
20
Creeping flow
Viscosity may be so large that a fluid only flows with difficulty. Heavy oils, honey,
even tight crowds of people, show insignificant effects of inertia, and are instead
dominated by internal friction. Such fluids do not make spinning vortices or
become turbulent, but rather ooze or creep around obstacles. Fluid flow which
is dominated by viscosity is quite appropriately called creeping flow.

Since there is no absolute meaning to “large” viscosity, creeping flow is more
correctly characterized by the Reynolds number being small, Re ¿ 1. Creeping
flow may occur in any fluid, as long as the typical velocity and geometric extent
of the flow combine to make a small Reynolds number. Blood flowing through
a microscopic capillary can be as sluggish as heavy oil. Tiny organisms like
bacteria live in air and water like ourselves, but their’s is a world of creeping
and oozing rather than whirls and turbulence, and movement requires special
devices, for example oar-like cilia or whip-like flagella [36]. Some bacteria have
even mounted a rotating helical tail in a journal bearing (the only one known
to biology), which like a corkscrew allows them to advance through the thick
fluid that they experience water to be. A spermatozoan pushes forward like a
slithering snake in the grass by undulating its tail.

In this chapter we shall study creeping flow around moving bodies far from
containing boundaries. For any creature in creeping flow, the most important
quantity is the fluid’s resistance against motion, also called drag. The drag on a
body has two components of comparable magnitude in creeping flow, one being
skin drag from viscous friction between the fluid and the body, and the other
form drag from the variations in fluid pressure across the body. The same con-
tact forces may also produce lift orthogonally to the direction of motion, but
in creeping flow lift is of roughly the same order of magnitude as drag. A tiny
creature that already must overcome a drag many times its weight in order to
move freely has no problem with flying. That’s why bacteria don’t have wings.
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380 20. CREEPING FLOW

20.1 Steady incompressible creeping flow

Leaving out the time dependence and the advective terms, we obtain from the
Navier-Stokes equations (18-28) the following equations for steady incompressible
creeping flow

η∇2v = ∇p∗ ,

∇ · v = 0 ,
(20-1)

where p∗ = p + ρ0Φ is the effective pressure. The condition for using this ap-
proximation is that the Reynolds number (18-20) is small, Re ¿ 1.

Creeping flow is mathematically (and numerically) much easier to handle
than general flow because of the absence of non-linear (advective) terms that
tend to spontaneously break the natural symmetry of the solutions in time as
well as space (with turbulence as the extreme result). Furthermore, the linearity
of the equations makes it possible to express solutions to more complicated flow
problems as linear superpositions of simpler solutions. Creeping flow is also called
Stokes flow.

Estimate of forces on a moving body

Suppose a body is moving through a fluid with a steady velocity U far from
containing boundaries. As pointed out before, this situation does not correspond
to steady flow. Cruising through the fluid, the moving body creates a temporary
disturbance that disappears again some time after the body has passed a fixed
observation point. But seen from the body, the fluid appears to move in a steady
pattern which at sufficiently large distances becomes a uniform flow of magnitude
U . Newtonian relativity guarantees that these situations are physically equiva-
lent, so that we may use the creeping flow equations (20-1).
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The only way the fluid can influence a solid body is through contact forces
acting on its surface. It is convenient to resolve the total contact force

F = D + L (20-2)

into two vector components. The first D is called the drag and acts in the
direction of the asymptotic flow, D = D eU where eU = U/U . The other L is
called the lift and acts orthogonally to the direction of asymptotic flow, so that
L · eU = 0.

We shall think of the body as having a non-exceptional roughly globular shape
with diameter L and assume that the Reynolds number Re ≈ ρUL/η satisfies
Re ¿ 1. Since the pressure only appears in (20-1) in the combination p∗/η,
and since the boundary conditions do not involve the pressure, the velocity field
cannot depend on η, but only on the asymptotic velocity U and on the shape
and orientation of the body. The linearity further guarantees that the velocity
field v and p∗/η must be proportional to U everywhere. The velocity gradients
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20.2. STOKES’ SOLUTION FOR A SPHERE 381

near the surface must therefore be of magnitude |∇v| ∼ U/L so that the shear
stress becomes σ ∼ ηU/L. Multiplying with the surface area of the body ∼ L2

we obtain an estimate of the skin drag,

Dskin = fskinηUL , (20-3)

with an unknown dimensionless prefactor fskin of order unity, determined by the
detailed geometry of the body. We may similarly estimate the pressure gradient
near the surface from (20-1) to be |∇p∗| ≈ ηU/L2, and multiplying with the
length L of the body, we estimate the pressure variations over the body to be
of the same size as the shear stress, |∆p∗| ∼ ηU/L. Multiplying as before with
the surface area L2, the estimate of the form drag becomes of the same order of
magnitude as skin drag,

Dform = fformηUL , (20-4)

but in general it has another geometric prefactor.
The total drag is the sum of skin and form drag, and becomes of order of

magnitude D ∼ ηUL. Lift is produced by the same contact forces as drag and
is also of this magnitude, L ∼ ηUL, but the geometric prefactor is here strongly
dependent on the orientation of the body with respect to the direction of flight.
Furthermore, near a solid boundary lift can grow much larger than drag and
may keep the body away from the boundary. This is in fact the secret behind
lubrication (see the following chapter).

20.2 Stokes’ solution for a sphere

A solid sphere moving at constant speed through a viscous fluid is the centerpiece
of steady creeping flow (Stokes, 1851). The solution may be worked out starting
from the field equations (20-1) and the boundary conditions (see problem 20.8),
but even if the details of obtaining the solution are a bit complicated, the result
is fairly simple. In spherical coordinates with polar axis in the direction of U ,
the resulting flow is given by

vr =
(

1− 3
2
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r
+

1
2

a3

r3

)
U cos θ

vθ = −
(

1− 3
4

a

r
− 1

4
a3

r3

)
U sin θ

vφ = 0

, (20-5)

where a is the radius of the sphere. The effective pressure
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U cos θ (20-6)
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Figure 20.1: Creeping flow around the unit sphere. Stream lines have been obtained by
numeric integration of eq. (15-15) starting equidistantly at z = −100 to avoid problems
of long range terms (see problem 20.6 for how to obtain the streamlines)

is forward-backwards asymmetric, such that the pressure is highest on the part
of the sphere that turns towards the incoming fluid (at θ = π). This asymmetry
is in marked contrast with the potential flow solution (16-62) for a sphere where
the symmetry of the pressure gives rise to d’Alembert’s paradox.

It is not particularly difficult to demonstrate from the spherical Laplacian (C-
16) that the Stokes flow field is indeed a solution to the creeping flow equations.
The vanishing of the azimuthal component vφ is a consequence of the symmetry
of the problem, and implies that there is no lift. At the surface of the sphere
the velocity field vanishes as it should, and at infinity it approaches that of
the uniform flow with velocity U in the z-direction, having Ur = U cos θ and
Uθ = −U sin θ. Notice that the flow pattern is independent of the viscosity
η of the fluid, and that the pressure is proportional to the viscosity. This is,
as discussed above, common for creeping flow problems where the boundary
conditions do not directly involve the pressure but only the velocity field.

Surface stresses

Let us first calculate the normal and shear stress tensor components. Using that
σij = −pδij + η(∇ivj +∇jvi) we find the radial stress

σrr = −p + 2η
∂vr

∂r
=

3
2

a

r2

(
3− 2

a2

r2

)
ηU cos θ .
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For the shear stress we get similarly

σθr = η(eθ)i(∇ivj +∇jvi)(er)j = η
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At the surface of the sphere, r = a, the two stress components become

σrr|r=a =
3
2a

ηU cos θ , (20-7a)

σθr|r=a = − 3
2a

ηU sin θ , (20-7b)

from which we get the stress vector

σ|r=a = σσσ · er|r=a = erσrr + eθσθr =
3
2a

ηU . (20-8)

Surprisingly, it is of constant magnitude and points everywhere on the surface in
the direction of the asymptotic flow.

Stokes law

The total force is obtained by multiplying the constant stress vector with the
area 4πa2 of the sphere,

F = 6πηaU . (20-9)

This is the famous Stokes law from 1851. The symmetry of the sphere could have
told us in advance that the force would be parallel with the velocity, because there
is no geometric direction defined that a lift could take. The form was already
predicted in (20-3) with a geometric prefactor f = 3π, taking L = 2a to represent
the size of the body. A quick calculation reveals that two thirds of the total is
skin drag and one third is form drag (problem 20.5).

Falling sphere

Although Stokes law has been derived in the rest system of the sphere, it is also
valid in the rest system of the asymptotic fluid. The terminal velocity of a falling
solid sphere may be obtained by equating the force of gravity (minus buoyancy)
with the Stokes drag

i

?
U

Sphere falling through vis-
cous fluid at constant
terminal speed U .(ρsphere − ρfluid)

4
3
πa3g0 = 6πηaU (20-10)

where g0 is the gravitational acceleration. Solving for U we find

U =
2
9

(
ρsphere

ρfluid
− 1

)
a2g0

ν
(20-11)
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384 20. CREEPING FLOW

where ν = η/ρfluid is the kinematic viscosity.

Example 20.2.1: Sand grains of diameter 0.1 mm and density 2.5 times that of
water float towards the bottom of the sea with a terminal velocity of 1 cm s−1, as
calculated from Stokes’ law. The corresponding Reynolds number is about 1, which
is at the limit of the region of validity of Stokes’ law.

Conversely, in the falling sphere viscometer this equation may be used to deter-
mine the viscosity ν from a measurement of the terminal velocity for a sphere of
known radius.

One may also, as Millikan did in his famous electron charge experiment (1913),
determine the radius of a falling sphere (an oil drop) from a measurement of the
terminal velocity, provided the viscosity of the fluid is known. In Millikan’s ex-
periment the oil drops were charged and could be made to hover or fall in the field
of gravity as slowly as desired by means of an electric field of suitable strength.
Knowing the radius, the electric force on an oil drop could be compared to grav-
ity, allowing the charge to be determined. The viscosity of air was determined byRobert A. Millikan (1868 -

1953). American physicist.
Awarded the Nobel prize in
1923 for the determination
of the charge of the electron.

Couette viscometer measurements (section 19.10). At that time, there was actu-
ally an error in the viscosity of air deriving from the failure to take into account
the effects of the end caps of the Couette viscometer, an error first corrected in
1930. Millikan also showed that it was necessary to include corrections to Stokes
law for the internal motion of the oil in the tiny drops.

Limits to Stokes flow

Stokes law has been derived under the assumption of creeping flow, which can
only be valid under the condition that the Reynolds number

Re =
ρ 2aU

η
(20-12)

is small compared to unity, Re ¿ 1. In the falling sphere viscometer where the
terminal velocity is determined by the balance of forces (20-11), the Reynolds
number varies as the third power of the radius. As long as the sphere is sufficiently
small, the conditions for creeping flow can always be fulfilled.

The Reynolds number is, however, only a rough estimate for the ratio between
advective and viscous terms in the Navier-Stokes equations for a particular ge-
ometry. Having obtained an explicit solution we may actually calculate this ratio
everywhere in the fluid to see if it is indeed small. Close to the sphere, the ve-
locity is very small because of the no-slip condition. Problems are only expected
to arise at large distances, where the leading corrections to the uniform flow are
provided by the a/r terms in the solution (20-5). At large distances the leading
advective terms are of order

|ρv ·∇v| ≈ ρU2 a

r2
, (20-13)
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whereas the viscous terms become

|η∇2v| ≈ ηU
a

r3
. (20-14)

So the ratio between inertial and viscous terms becomes

|ρv ·∇v|
|η∇2v| ≈ ρUr

η
≈ r

a
Re . (20-15)

where Re is the global Reynolds number (20-12). As this expression grows with r,
it follows that however small the Reynolds number may be, there will always be
a distance r & a/Re where the advective terms begin to dominate. This clearly
illustrates that the global Reynolds number is just a guideline, not a guarantee
that creeping flow will occur everywhere in a system. Since any finite non-
exceptional body at sufficiently large distances looks like a sphere, this problem
must in fact be present in all creeping flows.

The slowly decreasing a/r terms in the solution (20-5) also indicate the in-
fluence of the containing vessel. The relative magnitude of these terms at the
boundary of the vessel is estimated as 2a/D where D is the size of the vessel.
In the falling sphere viscometer a 1% measurement of viscosity thus requires
that the sphere diameter must be smaller than 1% of the vessel size. That can be
hard to fulfil in highly viscous fluids where a measurable terminal speed demands
rather large and heavy spheres.

20.3 Beyond Stokes’ law

Stokes law has been derived in the limit of vanishing Reynolds number (20-12),
and is empirically valid for Re . 1. For larger values of Re the simplicity of the
problem nevertheless allows us to make a general analysis, as we did for turbulent
pipe flow (section 19.7 on page 361), even if we cannot solve the Navier-Stokes
equations.

Friction factor

Since the only parameters defining the problem are the radius a, the velocity
U , the viscosity η and the density of the fluid ρ, we may for any Reynolds
number write the drag on the sphere in the form of Stokes’ law multiplied with
a dimensionless factor f ,

D = 6πηaUf(Re) , (20-16)

The dimensionless factor can as indicated only depend on the dimensionless
Reynolds number. It accounts for the deviations from Stokes law and is evi-
dently anchored at unity for vanishing Reynolds number, i.e. f(0) = 1. We shall
as for pipe flow call it the friction factor, although as mentioned above only 2/3
of the drag on the sphere is in fact due to friction (and 1/3 to the front-to-back
pressure differences).
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Drag coefficient

In the opposite limit, at large Reynolds number, the sphere literally plows its way
through the fluid, leaving a wake of highly disturbed and turbulent fluid. The
drag may be estimated from the rate of loss of momentum from the incoming
fluid that is disturbed by the sphere. The incoming fluid carries a momentum
density ρU and since the sphere presents a cross-sectional area A = πa2 to the
flow, we estimate the rate at which momentum impinges on the sphere to be
ρU ·AU = ρAU2. The drag at high Reynolds numbers is thus expected to grow
with the square of the velocity (at subsonic speeds).

But the fluid in the wake trailing the sphere is not completely at rest, such
that only a certain fraction of the incoming momentum will be lost. Empirically
about 20% of the fluid momentum impinging on a sphere is lost to drag for
103 . Re . 105. It is for this reason customary to define the dimensionless drag
coefficient

CD =
D

1
2ρπa2U2

, (20-17)

with a conventional factor 1/2 in the denominator. Empirically, the drag coeffi-
cient for a sphere is CD ≈ 0.5 in the interval 104 . Re . 2.5×105, implying that
about 25% of the incoming fluid momentum is lost to drag.

Inserting the definition of the friction factor for a sphere (20-16) we find

CD =
24
Re

f(Re) (20-18)

for all Reynolds numbers. It is a matter of taste whether one prefers to describe
the drag on a sphere by means of the drag coefficient or the friction factor.
At small Reynolds numbers, it seems a bit pointless to use the drag coefficient,
because it introduces a strong artificial variation CD ≈ 24/Re for Re → 0 without
a corresponding strong variation in the physics (which is simply described by
Stokes law). At large Reynolds numbers the drag coefficient becomes a constant,
which is more convenient to use than the linearly rising friction factor.

Interpolation

One may join the regions of low and high Reynolds numbers by the simple inter-
polating expression

CD =
24
Re

+
5√
Re

+ 0.3 (20-19)

The first term is Stokes’ result and the last is a constant terminal form drag. The
middle term may be understood as due to friction in a thin laminar boundary
layer (see chapter 25) on the forward half of the sphere. There are a number of
different formulas in the literature covering the same empirical data. As seen in
fig. 20.2, this formula agrees decently with the measured values for all Reynolds
numbers up to Re ≈ 104, where the drag coefficient first rises to almost 0.5 and
then drops sharply to about 0.1, after which it begins to rise again.
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Figure 20.2: Sketch of the drag coefficient for a smooth ball (fully drawn). The dashed
line corresponds to Stokes law CD = 25/Re and the dashed curve is the interpolation
(20-19). The sharp drop (the “drag crisis”) at Re = 2.5 × 105 signals the onset of
turbulence in the boundary layer on the front half of the sphere and an accompanying
shift in the shape of the trailing wake.

The drag crisis

This dramatic drag crisis is caused by a transition from laminar to turbulent flow
in the boundary layer of the forward-facing half of the sphere. The transition is
accompanied by a front-to-back shift in the separation point for the turbulent
wake that trails the sphere. At a Reynolds number just beyond the drag crisis,
the wake is narrower than before, entailing a smaller loss of momentum, i.e. drag.
At still higher Reynolds numbers the drag coefficient regains part of its former
magnitude, while at supersonic speeds it rises to around unity.
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The “drag crisis” denotes a
precipitous drop in drag on
a sphere that happens when
the laminar boundary layer
turns turbulent, causing the
point of separation of the
trailing wake (top) to shift
rearwards (bottom).

The Reynolds number at which the drag crisis sets in depends on the surface
properties of the sphere. Roughness tends to facilitate the generation of a turbu-
lent boundary layer and makes the onset of the drag crisis occur at lower Reynolds
number. This is the deeper reason for manufacturing golf balls with surface dim-
ples. A golf ball flying at a typical speed of 30 m s−1 has Re ≈ 1.6× 105 which is
below the drag crisis for a smooth ball, but not for a dimpled one. The lower drag
on a dimpled ball permits it to fly longer for a given initial thrust. The seams of
a tennis ball serve the same function, whereas a ping-pong ball is quite smooth.
A ping-pong ball flying at 10 m s−1 has Re ≈ 5 × 104 which is probably too far
below the drag crisis for dimples to work. Dimples or seams would anyway also
interfere with the proper bouncing of the extremely light (2.7 g) ping-pong ball.
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Terminal speed

The variation in drag with Reynolds number makes the calculation of the terminal
speed of a spherical ball somewhat more complicated than eq. (20-11). Equating
the force of gravity with the drag and eliminating the velocity by means of the
Reynolds number we obtain,

Re2CD(Re) =
8m′g0

πρfluidν2
=

32
3

(
ρsphere

ρfluid
− 1

)
a3g0

ν2
, (20-20)

where m′ is the mass of the sphere reduced by buoyancy. From this equation
and a graph of the left hand side, the Reynolds number and thereby the terminal
velocity may be determined.

In the limit where the drag coefficient is a constant, we may solve for the
terminal speed, which becomes

U =

√
8
3

(
ρsphere

ρfluid
− 1

)
ag0

CD
. (20-21)

The terminal velocity grows with the squareroot of the density of the sphere,
implying that the kinetic energy of the sphere grows with the square of the
density. This is why bombs with heavy metal jackets (made, for example, from
depleted uranium) are used to penetrate concrete structures and rock.

Example 20.3.1: A skydiver weighing 70 kg curls up like a ball with radius
a = 50 cm and average density ρsphere ≈ 133 kg m−3. Taking CD ≈ 0.3 and
ρair ≈ 1 kg m−3, we obtain U = 76 m s−1 = 273 km h−1. The corresponding
Reynolds number is Re = 4.7× 106, confirming the used approximation.

20.4 Beyond spherical shape

The general arguments given in section 20.1 showed that in creeping flow the drag
on an arbitrary body is proportional to viscosity, velocity and a shape-dependent
factor with dimension of length. Using the Stokes’ drag (20-9) as a baseline, we
may write the drag on an arbitrary body as

D = 6πηaSU , (20-22)

where aS is a characteristic length, sometimes called the Stokes radius. The
Stokes radius may be determined from a measurement of the terminal speed,

aS =
m′g0

6πηU
, (20-23)

where as before m′ is the mass of the body corrected for buoyancy.
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The Stokes radius may be calculated analytically for some simple bodies, for
example a circular disk of radius a. In the two major orientations of the disk, we
have

aS

a
=





8
3π

≈ 0.85 disk orthogonal to flow

16
9π

≈ 0.57 disk parallel to flow
(20-24)

In spite of the vast differences between the two cases, the Stokes radii are of
the same order of magnitude. For general bodies of non-exceptional geometry,
one may as a first estimate set the Stokes radius equal some effective radius,
determined for example from the surface area or the volume of the body.

At high Reynolds numbers, where viscosity plays a diminishing role, the drag
coefficient may as discussed for the sphere be defined to be

CD =
D

1
2ρAU2

, (20-25)

where A is some area that the body presents to the flow. For blunt bodies the
area may be taken to be the “shadow” of the body on a plane orthogonal to the
direction of motion. For a given shape, the drag force

D = CD
1
2
ρAU2 , (20-26)

exposes the dependence on the fluid (ρ), the body size (A), and the state of
motion (U). Barring the presence of a drag crisis, typical values for CD are of
the order of unity for bodies of non-exceptional geometry. A flat circular disk
orthogonal to the flow has CD ≈ 1.17, whereas a circular cup with its opening
towards the flow has CD ≈ 1.4. If on the other hand the disk is infinitely thin and
oriented parallel with the flow, there will be no asymptotic form drag, and the
drag coefficient will vanish (as 1/

√
Re) in the limit of infinite Reynolds number.

Drag reduction by streamlining is important in the construction of all kinds
of moving vehicles, such as cars and airplanes. Car manufacturers have over
the years reduced the drag coefficient to lower than 0.4, and there is still room
for improvement. In modern times drag-reducing helmets have also appeared
on the heads of bicycle racers and speed skaters, giving the performers of these
sports quite alien looks. Among animals, drag reduction yields evolutionary
advantages, which has lead to the beautiful outlines of fast flyers and swimmers,
like falcons and sharks. The density of water is about a thousand times that
of air, implying a thousand times larger form drag (20-26) in water than in air,
although this effect is offset by the higher velocities necessary for flight. This has
forced swimming animals towards extremes of streamlined shapes. The mackerel
has thus reduced the drag coefficient of its sleek form to the remarkably low value
of 0.0043, an order of magnitude lower than for a swimming human [36]. Since
muscular power is roughly the same, birds should typically be capable of moving
about

√
1000 ≈ 30 times faster than fish of the same size and shape.
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Problems

20.1 Show that for creeping flow we have

r2p∗ = 0 (20-27)

r2! = 0 (20-28)

where ! =r× v is the vorticity field.

∗ 20.2 Show that the rate of work of the contact forces exerted by a steadily moving
body on the fluid through which it moves is DU , where D is the total drag.

∗ 20.3 a) Show that the creeping flow solution around a fixed body in an asymptotically
uniform steady velocity field U must be of the form

v(x) = RRR(x) ·U (20-29)

p∗(x) = ηQ(x) ·U (20-30)

where RRR(x) is a tensor field and Q(x) is a vector field, both independent of U .
b) Determine the field equations and the boundary conditions for RRR and Q.
c) Calculate the total force on the body.

20.4 Consider Stokes flow around a sphere of radius a. a) Calculate the volume
discharge of fluid passing a concentric annular disk of radius b > a placed orthogonal
to the flow. b) Calculate the volume in relation to the volume that would pass through
the same disk, if the sphere were not present. c) Justify qualitatively why the ratio
vanishes for b → a.

20.5 Calculate the pressure contribution to the drag from Stokes solution for a sphere.

20.6 Consider spherical Stokes flow and

(a) Show that the stream lines are determined by the solutions to

dr

dt
= vr = A(r)U cos θ

dθ

dt
=

vθ

r
= −B(r)U sin θ

with

A(r) = 1− 3

2

a

r
+

1

2

a3

r3
=
�
1− a

r

�2
�

1 +
1

2

a

r

�
B(r) =

1

r

�
1− 3

4

a

r
− 1

4

a3

r3

�
=

1

r

�
1− a

r

��
1 +

1

4

a

r
+

1

4

a2

r2

�
(b) Show that this leads to a solution of the form

sin θ = e−
R

B/A dr =
d

(r − a)
p

1 + a/2r
(20-31)

where d is an integration constant. This is the align for the streamlines in polar
coordinates.
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(c) Show that d is the asymptotic distance of the flow line from the polar axis (also
called the impact parameter).

(d) Find the relation between d and the point of closest approach of the flow line to
the sphere.

20.7 Champagne bubbles of carbon dioxide are typically created at the inner surface
of a glass, and later detach due to buoyancy and rise through the liquid which essentially
consists of water. Establish a differential equation for the rise of a bubble towards the
surface, taking into account buoyancy and viscous friction. You may assume 1) that
the bubbles are spherical, 2) that the mass of a bubble is much smaller than the mass of
the displaced liquid, 3) that the Reynolds number is small so that buoyancy is always
in balance with friction (Stokes flow), 4) that there is no gas exchange with the liquid
after the formation of a bubble, and 5) that the expansion of the gas in a bubble is
isothermal.

∗ 20.8 Analytic solution of Stokes flow for a sphere

(a) Use the field equations and symmetry to show that the solution must be of the
form (in spherical coordinates)

v(x) = a(r)U + b(r)xU · x , (20-32a)

p(x) = ηc(r)U · x , (20-32b)

where a(r), b(r), and c(r) are functions only of r.

(b) Use the boundary conditions to show that a(r) and b(r) must vanish at r = a,
and that at r →∞ they satisfy a(r) → 1 and r2b(r) → 0.

(c) Show that the field equations lead to the ordinary differential equations

d2a

dr2
+

2

r

da

dr
+ 2b = c , (20-33a)

d2b

dr2
+

6

r

db

dr
=

1

r

dc

dr
, (20-33b)

1

r

da

dr
+ r

db

dr
+ 4b = 0 . (20-33c)

(d) Show that these equations are homogeneous in r, and justify that one should look
for power solutions

a = Arα , (20-34a)

b = Brβ , (20-34b)

c = Crγ , (20-34c)

(e) Show that

β = γ = α− 2 (20-35)

and

α(α + 1)A + 2B = C , (20-36a)

(α− 2)(α + 3)B = (α− 2)C , (20-36b)

αA + (α + 2)B = 0 . (20-36c)
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392 20. CREEPING FLOW

(f) Show that a non-trivial solution requires

(α− 2)α(α + 1)(α + 3) = 0 , (20-37)

so that the allowed powers are α = 2, 0,−1,−3.

(g) Show that the most general solution is

a(r) = Kr2 + L +
M

r
+

N

r3
, (20-38a)

b(r) = −1

2
K +

M

r3
− 3

N

r5
, (20-38b)

c(r) = 5K + 2
M

r3
, (20-38c)

where K, L, M , and N are the four integration constants.

(h) Show that the boundary conditions at infinity require K = 0 and L = 1, and that
the boundary conditions at r = a require M = − 3

4
a and N = − 1

4
a3, leading to

the desired solution (20-5).
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