Then we put

$$
\begin{align*}
\boldsymbol{u}_{L} & =\boldsymbol{\nabla} \psi \tag{13-A2}\\
\boldsymbol{u}_{T} & =\boldsymbol{u}-\boldsymbol{u}_{L} \tag{13-A3}
\end{align*}
$$

Clearly, $\boldsymbol{\nabla} \times \boldsymbol{u}_{L}=\mathbf{0}$ and $\boldsymbol{\nabla} \cdot \boldsymbol{u}_{T}=0$.

14 Numeric elastostatics

14.3 We assume a linear combination

$$
\nabla_{x}^{+} f(x)=a f(x)+b f(x+\Delta x)+c f(x+2 \Delta x)
$$

Expand to second order and require the coefficient of $f(x)$ and $\nabla_{x}^{2} f(x)$ to vanish and the coefficient of $\nabla_{x} f(x)$ to be 1 , to get

$$
\begin{aligned}
a+b+c & =0 \\
\frac{1}{2} b+2 c & =0 \\
b+2 c & =1
\end{aligned}
$$

The solution is $a=-3 / 2, b=2$, and $c=-1 / 2$.

15 Matter in motion

15.1 In a small interval of time, δt, a material particle with a small volume $d V$ is displaced to fill out another volume $d V^{\prime}$, the size of which may be calculated from the Jacobi determinant of the infinitesimal mapping (15-2)

$$
\frac{d V^{\prime}}{d V}=\left|\frac{\partial \boldsymbol{x}^{\prime}}{\partial \boldsymbol{x}}\right|=\left|\begin{array}{ccc}
\frac{\partial x^{\prime}}{\partial x} & \frac{\partial y^{\prime}}{\partial x} & \frac{\partial z^{\prime}}{\partial x} \\
\frac{\partial x^{\prime}}{\partial y^{\prime}} & \frac{\partial y^{\prime}}{\partial y} & \frac{\partial z^{\prime}}{\partial y} \\
\frac{\partial x^{\prime}}{\partial z} & \frac{\partial y^{\prime}}{\partial z} & \frac{\partial z^{\prime}}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
1+\nabla_{x} v_{x} \delta t & \nabla_{x} v_{y} \delta t & \nabla_{x} v_{z} \delta t \\
\nabla_{y} v_{x} \delta t & 1+\nabla_{y} v_{y} \delta t & \nabla_{y} v_{z} \delta t \\
\nabla_{z} v_{x} \delta t & \nabla_{z} v_{y} \delta t & 1+\nabla_{x} v_{z} \delta t
\end{array}\right| .
$$

To first order in δt, only the diagonal elements contribute to the determinant, and we find

$$
\begin{align*}
\frac{d V^{\prime}}{d V} & \approx\left(1+\nabla_{x} v_{x} \delta t\right)\left(1+\nabla_{y} v_{y} \delta t\right)\left(1+\nabla_{z} v_{z} \delta t\right) \tag{15-A1}\\
& \approx 1+\nabla_{x} v_{x} \delta t+\nabla_{y} v_{y} \delta t+\nabla_{z} v_{z} \delta t=1+\boldsymbol{\nabla} \cdot \boldsymbol{v} \delta t \tag{15-A2}
\end{align*}
$$

The change in volume is $\delta(d V)=d V^{\prime}-d V$, and after dividing by δt the rate of change of such a comoving volume becomes

$$
\begin{equation*}
\frac{D(d V)}{D t}=\boldsymbol{\nabla} \cdot \boldsymbol{v} d V \tag{15-A3}
\end{equation*}
$$

15.4 Leonardo's law tells us that $A v=A_{1} v_{1}+A_{2} v_{2}$. The ratio of the rates in the two pipes is $A_{1} v_{1} / A_{2} v_{2}=2$, and since $A_{1} / A_{2}=9 / 4$ we get $v_{1} / v_{2}=8 / 9$. The total rate is $A v=3 A_{2} v_{2}$ so that $v_{2} / v=4 / 3$ and $v_{1} / v=32 / 27$.
15.5 Define the vector field

$$
\begin{equation*}
\boldsymbol{f}^{\prime}(\boldsymbol{v})=\frac{\partial f(\boldsymbol{v})}{\partial \boldsymbol{v}} \tag{15-A4}
\end{equation*}
$$

Then

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}=-\frac{3}{t} \rho-\frac{M_{0}}{t^{3}} \frac{\boldsymbol{x}}{t^{2}} \cdot \boldsymbol{f}^{\prime}\left(\frac{\boldsymbol{x}}{t}\right), \tag{15-A5}\\
& \rho \boldsymbol{\nabla} \cdot \boldsymbol{v}=\frac{3}{t} \rho \tag{15-A6}\\
& (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \rho=\frac{M_{0}}{t^{3}} \frac{\boldsymbol{x}}{t^{2}} \cdot \boldsymbol{f}^{\prime}\left(\frac{\boldsymbol{x}}{t}\right) \tag{15-A7}
\end{align*}
$$

The sum of the three right hand sides vanishes which means that the equation of continuity (15-27) is satisfied.
15.6 Differentiating through all the time-dependence, one gets

$$
\frac{d \rho(\boldsymbol{x}(t), t)}{d t}=\frac{d \boldsymbol{x}(t)}{d t} \cdot \frac{\partial \rho(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}+\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}=\boldsymbol{v}(\boldsymbol{x}, t) \cdot \nabla \rho(\boldsymbol{x}, t)+\frac{\partial \rho(\boldsymbol{x}, t)}{\partial t}=\frac{D \rho}{D t} .
$$

15.7 a) Let Q be the total volume of flow in the stream. Then the average velocity in the x-direction is $v(x)=Q / h(x) d$. b) The inertial acceleration is estimated as $w=(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \approx v d v / d x$. c) Constant acceleration implies $v \approx \sqrt{2 w x}$ for a suitable choice of origin and orientation of the x-axis. Hence $h(x) \sim 1 / \sqrt{x}$ is the shape of the curve.
15.8 a) Let Q be the total volume of flow in the stream. Then the average velocity in the x-direction is $v(x)=Q / \pi a(x)^{2}$. b) The inertial acceleration is estimated as $w=(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \approx v d v / d x$. c) Constant acceleration implies $v \approx \sqrt{2 w x}$ for a suitable choice of origin and orientation of the x-axis. Hence $a(x) \sim 1 / x^{1 / 4}$ is the shape of the tube.
15.9 The local transport equations for mass and momentum are

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v}) & =J \\
\frac{\partial(\rho \boldsymbol{v})}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v} \boldsymbol{v}) & =\rho \boldsymbol{g}
\end{aligned}
$$

such that the cosmological equations become

$$
\begin{align*}
\dot{\rho} & =-3 H \rho+J \tag{15-A8}\\
\dot{H}+H^{2} & =J \frac{H}{\rho}-\frac{4 \pi}{3} G \rho \tag{15-A9}
\end{align*}
$$

Clearly there is a solution

$$
\begin{align*}
J & =3 H \rho \tag{15-A10}\\
\rho & =\frac{9 H^{2}}{4 \pi G}=6 \rho_{c} \tag{15-A11}
\end{align*}
$$

From $H=1.78 \times 10^{18} \mathrm{~s}^{-1}$ one gets $\rho=3.4 \times 10^{-26} \mathrm{~kg} / \mathrm{m}^{3}$ and $J=1.82 \times 10^{-43} \mathrm{~kg} / \mathrm{m}^{3} \mathrm{~s}$, corresponding to the creation of 3 protons per cubic-kilometer per year. Not much!

