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2.19 Differentiate (x−y)2 = (f(x)−f(y))2 after x to obtain x−y = (f(x)−f(y)) ·
aaa(x) with aaa(x) = ∂f(x)/∂x. Differentiate again after y to obtain −111 = −aaa(y)> ·aaa(x).
This means that aaa(x) −1 = aaa(y)>. The left hand side depends only on x and the right
hand side only on y which implies that both sides are independent of x and y, i.e. the
matrix aaa is a constant. Integrating ∂f(x)/∂x = aaa one gets f(x) = aaa · x+ b.

2.20 Let aaaz(φ) be the matrix of the simple rotation (2-40) through an angle φ around
the z-axis. Then the three Euler angles φ, θ and ψ determine any rotation matrix as a
product aaaz(ψ) · aaay(θ) · aaaz(φ).

3 Gravity

3.2 The centripetal acceleration in a circular orbit must equal the force of gravity,
v2/r = GM/r2 leading to v =

p
GM/r =

√−Φ. At ground level the velocity becomes
v = vesc/

√
2 = 7.9 km/s where vesc = 11.2 km/s is the escape velocity.

3.3 Earth’s true rotation period T = T0 ∗ 364/365 is a bit shorter than T0 = 24 hours
because of the orbital motion which adds one full revolution in one year. Taking v = Ωr
where Ω = 2π/T we find from the equality of centripetal acceleration and gravity that

rΩ2 = g0
a2

r2
. (3-A1)

which solved for r/a yields

r

a
=
� g0

aΩ2

�1/3

≈ 6.613 . (3-A2)

The orbit height is h = r − a ≈ 5.613a ≈ 35, 800 km.

3.4 At the height z above the ground the force on a small piece dz of the line is

dF =

�
−g0

a2

(a + z)2
+ (a + z)Ω2

�
ρA dz (3-A3)

where Ω is the angular velocity in the stationary orbit and the second term represents
the centrifugal force. Since this only vanishes for z = h, the total force is maximal at
the satellite. Integrating the force from 0 to h, we find the maximal force

F =

Z h

0

dF(z) = ρAh

�
−g0

a

a + h
+ Ω2

�
a +

1

2
h

��
. (3-A4)

The absolute value of the tension-to-density ratio becomes,

σ

ρ
= h

�
g0

a

a + h
− Ω2

�
a +

1

2
h

��
≈ 4.8× 107 m2/s2 (3-A5)

The tensile strength a Beryllium-Copper alloy of density ρ = 8230 kg/m3 can go as
high as σ ≈ 1.4 GPa, leading to σ/ρ ≈ 1.7 × 105 m2/s2, a factor nearly 300 below the
required value.
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3.7 A small volume is invariant under a rotation dv′ = dv and so is the amount of
mass contained in it, dm′ = dm. By the definition (3-1) we have dm′ = ρ′(x′)dv′ =
dm = ρ(x)dv and from that ρ′(x′) = ρ(x).

3.8 The force on a small volume transforms according to dF ′ = aaa · dF whereas the
mas element is invariant dm′ = dm. By the definition (3-5) we have dF ′ = g′(x′) dm′ =
aaa · dF = aaa · g(x)dm and from this g′(x′) = aaa · g(x).

3.10 Cut out a small sphere |x′ − x| ≤ a around the point x. Let a be so small that
ρ(x′) does not vary appreciably within this sphere. Then we get the contribution to
gravity from the small sphere

∆g(x) = −G

Z
|x′−x|≤a

x− x′
|x− x′|3 ρ(x′) dv′ ≈ −Gρ(x)

Z
|x′−x|≤a

x− x′
|x− x′|3 dv′ = 0

The last integral vanishes because of the spherical symmetry (it is a vector with no
direction to point in).

3.5
a) Minimal kinetic energy: 1

2
v2
esc ≈ 63 (km/s)2 = 63× 106 J/kg.

b) Melting, heating and evaporating ice: ≈ 3× 106 J/kg.

3.6 Energy conservation: 1
2
ṙ2 + Φ(r) = Φ(a). Use (3-31).

a) v0 = − ṙ|r=0 = a
q

4
3
πρ0G =

√
g0a = 7.9 km s−1.

b) t0 =
R a

0

drp
2(Φ(a)− Φ(r))

=
R a

0

drq
4
3
πρ0G(a2 − r2)

=
πa

2v0
= 1267 s.

3.11 From (3-17) we get

g(r) = −4

3
πG

8>>>>>><>>>>>>:
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�
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r > a

. (3-A6)

and from (3-28)s

Φ(r) = −2

3
πG
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ρ1 +

�
3a2 − r2 − 2

a3
1

r

�
ρ2 a1 ≤ r ≤ a

2
a3
1

r
ρ1 + 2

a3 − a3
1

r
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. (3-A7)

3.12 Using the two-layer model it follows from |g(a1)| > |g(a)|, that a1ρ1 > (a3
1ρ1 +

(a3 − a3
1)ρ2)/a2 which may be rewritten in the form of the inequality (3-43). For the

Earth the left hand side becomes 1.42 and the right hand side 1.18, so the inequality is
fulfilled.
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3.13

a) g(r) = −4πG
A

3 + α
r1+α, Φ(r) = 4πG

A

2 + α

�
r2+α

3 + α
− a2+α

�
.

b) α > −3.

c) −3 < α < −1.

3.14 Use eq. (3-17). Setting u = r/a one gets

M(r) =

Z r

0

ρ(s)4πs2 ds = 4πρ0

Z r

0

e−s/as2 ds = 4πρ0a
3 �2− (2 + 2u + u2)e−u�

Similarly, using (3-30) one findsZ ∞

r

sρ(s) ds = ρ0

Z ∞

r

se−s/a ds = ρ0a
2(1 + u)e−u

and from this

Φ = −4πGρ0a
3

r

�
2
�
1− e−u�− ue−u�

3.15 Multiplying (3-13) by er = x/r and using (3-16) one gets

g(r) = −G

Z
|x′|≤a

x · (x− x′)
r |x− x′|3 ρ(x′) dv′

Introducing s = |x′| and the angle θ between x and x′, so that dv′ = 2π sin θdθs2ds,
this becomes

g(r) = −2πG

Z a

0

ρ(s)s2ds

Z 1

−1

d cos θ
r − s cos θ

(r2 + s2 − 2rs cos θ)
3
2

Integrating over u = cos θ one obtainsZ 1

−1

du
r − su

(r2 + s2 − 2rsu)
3
2

= − ∂

∂r
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1√
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=
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2
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which leads to the desired result (3-17).


