2.19 Differentiate $(x - y)^2 = (f(x) - f(y))^2$ after x to obtain $x - y = (f(x) - f(y)) \cdot \mathbf{a}(x)$ with $\mathbf{a}(x) = \partial f(x) / \partial x$. Differentiate again after y to obtain $-\mathbf{1} = -\mathbf{a}(y)^\top \cdot \mathbf{a}(x)$. This means that $\mathbf{a}(x)^{-1} = \mathbf{a}(y)^\top$. The left hand side depends only on x and the right hand side only on y which implies that both sides are independent of x and y, *i.e.* the matrix \mathbf{a} is a constant. Integrating $\partial f(x) / \partial x = \mathbf{a}$ one gets $f(x) = \mathbf{a} \cdot x + \mathbf{b}$.

2.20 Let $\mathbf{a}_{z}(\phi)$ be the matrix of the simple rotation (2-40) through an angle ϕ around the z-axis. Then the three Euler angles ϕ , θ and ψ determine any rotation matrix as a product $\mathbf{a}_{z}(\psi) \cdot \mathbf{a}_{y}(\theta) \cdot \mathbf{a}_{z}(\phi)$.

3 Gravity

3.2 The centripetal acceleration in a circular orbit must equal the force of gravity, $v^2/r = GM/r^2$ leading to $v = \sqrt{GM/r} = \sqrt{-\Phi}$. At ground level the velocity becomes $v = v_{\rm esc}/\sqrt{2} = 7.9$ km/s where $v_{\rm esc} = 11.2$ km/s is the escape velocity.

3.3 Earth's true rotation period $T = T_0 * 364/365$ is a bit shorter than $T_0 = 24$ hours because of the orbital motion which adds one full revolution in one year. Taking $v = \Omega r$ where $\Omega = 2\pi/T$ we find from the equality of centripetal acceleration and gravity that

$$r\Omega^2 = g_0 \frac{a^2}{r^2} . \tag{3-A1}$$

which solved for r/a yields

$$\frac{r}{a} = \left(\frac{g_0}{a\Omega^2}\right)^{1/3} \approx 6.613 . \tag{3-A2}$$

The orbit height is $h = r - a \approx 5.613a \approx 35,800$ km.

3.4 At the height z above the ground the force on a small piece dz of the line is

$$d\mathcal{F} = \left(-g_0 \frac{a^2}{(a+z)^2} + (a+z)\Omega^2\right) \rho A \, dz \tag{3-A3}$$

where Ω is the angular velocity in the stationary orbit and the second term represents the centrifugal force. Since this only vanishes for z = h, the total force is maximal at the satellite. Integrating the force from 0 to h, we find the maximal force

$$\mathcal{F} = \int_0^h d\mathcal{F}(z) = \rho Ah\left(-g_0 \frac{a}{a+h} + \Omega^2 \left(a + \frac{1}{2}h\right)\right) . \tag{3-A4}$$

The absolute value of the tension-to-density ratio becomes,

$$\frac{\sigma}{\rho} = h\left(g_0 \frac{a}{a+h} - \Omega^2 \left(a + \frac{1}{2}h\right)\right) \approx 4.8 \times 10^7 \text{ m}^2/\text{s}^2 \tag{3-A5}$$

The tensile strength a Beryllium-Copper alloy of density $\rho = 8230 \text{ kg/m}^3$ can go as high as $\sigma \approx 1.4 \text{ GPa}$, leading to $\sigma/\rho \approx 1.7 \times 10^5 \text{ m}^2/\text{s}^2$, a factor nearly 300 below the required value.

3.7 A small volume is invariant under a rotation dv' = dv and so is the amount of mass contained in it, dm' = dm. By the definition (3-1) we have $dm' = \rho'(\mathbf{x}')dv' = dm = \rho(\mathbf{x})dv$ and from that $\rho'(\mathbf{x}') = \rho(\mathbf{x})$.

3.8 The force on a small volume transforms according to $d\mathbf{F}' = \mathbf{a} \cdot d\mathbf{F}$ whereas the mas element is invariant dm' = dm. By the definition (3-5) we have $d\mathbf{F}' = \mathbf{g}'(\mathbf{x}') dm' = \mathbf{a} \cdot d\mathbf{F} = \mathbf{a} \cdot \mathbf{g}(\mathbf{x}) dm$ and from this $\mathbf{g}'(\mathbf{x}') = \mathbf{a} \cdot \mathbf{g}(\mathbf{x})$.

3.10 Cut out a small sphere $|\mathbf{x}' - \mathbf{x}| \leq a$ around the point \mathbf{x} . Let a be so small that $\rho(\mathbf{x}')$ does not vary appreciably within this sphere. Then we get the contribution to gravity from the small sphere

$$\Delta \boldsymbol{g}(\boldsymbol{x}) = -G \int_{|\boldsymbol{x}'-\boldsymbol{x}| \leq a} \frac{\boldsymbol{x}-\boldsymbol{x}'}{|\boldsymbol{x}-\boldsymbol{x}'|^3} \, \rho(\boldsymbol{x}') \, dv' \approx -G\rho(\boldsymbol{x}) \int_{|\boldsymbol{x}'-\boldsymbol{x}| \leq a} \frac{\boldsymbol{x}-\boldsymbol{x}'}{|\boldsymbol{x}-\boldsymbol{x}'|^3} \, dv' = \boldsymbol{0}$$

The last integral vanishes because of the spherical symmetry (it is a vector with no direction to point in).

3.5

- a) Minimal kinetic energy: $\frac{1}{2}v_{esc}^2 \approx 63 \ (km/s)^2 = 63 \times 10^6 \ J/kg.$
- b) Melting, heating and evaporating ice: $\approx 3 \times 10^6 \text{ J/kg.}$
- **3.6** Energy conservation: $\frac{1}{2}\dot{r}^2 + \Phi(r) = \Phi(a)$. Use (3-31).

a)
$$v_0 = -\dot{r}|_{r=0} = a\sqrt{\frac{4}{3}}\pi\rho_0 G = \sqrt{g_0 a} = 7.9 \text{ km s}^{-1}.$$

b) $t_0 = \int_0^a \frac{dr}{\sqrt{2(\Phi(a) - \Phi(r))}} = \int_0^a \frac{dr}{\sqrt{\frac{4}{3}}\pi\rho_0 G(a^2 - r^2)}} = \frac{\pi a}{2v_0} = 1267 \text{ s}.$

3.11 From (3-17) we get

$$g(r) = -\frac{4}{3}\pi G \begin{cases} r\rho_1 & r \le a_1 \\ \frac{a_1^3}{r^2}\rho_1 + \left(r - \frac{a_1^3}{r^2}\right)\rho_2 & a_1 < r \le a \\ \frac{a_1^3\rho_1 + (a^3 - a_1^3)\rho_2}{r^2} & r > a \end{cases}$$
(3-A6)

and from (3-28)s

$$\Phi(r) = -\frac{2}{3}\pi G \begin{cases} (3a_1^2 - r^2)\rho_1 + 3(a^2 - a_1^2)\rho_2 & r \le a_1 \\ 2\frac{a_1^3}{r}\rho_1 + \left(3a^2 - r^2 - 2\frac{a_1^3}{r}\right)\rho_2 & a_1 \le r \le a \\ 2\frac{a_1^3}{r}\rho_1 + 2\frac{a^3 - a_1^3}{r}\rho_2 & r \ge a \end{cases}$$
(3-A7)

3.12 Using the two-layer model it follows from $|g(a_1)| > |g(a)|$, that $a_1\rho_1 > (a_1^3\rho_1 + (a^3 - a_1^3)\rho_2)/a^2$ which may be rewritten in the form of the inequality (3-43). For the Earth the left hand side becomes 1.42 and the right hand side 1.18, so the inequality is fulfilled.

3.13 a) $g(r) = -4\pi G \frac{A}{3+\alpha} r^{1+\alpha}$, $\Phi(r) = 4\pi G \frac{A}{2+\alpha} \left(\frac{r^{2+\alpha}}{3+\alpha} - a^{2+\alpha} \right)$. b) $\alpha > -3$. c) $-3 < \alpha < -1$.

3.14 Use eq. (3-17). Setting u = r/a one gets

$$M(r) = \int_0^r \rho(s) 4\pi s^2 \, ds = 4\pi\rho_0 \int_0^r e^{-s/a} s^2 \, ds = 4\pi\rho_0 a^3 \left(2 - (2 + 2u + u^2)e^{-u}\right)^{-1} ds$$

Similarly, using (3-30) one finds

$$\int_{r}^{\infty} s\rho(s) \, ds = \rho_0 \int_{r}^{\infty} s e^{-s/a} \, ds = \rho_0 a^2 (1+u) e^{-u}$$

and from this

$$\Phi = -\frac{4\pi G\rho_0 a^3}{r} \left(2 \left(1 - e^{-u}\right) - u e^{-u}\right)$$

3.15 Multiplying (3-13) by $e_r = x/r$ and using (3-16) one gets

$$g(r) = -G \int_{|\boldsymbol{x}'| \le a} \frac{\boldsymbol{x} \cdot (\boldsymbol{x} - \boldsymbol{x}')}{r |\boldsymbol{x} - \boldsymbol{x}'|^3} \rho(\boldsymbol{x}') \, dv'$$

Introducing $s = |\mathbf{x}'|$ and the angle θ between \mathbf{x} and \mathbf{x}' , so that $dv' = 2\pi \sin \theta d\theta s^2 ds$, this becomes

$$g(r) = -2\pi G \int_0^a \rho(s) s^2 ds \int_{-1}^1 d\cos\theta \frac{r - s\cos\theta}{(r^2 + s^2 - 2rs\cos\theta)^{\frac{3}{2}}}$$

Integrating over $u = \cos \theta$ one obtains

$$\int_{-1}^{1} du \frac{r - su}{(r^2 + s^2 - 2rsu)^{\frac{3}{2}}} = -\frac{\partial}{\partial r} \int_{-1}^{1} du \frac{1}{\sqrt{r^2 + s^2 - 2rsu}}$$
$$= \frac{\partial}{\partial r} \left[\frac{\sqrt{r^2 + s^2 - 2rsu}}{rs} \right]_{u=-1}^{1} = \frac{\partial}{\partial r} \frac{|r - s| - (r + s)}{rs}$$
$$= -2\frac{\partial}{\partial r} \begin{cases} \frac{1}{r} & r > s \\ \frac{1}{s} & r < s \end{cases} = \frac{2}{r^2} \theta(r - s)$$

which leads to the desired result (3-17).