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Thus the metacenter is above the center of gravity (zG = 0) and the cube floats
stably in this configuration.

6 Planets and stars

6.1 Put g(x) = ap(x) where a is an arbitrary constant vector.

6.6 Use (6-15) and (3-28).

6.7 Integrate (6-15) using the field (3-A6), and we find
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Apart from an additive constant and overall normalization, this is exactly the same as
the minus the gravitational potential (see problem 6.6 and fig. 3.4). Setting r = a, the
central pressure becomes
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Again the total mass may be used to establish a relation between the densities and the
radii, M0 = 4

3
π(a3

1ρ1 + (a3 − a3
1)ρ2).

6.11
a) From (??) ρ ∼ rα/(γ−1) and from (6-21) one gets α − 2 =

α

γ − 1
, which implies

α = 2
γ − 1

γ − 2
. Thus α < 0 for 1 < γ < 2.

b) M ∼ R
r2ρ dr ∼ r3+α/(γ−1) ∼ r(3γ−4)/(γ−2). The exponent is positive for 1 <

γ <
3

4
.

c) E ∼ R M2/r2 dr ∼ r(5γ−6)/(γ−2). The exponent is positive for 1 < γ <
6

5
.

6.12 Use the approximation (6-22).
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6.13
a) Insert into (6-28).

b) p ∼ (1 + s2/3)−3, ρ ∼ (1 + s2/3)−5/2.

c) M ∼ R ρr2 dr ∼ R (1 + s2/3)−5/2s2 ds ≈ R s−3ds converges for s →∞.

6.14 The gravitational energy is −E/M ≈ 25, 000 J/g. Heating and melting iron
takes only about 8, 000 J/g. The Earth definitely melted while its bulk accumulated.

7 Hydrostatic shapes

7.1 The centrifugal acceleration is aΩ2 = g0 so that Ω =
p

g0/a. The potential is
Φ = − 1

2
a2Ω2 at the cylinder. Use (3-37) to get vesc =

√
ag0 ≈ 316 m/s for a = 10 km.

7.3 a) The extra pressure ∆p(x) created by the field of the spheres is determined by

w(p0 + ∆p) + Φ1 + Φ2 = w(p0) , (7-A1)

with the potentials of the two spheres
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where g1 = 4π
3

ρ1Ga is the surface gravity of the spheres. Expanding to first order in
∆p, we obtain

∆p = −ρ0(Φ1 + Φ2) (7-A3)

where ρ0 = ρ(p0) is the density in the absence of the spheres. At the surface of sphere
1, r = a, we obtain the extra pressure
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where we have expanded to leading non-trivial order in a/D, and where θ is the polar
angle of the point at the surface of sphere 1. Integrating over the surface of sphere 1,
we obtain the extra force in the z-direction
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which is a repulsion.
b) The gravitational attraction from sphere 2 on sphere 1 is
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and the ratio becomes F1/G1 = −ρ0/ρ1. c) If ρ1 = ρ0, then the total force becomes
F1 + G1 = 0, as one would expect.

7.4 Let h be the change in sea level due to p. Use constancy of (7-2) in the water
close to the surface to get p0/ρ0 = p/ρ0 + g0h, where p0 is the pressure far away from
the high pressure region. Then h = −(p− p0)/ρ0g0 ≈ −20 cm.


