2.19 Differentiate $(\boldsymbol{x}-\boldsymbol{y})^{2}=(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))^{2}$ after \boldsymbol{x} to obtain $\boldsymbol{x}-\boldsymbol{y}=(\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y}))$. $\mathbf{a}(\boldsymbol{x})$ with $\mathbf{a}(\boldsymbol{x})=\partial \boldsymbol{f}(\boldsymbol{x}) / \partial \boldsymbol{x}$. Differentiate again after \boldsymbol{y} to obtain $-\mathbf{1}=-\mathbf{a}(\boldsymbol{y})^{\top} \cdot \mathbf{a}(\boldsymbol{x})$. This means that $\mathbf{a}(\boldsymbol{x})^{-1}=\mathbf{a}(\boldsymbol{y})^{\top}$. The left hand side depends only on \boldsymbol{x} and the right hand side only on \boldsymbol{y} which implies that both sides are independent of \boldsymbol{x} and \boldsymbol{y}, i.e. the matrix \mathbf{a} is a constant. Integrating $\partial \boldsymbol{f}(\boldsymbol{x}) / \partial \boldsymbol{x}=\mathbf{a}$ one gets $\boldsymbol{f}(\boldsymbol{x})=\mathbf{a} \cdot \boldsymbol{x}+\boldsymbol{b}$.
2.20 Let $\mathbf{a}_{z}(\phi)$ be the matrix of the simple rotation (2-40) through an angle ϕ around the z-axis. Then the three Euler angles ϕ, θ and ψ determine any rotation matrix as a product $\mathbf{a}_{z}(\psi) \cdot \mathbf{a}_{y}(\theta) \cdot \mathbf{a}_{z}(\phi)$.

3 Gravity

3.2 The centripetal acceleration in a circular orbit must equal the force of gravity, $v^{2} / r=G M / r^{2}$ leading to $v=\sqrt{G M / r}=\sqrt{-\Phi}$. At ground level the velocity becomes $v=v_{\text {esc }} / \sqrt{2}=7.9 \mathrm{~km} / \mathrm{s}$ where $v_{\text {esc }}=11.2 \mathrm{~km} / \mathrm{s}$ is the escape velocity.
3.3 Earth's true rotation period $T=T_{0} * 364 / 365$ is a bit shorter than $T_{0}=24$ hours because of the orbital motion which adds one full revolution in one year. Taking $v=\Omega r$ where $\Omega=2 \pi / T$ we find from the equality of centripetal acceleration and gravity that

$$
\begin{equation*}
r \Omega^{2}=g_{0} \frac{a^{2}}{r^{2}} \tag{3-A1}
\end{equation*}
$$

which solved for r / a yields

$$
\begin{equation*}
\frac{r}{a}=\left(\frac{g_{0}}{a \Omega^{2}}\right)^{1 / 3} \approx 6.613 \tag{3-A2}
\end{equation*}
$$

The orbit height is $h=r-a \approx 5.613 a \approx 35,800 \mathrm{~km}$.
3.4 At the height z above the ground the force on a small piece $d z$ of the line is

$$
\begin{equation*}
d \mathcal{F}=\left(-g_{0} \frac{a^{2}}{(a+z)^{2}}+(a+z) \Omega^{2}\right) \rho A d z \tag{3-A3}
\end{equation*}
$$

where Ω is the angular velocity in the stationary orbit and the second term represents the centrifugal force. Since this only vanishes for $z=h$, the total force is maximal at the satellite. Integrating the force from 0 to h, we find the maximal force

$$
\begin{equation*}
\mathcal{F}=\int_{0}^{h} d \mathcal{F}(z)=\rho A h\left(-g_{0} \frac{a}{a+h}+\Omega^{2}\left(a+\frac{1}{2} h\right)\right) . \tag{3-A4}
\end{equation*}
$$

The absolute value of the tension-to-density ratio becomes,

$$
\begin{equation*}
\frac{\sigma}{\rho}=h\left(g_{0} \frac{a}{a+h}-\Omega^{2}\left(a+\frac{1}{2} h\right)\right) \approx 4.8 \times 10^{7} \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{3-A5}
\end{equation*}
$$

The tensile strength a Beryllium-Copper alloy of density $\rho=8230 \mathrm{~kg} / \mathrm{m}^{3}$ can go as high as $\sigma \approx 1.4 \mathrm{GPa}$, leading to $\sigma / \rho \approx 1.7 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}^{2}$, a factor nearly 300 below the required value.
3.7 A small volume is invariant under a rotation $d v^{\prime}=d v$ and so is the amount of mass contained in it, $d m^{\prime}=d m$. By the definition (3-1) we have $d m^{\prime}=\rho^{\prime}\left(\boldsymbol{x}^{\prime}\right) d v^{\prime}=$ $d m=\rho(\boldsymbol{x}) d v$ and from that $\rho^{\prime}\left(\boldsymbol{x}^{\prime}\right)=\rho(\boldsymbol{x})$.
3.8 The force on a small volume transforms according to $d \boldsymbol{F}^{\prime}=\mathbf{a} \cdot d \boldsymbol{F}$ whereas the mas element is invariant $d m^{\prime}=d m$. By the definition (3-5) we have $d \boldsymbol{F}^{\prime}=\boldsymbol{g}^{\prime}\left(\boldsymbol{x}^{\prime}\right) d m^{\prime}=$ $\mathbf{a} \cdot d \boldsymbol{F}=\mathbf{a} \cdot \boldsymbol{g}(\boldsymbol{x}) d m$ and from this $\boldsymbol{g}^{\prime}\left(\boldsymbol{x}^{\prime}\right)=\mathbf{a} \cdot \boldsymbol{g}(\boldsymbol{x})$.
3.10 Cut out a small sphere $\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right| \leq a$ around the point \boldsymbol{x}. Let a be so small that $\rho\left(\boldsymbol{x}^{\prime}\right)$ does not vary appreciably within this sphere. Then we get the contribution to gravity from the small sphere

$$
\Delta \boldsymbol{g}(\boldsymbol{x})=-G \int_{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right| \leq a} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} \rho\left(\boldsymbol{x}^{\prime}\right) d v^{\prime} \approx-G \rho(\boldsymbol{x}) \int_{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right| \leq a} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} d v^{\prime}=\mathbf{0}
$$

The last integral vanishes because of the spherical symmetry (it is a vector with no direction to point in).

3.5

a) Minimal kinetic energy: $\frac{1}{2} v_{\text {esc }}^{2} \approx 63(\mathrm{~km} / \mathrm{s})^{2}=63 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
b) Melting, heating and evaporating ice: $\approx 3 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
3.6 Energy conservation: $\frac{1}{2} \dot{r}^{2}+\Phi(r)=\Phi(a)$. Use (3-31).
a) $v_{0}=-\left.\dot{r}\right|_{r=0}=a \sqrt{\frac{4}{3} \pi \rho_{0} G}=\sqrt{g_{0} a}=7.9 \mathrm{~km} \mathrm{~s}^{-1}$.
b) $t_{0}=\int_{0}^{a} \frac{d r}{\sqrt{2(\Phi(a)-\Phi(r))}}=\int_{0}^{a} \frac{d r}{\sqrt{\frac{4}{3} \pi \rho_{0} G\left(a^{2}-r^{2}\right)}}=\frac{\pi a}{2 v_{0}}=1267 \mathrm{~s}$.
3.11 From (3-17) we get

$$
g(r)=-\frac{4}{3} \pi G \begin{cases}r \rho_{1} & r \leq a_{1} \tag{3-A6}\\ \frac{a_{1}^{3}}{r^{2}} \rho_{1}+\left(r-\frac{a_{1}^{3}}{r^{2}}\right) \rho_{2} & a_{1}<r \leq a \\ \frac{a_{1}^{3} \rho_{1}+\left(a^{3}-a_{1}^{3}\right) \rho_{2}}{r^{2}} & r>a\end{cases}
$$

and from (3-28)s

$$
\Phi(r)=-\frac{2}{3} \pi G \begin{cases}\left(3 a_{1}^{2}-r^{2}\right) \rho_{1}+3\left(a^{2}-a_{1}^{2}\right) \rho_{2} & r \leq a_{1} \tag{3-A7}\\ 2 \frac{a_{1}^{3}}{r} \rho_{1}+\left(3 a^{2}-r^{2}-2 \frac{a_{1}^{3}}{r}\right) \rho_{2} & a_{1} \leq r \leq a \\ 2 \frac{a_{1}^{3}}{r} \rho_{1}+2 \frac{a^{3}-a_{1}^{3}}{r} \rho_{2} & r \geq a\end{cases}
$$

3.12 Using the two-layer model it follows from $\left|g\left(a_{1}\right)\right|>|g(a)|$, that $a_{1} \rho_{1}>\left(a_{1}^{3} \rho_{1}+\right.$ $\left.\left(a^{3}-a_{1}^{3}\right) \rho_{2}\right) / a^{2}$ which may be rewritten in the form of the inequality (3-43). For the Earth the left hand side becomes 1.42 and the right hand side 1.18 , so the inequality is fulfilled.

3.13

a) $g(r)=-4 \pi G \frac{A}{3+\alpha} r^{1+\alpha}, \Phi(r)=4 \pi G \frac{A}{2+\alpha}\left(\frac{r^{2+\alpha}}{3+\alpha}-a^{2+\alpha}\right)$.
b) $\alpha>-3$.
c) $-3<\alpha<-1$.
3.14 Use eq. (3-17). Setting $u=r / a$ one gets

$$
M(r)=\int_{0}^{r} \rho(s) 4 \pi s^{2} d s=4 \pi \rho_{0} \int_{0}^{r} e^{-s / a} s^{2} d s=4 \pi \rho_{0} a^{3}\left(2-\left(2+2 u+u^{2}\right) e^{-u}\right)
$$

Similarly, using (3-30) one finds

$$
\int_{r}^{\infty} s \rho(s) d s=\rho_{0} \int_{r}^{\infty} s e^{-s / a} d s=\rho_{0} a^{2}(1+u) e^{-u}
$$

and from this

$$
\Phi=-\frac{4 \pi G \rho_{0} a^{3}}{r}\left(2\left(1-e^{-u}\right)-u e^{-u}\right)
$$

3.15 Multiplying (3-13) by $\boldsymbol{e}_{r}=\boldsymbol{x} / r$ and using (3-16) one gets

$$
g(r)=-G \int_{\left|\boldsymbol{x}^{\prime}\right| \leq a} \frac{\boldsymbol{x} \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}{r\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} \rho\left(\boldsymbol{x}^{\prime}\right) d v^{\prime}
$$

Introducing $s=\left|\boldsymbol{x}^{\prime}\right|$ and the angle θ between \boldsymbol{x} and \boldsymbol{x}^{\prime}, so that $d v^{\prime}=2 \pi \sin \theta d \theta s^{2} d s$, this becomes

$$
g(r)=-2 \pi G \int_{0}^{a} \rho(s) s^{2} d s \int_{-1}^{1} d \cos \theta \frac{r-s \cos \theta}{\left(r^{2}+s^{2}-2 r s \cos \theta\right)^{\frac{3}{2}}}
$$

Integrating over $u=\cos \theta$ one obtains

$$
\begin{aligned}
& \int_{-1}^{1} d u \frac{r-s u}{\left(r^{2}+s^{2}-2 r s u\right)^{\frac{3}{2}}}=-\frac{\partial}{\partial r} \int_{-1}^{1} d u \frac{1}{\sqrt{r^{2}+s^{2}-2 r s u}} \\
= & \frac{\partial}{\partial r}\left[\frac{\sqrt{r^{2}+s^{2}-2 r s u}}{r s}\right]_{u=-1}^{1}=\frac{\partial}{\partial r} \frac{|r-s|-(r+s)}{r s} \\
= & -2 \frac{\partial}{\partial r}\left\{\begin{array}{ll}
\frac{1}{r} & r>s \\
\frac{1}{s} & r<s
\end{array}=\frac{2}{r^{2}} \theta(r-s)\right.
\end{aligned}
$$

which leads to the desired result (3-17).

