(c) Integrate over $z$ to get

$$
\int_{-d}^{0}\left\langle v_{x}^{2}+v_{z}^{2}\right\rangle d z=\int_{-d}^{0} \nabla_{z}\left\langle\Psi v_{z}\right\rangle d z=\left\langle\Psi v_{z}\right\rangle_{z=0}=\frac{1}{2} a c \operatorname{coth} k d a \omega=\frac{1}{2} a^{2} g_{0}
$$

Multiplying with $\frac{1}{2} \rho_{0} A$ we get (22-45).
22.10 The kinetic energy averaged over a period is

$$
\begin{align*}
\langle\mathcal{T}\rangle & =\frac{1}{\tau} \int_{0}^{\tau} \frac{1}{2} m \dot{\boldsymbol{x}}^{2} d t=-\frac{1}{\tau} \int_{0}^{\tau} \frac{1}{2} m \boldsymbol{x} \cdot \ddot{\boldsymbol{x}} d t  \tag{22-A11}\\
& =\frac{1}{2 \tau} \int_{0}^{\tau} \boldsymbol{x} \cdot \frac{\partial \mathcal{V}}{\partial \boldsymbol{x}} d t=\frac{n}{2}\langle\mathcal{V}\rangle \tag{22-A12}
\end{align*}
$$

where we have integrated partially, used the periodicity of the orbit, and Newton's second law.
22.11 Consider a wave rolling in at an angle towards the beach. Since for shallowwater waves we have $c \sim \sqrt{d}$, the phase velocity of the part of a wave farther from the beach is greatest, causing the crests farther out to approach the coastline faster than the crests closer to the beach.
22.12 For $2 \alpha / R=p_{0}$ or $R=2 \alpha / p_{0} \approx 1.5 \mu \mathrm{~m}$.
22.13
(a) The waves cross for $c=c_{g}$ or $k R_{c}=1$, i.e. for $\lambda=\lambda_{c}=1.7 \mathrm{~cm}$ in water. The common velocity is $c=c_{g}=\sqrt{2 g_{0} R_{c}}=23 \mathrm{~cm} / \mathrm{s}$.
(b) The minimum of the phase velocity is obtained by

$$
\begin{equation*}
\frac{d c}{d k}=\frac{1}{2} c^{3} g_{0}\left(-\frac{1}{k^{2}}+R_{c}^{2}\right)=0 \tag{22-A13}
\end{equation*}
$$

which also happens for $k R_{c}=1$.

## 23 Whirls and vortices

23.3 Use that the field is irrotational outside the core of the Rankine vortex.
23.4 a) According to (19-52a), we have for circulating motion,

$$
\begin{equation*}
\frac{1}{\rho_{0}} \frac{d p^{*}}{d r}=\frac{v_{\phi}^{2}}{r} \tag{23-A1}
\end{equation*}
$$

Integrating this equation one gets

$$
\frac{p^{*}}{\rho_{0}}= \begin{cases}-\left(c^{2}-\frac{1}{2} r^{2}\right) \Omega^{2} & 0 \leq r \leq c  \tag{23-A2}\\ -\frac{\Omega^{2} c^{4}}{2 r^{2}} & c \leq r<\infty\end{cases}
$$

b) The surface shape is obtained by requiring the true pressure $p=p^{*}-\rho_{0} g_{0} z$ to be constant for $z=h(r)$, so that

$$
\begin{equation*}
h(r)=L+\frac{p^{*}}{\rho_{0} g_{0}}, \tag{23-A3}
\end{equation*}
$$

where $L$ is the asymptotic height.
c) The depth of the depression is

$$
\begin{equation*}
d=L-h(0)=\frac{\Omega^{2} c^{2}}{g_{0}} \tag{23-A4}
\end{equation*}
$$

d) $\Omega=63 \mathrm{~s}^{-1}$ and $d=4 \mathrm{~cm}$.
23.6 The streamlines are obtained by solving (15-15) in cylindrical coordinates,

$$
\begin{equation*}
r \dot{\phi}=v_{\phi}, \quad \dot{r}=v_{r}, \quad \dot{z}=v_{z} \tag{23-A5}
\end{equation*}
$$

The last two are elementary to integrate with the result

$$
\begin{equation*}
r=r_{0} e^{-t / 2 t_{a}}, \quad z=z_{0} e^{t / t_{a}} \tag{23-A6}
\end{equation*}
$$

which after elimination of $t$ becomes

$$
\begin{equation*}
z=z_{0}\left(\frac{r_{0}}{r}\right)^{2} \tag{23-A7}
\end{equation*}
$$

## 23.8

(a) Insert and verify.
(b) The angular momentum is

$$
\begin{equation*}
\mathcal{L}_{z}=\int_{0}^{\infty} r \rho_{0} v_{\phi}(r, t) 2 \pi r L d r=16 \pi \tau \nu^{2} \rho_{0} L \tag{23-A8}
\end{equation*}
$$

## 23.9

(a) Insert $v_{\phi}$ into (23-6) to obtain

$$
\begin{equation*}
\frac{d^{2} f(\xi)}{d \xi^{2}}+\frac{d f(\xi)}{d \xi}=\frac{t}{F(t)} \frac{d F(t)}{d t} \frac{1}{\xi} f(\xi) \tag{23-A9}
\end{equation*}
$$

(b) The $t$-dependent factor must be a constant, $-\alpha$, so $F(t) \sim t^{-\alpha}$.
(c) Insert and verify that the series expansion satisfies

$$
\begin{equation*}
\frac{d^{2} f(\xi)}{d \xi^{2}}+\frac{d f(\xi)}{d \xi}+\frac{\alpha}{\xi} f(\xi)=0 \tag{23-A10}
\end{equation*}
$$

The expansion is a confluent hypergeometric function.
(d) For integer $\alpha$ the functions are Laguerre polynomials multiplied with $e^{-\xi}$. The first few such solutions are

$$
\begin{align*}
f_{0}(\xi) & =1-e^{-\xi}  \tag{23-A11a}\\
f_{1}(\xi) & =\xi e^{-\xi}  \tag{23-A11b}\\
f_{2}(\xi) & =\xi(1-\xi / 2) e^{-\xi} \tag{23-A11c}
\end{align*}
$$

The Oseen-Lamb vortex corresponds to $f_{0}(\xi)$ and the Taylor vortex (problem $23.8)$ to $f_{1}(\xi)$.


Family of self-similar vortex shapes $f_{\alpha}(\xi)$ with $\alpha$ in steps of 0.5 from 0 (top) to 3 (bottom).

