the corners. Since their side length must vary linearly with z from $t=\frac{1}{2} \sqrt{2}$ for $z=0$ to $t=0$ for $z=-\frac{1}{6} \sqrt{3}$, it must be $t=\frac{1}{2} \sqrt{2}+z \sqrt{6}$. The area is thus $A(z)=\frac{1}{4} \sqrt{3}\left(s^{2}-3 t^{2}\right)$ for $-\frac{1}{6} \sqrt{3}<z<0$. One may verify that the two area functions reproduce the volume correctly. The center of buoyancy becomes $z_{B}=-\frac{13}{96} \sqrt{3}$ and the metacenter

$$
\begin{equation*}
z_{M}=z_{B}+\frac{I}{V}=\frac{1}{48} \sqrt{3} \tag{5-A15}
\end{equation*}
$$

Thus the metacenter is above the center of gravity $\left(z_{G}=0\right)$ and the cube floats stably in this configuration.

6 Planets and stars

6.1 Put $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} p(\boldsymbol{x})$ where \boldsymbol{a} is an arbitrary constant vector.

6.6 Use (6-15) and (3-28).
6.7 Integrate (6-15) using the field (3-A6), and we find

$$
p(r)=\left\{\begin{array}{cl}
p_{c}-\frac{2}{3} \pi G \rho_{1}^{2} r^{2} & \text { for } r \leq a_{1} \tag{6-A1}\\
p_{c}-\frac{2}{3} \pi G \rho_{1}^{2} a_{1}^{2}-\frac{2}{3} \pi G \rho_{2}^{2}\left(r^{2}-a_{1}^{2}\right) & \\
-G \rho_{0}\left(\rho_{1}-\rho_{2}\right) a_{1}^{3}\left(\frac{1}{a_{1}}-\frac{1}{r}\right) & \text { for } a_{1} \leq r \leq a
\end{array}\right.
$$

Apart from an additive constant and overall normalization, this is exactly the same as the minus the gravitational potential (see problem 6.6 and fig. 3.4). Setting $r=a$, the central pressure becomes

$$
\begin{equation*}
p_{c}=\frac{2}{3} \pi G \rho_{1}^{2} a_{1}^{2}+\frac{2}{3} \pi G \rho_{2}^{2}\left(a^{2}-a_{1}^{2}\right)+\frac{4}{3} \pi G \rho_{2}\left(\rho_{1}-\rho_{2}\right) a_{1}^{3}\left(\frac{1}{a_{1}}-\frac{1}{a}\right) \tag{6-A2}
\end{equation*}
$$

Again the total mass may be used to establish a relation between the densities and the radii, $M_{0}=\frac{4}{3} \pi\left(a_{1}^{3} \rho_{1}+\left(a^{3}-a_{1}^{3}\right) \rho_{2}\right)$.

6.11

a) From (??) $\rho \sim r^{\alpha /(\gamma-1)}$ and from (6-21) one gets $\alpha-2=\frac{\alpha}{\gamma-1}$, which implies $\alpha=2 \frac{\gamma-1}{\gamma-2}$. Thus $\alpha<0$ for $1<\gamma<2$.
b) $M \sim \int r^{2} \rho d r \sim r^{3+\alpha /(\gamma-1)} \sim r^{(3 \gamma-4) /(\gamma-2)}$. The exponent is positive for $1<$ $\gamma<\frac{3}{4}$.
c) $E \sim \int M^{2} / r^{2} d r \sim r^{(5 \gamma-6) /(\gamma-2)}$. The exponent is positive for $1<\gamma<\frac{6}{5}$.
6.12 Use the approximation (6-22).

6.13

a) Insert into (6-28).
b) $p \sim\left(1+s^{2} / 3\right)^{-3}, \rho \sim\left(1+s^{2} / 3\right)^{-5 / 2}$.
c) $M \sim \int \rho r^{2} d r \sim \int\left(1+s^{2} / 3\right)^{-5 / 2} s^{2} d s \approx \int s^{-3} d s$ converges for $s \rightarrow \infty$.
6.14 The gravitational energy is $-E / M \approx 25,000 \mathrm{~J} / \mathrm{g}$. Heating and melting iron takes only about $8,000 \mathrm{~J} / \mathrm{g}$. The Earth definitely melted while its bulk accumulated.

7 Hydrostatic shapes

7.1 The centrifugal acceleration is $a \Omega^{2}=g_{0}$ so that $\Omega=\sqrt{g_{0} / a}$. The potential is $\Phi=-\frac{1}{2} a^{2} \Omega^{2}$ at the cylinder. Use (3-37) to get $v_{\text {esc }}=\sqrt{a g_{0}} \approx 316 \mathrm{~m} / \mathrm{s}$ for $a=10 \mathrm{~km}$.
7.3 a) The extra pressure $\Delta p(\boldsymbol{x})$ created by the field of the spheres is determined by

$$
\begin{equation*}
w\left(p_{0}+\Delta p\right)+\Phi_{1}+\Phi_{2}=w\left(p_{0}\right) \tag{7-A1}
\end{equation*}
$$

with the potentials of the two spheres

$$
\begin{equation*}
\Phi_{1}=-\frac{g_{1} a^{2}}{\sqrt{x^{2}+y^{2}+z^{2}}}, \quad \Phi_{2}=-\frac{g_{1} a^{2}}{\sqrt{x^{2}+y^{2}+(D-z)^{2}}} \tag{7-A2}
\end{equation*}
$$

where $g_{1}=\frac{4 \pi}{3} \rho_{1} G a$ is the surface gravity of the spheres. Expanding to first order in Δp, we obtain

$$
\begin{equation*}
\Delta p=-\rho_{0}\left(\Phi_{1}+\Phi_{2}\right) \tag{7-A3}
\end{equation*}
$$

where $\rho_{0}=\rho\left(p_{0}\right)$ is the density in the absence of the spheres. At the surface of sphere $1, r=a$, we obtain the extra pressure

$$
\begin{equation*}
\Delta p_{1}=\rho_{0} a g_{1}\left(1+\frac{a}{D}+\left(\frac{a}{D}\right)^{2} \cos \theta\right) \tag{7-A4}
\end{equation*}
$$

where we have expanded to leading non-trivial order in a / D, and where θ is the polar angle of the point at the surface of sphere 1. Integrating over the surface of sphere 1 , we obtain the extra force in the z-direction

$$
\begin{equation*}
\mathcal{F}_{1}=\int_{r=a}\left(-\Delta p_{1}\right) d S_{z}=-2 \pi a^{2} \int_{0}^{\pi} \Delta p_{1}(\theta) \cos \theta \sin \theta d \theta=-\frac{4 \pi}{3} \rho_{0} g_{1} \frac{a^{5}}{D^{2}} \tag{7-A5}
\end{equation*}
$$

which is a repulsion.
b) The gravitational attraction from sphere 2 on sphere 1 is

$$
\begin{equation*}
\mathcal{G}_{z}=\frac{G M^{2}}{D^{2}}=\frac{4 \pi}{3} \rho_{1} g_{1} \frac{a^{5}}{D^{2}} \tag{7-A6}
\end{equation*}
$$

and the ratio becomes $\mathcal{F}_{1} / \mathcal{G}_{1}=-\rho_{0} / \rho_{1}$. c) If $\rho_{1}=\rho_{0}$, then the total force becomes $\mathcal{F}_{1}+\mathcal{G}_{1}=0$, as one would expect.
7.4 Let h be the change in sea level due to p. Use constancy of (7-2) in the water close to the surface to get $p_{0} / \rho_{0}=p / \rho_{0}+g_{0} h$, where p_{0} is the pressure far away from the high pressure region. Then $h=-\left(p-p_{0}\right) / \rho_{0} g_{0} \approx-20 \mathrm{~cm}$.

