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Then we put

uL =rψ (13-A2)

uT = u− uL (13-A3)

Clearly, r× uL = 0 and r · uT = 0.

14 Numeric elastostatics

14.3 We assume a linear combination

∇+
x f(x) = af(x) + bf(x + ∆x) + cf(x + 2∆x)

Expand to second order and require the coefficient of f(x) and ∇2
xf(x) to vanish and

the coefficient of ∇xf(x) to be 1, to get

a + b + c = 0

1

2
b + 2c = 0

b + 2c = 1

The solution is a = −3/2, b = 2, and c = −1/2.

15 Matter in motion

15.1 In a small interval of time,δt, a material particle with a small volume dV is
displaced to fill out another volume dV ′, the size of which may be calculated from the
Jacobi determinant of the infinitesimal mapping (15-2)

dV ′

dV
=

����∂x′∂x

���� =
�������

∂x′
∂x

∂y′
∂x

∂z′
∂x

∂x′
∂y

∂y′
∂y

∂z′
∂y

∂x′
∂z

∂y′
∂z

∂z′
∂z

������� =
������1 +∇xvxδt ∇xvyδt ∇xvzδt
∇yvxδt 1 +∇yvyδt ∇yvzδt
∇zvxδt ∇zvyδt 1 +∇xvzδt

������ .
To first order in δt, only the diagonal elements contribute to the determinant, and we
find

dV ′

dV
≈ (1 +∇xvxδt)(1 +∇yvyδt)(1 +∇zvzδt) (15-A1)

≈ 1 +∇xvxδt +∇yvyδt +∇zvzδt = 1 +r · v δt (15-A2)

The change in volume is δ(dV ) = dV ′− dV , and after dividing by δt the rate of change
of such a comoving volume becomes

D(dV )

Dt
=r · v dV . (15-A3)

15.4 Leonardo’s law tells us that Av = A1v1 + A2v2. The ratio of the rates in the
two pipes is A1v1/A2v2 = 2, and since A1/A2 = 9/4 we get v1/v2 = 8/9. The total rate
is Av = 3A2v2 so that v2/v = 4/3 and v1/v = 32/27.
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15.5 Define the vector field

f ′(v) =
∂f(v)

∂v
. (15-A4)

Then

∂ρ

∂t
= −3

t
ρ− M0

t3
x
t2
· f ′

�x
t

�
, (15-A5)

ρr · v =
3

t
ρ , (15-A6)

(v ·r)ρ =
M0

t3
x
t2
· f ′

�x
t

�
. (15-A7)

The sum of the three right hand sides vanishes which means that the equation of
continuity (15-27) is satisfied.

15.6 Differentiating through all the time-dependence, one gets

dρ(x(t), t)

dt
=

dx(t)

dt
· ∂ρ(x, t)

∂x
+

∂ρ(x, t)

∂t
= v(x, t) · ∇ρ(x, t) +

∂ρ(x, t)

∂t
=

Dρ

Dt
.

15.7 a) Let Q be the total volume of flow in the stream. Then the average velocity
in the x-direction is v(x) = Q/h(x)d. b) The inertial acceleration is estimated as
w = (v ·r)v ≈ vdv/dx. c) Constant acceleration implies v ≈ √

2wx for a suitable
choice of origin and orientation of the x-axis. Hence h(x) ∼ 1/

√
x is the shape of the

curve.

15.8 a) Let Q be the total volume of flow in the stream. Then the average velocity
in the x-direction is v(x) = Q/πa(x)2. b) The inertial acceleration is estimated as
w = (v ·r)v ≈ vdv/dx. c) Constant acceleration implies v ≈ √

2wx for a suitable
choice of origin and orientation of the x-axis. Hence a(x) ∼ 1/x1/4 is the shape of the
tube.

15.9 The local transport equations for mass and momentum are

∂ρ

∂t
+r · (ρv) = J

∂(ρv)
∂t

+r · (ρvv) = ρg

such that the cosmological equations become

ρ̇ = −3Hρ + J (15-A8)

Ḣ + H2 = J
H

ρ
− 4π

3
Gρ (15-A9)

Clearly there is a solution

J = 3Hρ (15-A10)

ρ =
9H2

4πG
= 6ρc (15-A11)

From H = 1.78×1018 s−1 one gets ρ = 3.4×10−26 kg/m3 and J = 1.82×10−43 kg/m3s,
corresponding to the creation of 3 protons per cubic-kilometer per year. Not much!
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