and the tangential reaction is $T=\mu N$. The angle is given by $\tan \alpha=T / N=\mu$.
9.2 The kinetic energy of the car is $\mathcal{T}=\frac{1}{2} m v^{2}$ and the maximal friction without skidding is $\mathcal{F}=\mu_{0} m g_{0}$. Since the force is constant the braking distance is $d_{0}=$ $v^{2} / 2 \mu_{0} g_{0} \approx 44 m$. Skidding we have $\mathcal{F}=\mu m g_{0}$, so the distance becomes $d=d_{0} \mu_{0} / \mu \approx$ 56 m .
9.3 (a) $\sigma=F / N A=391 \mathrm{~Pa}$. (b) $\sigma=80,000 \mathrm{~Pa}=0.8$ bar.
9.4 The pressure at the bottom in the middle of the mountain where it is highest is $p \approx \rho g_{0} h$ where h is its height. Consequently, the maximal value of h is $\sigma / \rho g_{0}=10 \mathrm{~km}$. On Mars the maximal height is 27 km .
9.5 The characteristic equation is $-\lambda^{3}+3 \tau \lambda^{2}=0$. Eigenvalues $\lambda=3 \tau$ and $\lambda=0$ (doubly degenerate). Eigenvectors $\boldsymbol{e}_{1}=(1,1,1) / \sqrt{3}, \boldsymbol{e}_{2}=(-2,1,1) / \sqrt{6}$ and $\boldsymbol{e}_{3}=$ $(0,-1,1) / \sqrt{2}$, or any linear combination of the last two.
9.6 Let the stress tensor be diagonal in a given coordinate system. Under a small rotation through an angle ϕ

$$
\begin{equation*}
x^{\prime}=x-\phi y \quad y^{\prime}=y+\phi x \tag{9-A1}
\end{equation*}
$$

we find

$$
\begin{equation*}
\sigma_{y x}^{\prime}=\phi \sigma_{x x}-\phi \sigma_{y y}=\phi\left(\sigma_{x x}-\sigma_{y y}\right) \tag{9-A2}
\end{equation*}
$$

Since that has to vanish, we must have $\sigma_{x x}=\sigma_{y y}$ and similarly for the other components.

9.7

(a) The body starts to move when the elastic force equals the maximal static friction, $i . e . k s=\mu_{0} m g_{0}$ or $s=\mu_{0} m g_{0} / k$.
(b) When the body is at the point x at time t, the actual stretch is $s+v t-x$. The equation of motion becomes

$$
m \ddot{x}=k(s+v t-x)-\mu m g_{0} .
$$

(c) Define $y=x-v t-s+\mu m g / k=x-v t-(1-r) s$. Then $m \ddot{y}=-\omega^{2} y$ which has the solution $y=A \cos \omega t+B \sin \omega t$. The particular solution follows from the initial conditions $x=\dot{x}=0$ for $t=0$.
(d) The velocity is

$$
\dot{x}=v(1-\cos \omega t)+(1-r) s \omega \sin \omega t=2 v \sin ^{2} \frac{\omega t}{2}+2(1-r) s \omega \sin \frac{\omega t}{2} \cos \frac{\omega t}{2}
$$

which vanishes for the first time after start when

$$
\tan \frac{\omega t}{2}=-\frac{(1-r) s \omega}{v},
$$

so that $\omega t_{0}=2 \pi-2 \alpha$ where

$$
\alpha=\arctan \frac{v}{(1-r) s \omega} .
$$

The other possibility is $\sin (\omega t / 2)=0$ happens later, for $\omega t=2 \pi$.

