19.20 The volume of fluid carried along by the flow between cylinders of length L per unit of time becomes

$$
\begin{equation*}
Q=\int_{a}^{b} v_{\phi}(r) L d r=\frac{1}{2} L a^{2} \Omega\left(\frac{b^{2}}{b^{2}-a^{2}} \log \frac{b^{2}}{a^{2}}-1\right) . \tag{19-A5}
\end{equation*}
$$

This is equivalent to the volumetric discharge rate for pipe flow, although no fluid is actually discharged here.
19.21 Per unit of length the kinetic energy is

$$
\frac{T}{L}=\int_{0}^{r} v_{\phi}^{2} 2 \pi r d r=2 \pi \frac{a^{4} b^{2} \Omega^{2}}{b^{2}-a^{2}}\left(\frac{1}{4} \frac{a^{2}}{b^{2}}-\frac{3}{4}+\frac{b^{2}}{b^{2}-a^{2}} \log \frac{b}{a}\right)
$$

19.22 In cylindrical coordinates assume that the flow field is radial, $\boldsymbol{v}=v_{r}(r) \boldsymbol{e}_{r}$ outside the pipe. Volume conservation implies that $v_{r} 2 \pi r L$ is the same for all r. Hence $v_{r}(r)=Q / 2 \pi r$ where Q is the volume flow through the pipe wall per unit of pipe length.
19.25 a) $Q=a d L \Omega / 2 \approx 470 \mathrm{~cm}^{3} / \mathrm{s}$. b) $\mathcal{E}=2 \pi \eta \Omega^{2} a^{3} L / d \approx 10 \mathrm{~J} / \mathrm{s}$.
19.26 Using (18-18) we obtain

$$
\begin{aligned}
P & =-2 \eta \int_{V} \sum_{i j} v_{i j}^{2}=-\eta \int_{V}\left(\nabla_{r} v_{z}\right)^{2} \\
& =-\eta \int_{0}^{a}\left(-\frac{G}{2 \eta} r\right)^{2} 2 \pi r L d r=-\frac{\pi G^{2} a^{4} L}{8 \eta} \\
& =-Q G L
\end{aligned}
$$

20 Creeping flow

20.2 Let \boldsymbol{v} be the velocity field in the rest frame of the body. The total work of the body on the fluid is in the rest frame of the asymptotic fluid

$$
\begin{equation*}
\oint_{\mathcal{S}} \sum_{i j}\left(v_{i}-U_{i}\right)\left(-\sigma_{i j}\right) d S_{j}=\sum_{i} U_{i} \oint_{\mathcal{S}} \sum_{j} \sigma_{i j} d S_{j}=\boldsymbol{U} \cdot \mathcal{F}=U \mathcal{D} \tag{20-A1}
\end{equation*}
$$

where it is used that $v_{i}=0$ at the surface of the body.
20.3 a) Follows from linearity of the field equations and the pressure independence of the boundary conditions.
b) The field equations are

$$
\begin{align*}
\nabla^{2} R_{i j} & =\nabla_{i} Q_{j} \tag{20-A2}\\
\sum_{i} \nabla_{i} R_{i j} & =0 \tag{20-A3}
\end{align*}
$$

The boundary conditions are for $|\boldsymbol{x}| \rightarrow \infty$

$$
\begin{align*}
R_{i j}(\boldsymbol{x}) & \rightarrow \delta_{i j} \tag{20-A4}\\
Q_{i}(\boldsymbol{x}) & \rightarrow 0 \tag{20-A5}
\end{align*}
$$

At the surface of the body the velocity field must vanish, $\boldsymbol{n} \cdot \mathbf{R}(\boldsymbol{x})=0$.
c) The stress tensor is

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+\eta\left(\nabla_{i} v_{j}+\nabla_{j} v_{i}\right)=\eta \sum_{k} \tau_{i j k} U_{k} \tag{20-A6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{i j k}=-\delta_{i j} Q_{k}+\nabla_{i} R_{j k}+\nabla_{j} R_{i k} \tag{20-A7}
\end{equation*}
$$

The total force on the body with surface \mathcal{S} is

$$
\begin{equation*}
\mathcal{F}_{i}=\oint_{\mathcal{S}} \sum_{j} \sigma_{i j} d S_{j}=\eta \sum_{k} U_{k} \oint_{\mathcal{S}} \tau_{i j k} d S_{j} \tag{20-A8}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
S_{i k}=\oint_{\mathcal{S}} \tau_{i j k} d S_{j} \tag{20-A9}
\end{equation*}
$$

may be understood as a form factor, such that

$$
\begin{equation*}
\mathcal{F}_{i}=\eta \sum_{k} S_{i k} U_{k} \tag{20-A10}
\end{equation*}
$$

20.4 a) The discharge is at $\theta=\pi / 2$

$$
Q=\int_{a}^{b}\left(-v_{\theta}\right) 2 \pi r d r=\pi(b-a)^{2}\left(1+\frac{a}{2 b}\right) U
$$

b) The ratio is

$$
\frac{Q}{\pi\left(b^{2}-a^{2}\right) U}=\frac{b-a}{a+b}\left(1+\frac{a}{2 b}\right)
$$

c) The ratio vanishes because of the no-slip condition which requires the velocity to vanish at the surface of the sphere.

20.6

(a) Write $\boldsymbol{x}=r \boldsymbol{e}_{r}$ and use (C-15) to obtain

$$
\frac{d \boldsymbol{x}}{d t}=\frac{d r}{d t} \boldsymbol{e}_{r}+r \frac{d \theta}{d t} \boldsymbol{e}_{\theta}
$$

(b) Combine the differential equations to obtain

$$
\frac{d \theta}{d r}=-\frac{B}{A} \tan \theta
$$

which is a solvable first order equation. The integral over r is carried out by means of partial fractions

$$
\frac{B}{A}=\frac{r^{2}+\frac{1}{4} a r+\frac{1}{4} a^{2}}{r(r-a)\left(r+\frac{1}{2} a\right)}=-\frac{1}{2 r}+\frac{1}{r-a}+\frac{1}{2 r+a}
$$

(c) For $r \rightarrow \infty$ we get $d \rightarrow r \sin \theta=\sqrt{x^{2}+y^{2}}$.
(d) Put $\theta=\frac{\pi}{2}$ to get $d=(r-a) \sqrt{1+a / 2 r}$ where r is the point of closest approach.

