Consequently, all the derivatives of $F_{i m}$ must vanish, so that it is a constant orthogonal matrix, i.e. a rotation (excluding reflections).

10.16

$$
\left\{u_{i j}\right\}=\frac{1}{2}\left(\begin{array}{ccc}
34 & -9 & 0 \\
-9 & 73 & 17 \\
0 & 17 & 29
\end{array}\right)
$$

10.17 Use that the determinant of a product of matrices is the product of the determinant to get $\operatorname{det} \delta_{i j}+2 u_{i j}=\operatorname{det}\left|\delta_{i j}+\nabla_{j} u_{i}\right|^{2}$.

11 Elasticity

11.1 Expanding to first order in $r-a$, we have for r close to a

$$
f(r)=f(a)+(r-a) f^{\prime}(a) .
$$

With $\Delta F=f(r)-f(a), \Delta L=r-a$, and $k=f^{\prime}(a)$ this is Hooke's law.
11.2 b) $\omega^{2}=4 \sin ^{2} \frac{k}{2}$.
11.6 The absolute minimum of the coefficient of the first term happens for $\alpha=1 / 3$.

11.7

(a) Follows from the symmetry of $\sigma_{i j}$ and $u_{i j}$.
(b) In order for $\delta u_{i j} \Delta \sigma_{i j}=\delta u_{i j} \lambda_{i j k l} u_{k l}$ to become a total differential $\delta\left(\frac{1}{2} \lambda_{i j k l} u_{i j} u_{k l}\right)$, the 9×9-matrix $\lambda_{(i j)(k l)}$ must be symmetric.

12 Solids at rest

12.4 We use that $u_{z z}$ is linear in x and y, of the form

$$
u_{z z}=\nabla_{z} u_{z}=\alpha-\beta_{x} x-\beta_{y} y
$$

and consequently

$$
u_{z}=a_{z}-\phi_{y} x+\phi_{x} y+\alpha z-\beta_{x} x z-\beta_{y} y z
$$

where the coefficients are all constants. Using this result, we find $\nabla_{x} u_{x}=\nabla_{y} u_{y}=$ $-\nu\left(\alpha-\beta_{x} x-\beta_{y} y\right)$. Integrating and demanding that $u_{x y}=u_{x z}=u_{z y}=0$, we obtain the most general form

$$
\begin{align*}
& u_{x}=a_{x}-\phi_{z} y+\phi_{y} z-\alpha \nu x+\frac{1}{2} \beta_{x}\left(z^{2}-\nu\left(x^{2}-y^{2}\right)\right)-\beta_{y} \nu x y \tag{12-A1a}\\
& u_{y}=a_{y}+\phi_{z} x-\phi_{x} z-\alpha \nu y+\frac{1}{2} \beta_{y}\left(z^{2}-\nu\left(y^{2}-x^{2}\right)\right)-\beta_{x} \nu x y \tag{12-A1b}\\
& u_{z}=a_{z}-\phi_{y} x+\phi_{x} y+\alpha z-\beta_{x} x z-\beta_{y} y z \tag{12-A1c}
\end{align*}
$$

Here (a_{x}, a_{y}, a_{z}) represents simple translations of the body, and ($\phi_{x}, \phi_{y}, \phi_{z}$) simple rotations around the coordinate axes. The coefficient α corresponds to a uniform stretching, and only (β_{x}, β_{y}) represents bending into the coordinate directions.
12.5 Same general solution as for the pressurized tube but with a and b interchanged

$$
\begin{aligned}
& A=-\frac{1}{2(\lambda+\mu)} \frac{b^{2}}{b^{2}-a^{2}} P=-(1+\sigma)(1-2 \sigma) \frac{b^{2}}{b^{2}-a^{2}} \frac{P}{E}, \\
& B=-\frac{1}{2 \mu} \frac{a^{2} b^{2}}{b^{2}-a^{2}} P=-(1+\sigma) \frac{a^{2} b^{2}}{b^{2}-a^{2}} \frac{P}{E} .
\end{aligned}
$$

The rest is straightforward.
12.6 a) The centrifugal force density is radial and given by $f_{r}=\rho_{0} \Omega^{2} r$. b) The general solution to $(12-46)$ is

$$
\begin{equation*}
u_{r}=A r+\frac{B}{r}-\frac{1}{8} \frac{\rho_{0} \Omega^{2}}{\lambda+2 \mu} r^{3} \tag{12-A2}
\end{equation*}
$$

where A and B are integration constants. Use that u_{r} must be finite for $r=0$ and $\sigma_{r r}=0$ for $r=a$. The final solution becomes

$$
\begin{equation*}
u_{r}=\frac{1}{8} \frac{\rho_{0} \Omega^{2} a^{2}}{\lambda+2 \mu} r\left(3-2 \nu-\frac{r^{2}}{a^{2}}\right) \tag{12-A3}
\end{equation*}
$$

c) The strains are

$$
\begin{equation*}
u_{r r}=\frac{1}{8} \frac{\rho_{0} \Omega^{2} a^{2}}{\lambda+2 \mu}\left(3-2 \nu-3 \frac{r^{2}}{a^{2}}\right), \quad u_{\phi \phi}=\frac{1}{8} \frac{\rho_{0} \Omega^{2} a^{2}}{\lambda+2 \mu}\left(3-2 \nu-\frac{r^{2}}{a^{2}}\right) . \tag{12-A4}
\end{equation*}
$$

The radial strain is positive for $r=0$, vanishes for $r=a \sqrt{1-2 \nu / 3}$, and is negative for $r=a$. d) Breakdown happens for $r=0$ where the extension and tension is maximal.
12.9 The total force is

$$
\begin{equation*}
\mathcal{F}_{z}=\int_{A} \sigma_{z z} d s_{z}=-\frac{E}{R} I_{x} \tag{12-A5}
\end{equation*}
$$

If the area A is symmetric under reflection in the y-axis, then $I_{x}=0$.
12.10 Letting $x \rightarrow x+\alpha$ in (12-20), we get

$$
\begin{aligned}
& u_{x}=\frac{\nu}{2 R} \alpha^{2}+\frac{\nu}{R} \alpha x+\frac{1}{2 R}\left(z^{2}+\nu\left(x^{2}-y^{2}\right)\right), \\
& u_{y}=\quad \frac{\nu}{R} \alpha y+\frac{\nu}{R} x y, \\
& u_{z}=\quad-\frac{1}{R} \alpha z \quad-\frac{1}{R} x z .
\end{aligned}
$$

The first column represents a simple translation and the second a uniform stretching of the form (11-24).

13 Vibrations

13.1 For an arbitrary vector field we first find a solution ψ to the equation

$$
\begin{equation*}
\boldsymbol{\nabla}^{2} \psi=\boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{13-A1}
\end{equation*}
$$

Sketch of strains in the massive rotating cylinder.

