
B
Newtonian particle
mechanics

The equations of continuum mechanics are derived by a systematic application
of Newton’s laws for systems that nearly behave as if they consisted of idealized
point particles. It is for this reason useful here to recapitulate the basic mechanics
of point particles, and to derive the global laws that so often are found to be
useful.

The global laws state for any collection of point particles that

• the rate of change of momentum equals force

• the rate of change of angular momentum equals moment of force

• the rate of change of kinetic energy equals power

Even if these laws are not sufficient to determine the dynamics of a physical
system, they represent seven individual constraints on the motion of any system
of point particles, independently of how complex it is. They are equally valid for
continuous systems when it is taken properly into account that the number of
particles in a body may change with time.

In the main text a certain familiarity with Newtonian mechanics is assumed
throughout. This appendix only serves as a reminder and as refreshment. It can
in no way substitute for a proper course on Newtonian mechanics.
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B.1 Dynamic equations

In Newtonian mechanics, a physical system or body is understood as a collection
of a certain number N of point particles numbered n = 1, 2, . . . , N . Each particle
obeys Newton’s second law,

mn
d2xn

dt2
= fn , (B-1)

where mn denotes the (constant) mass of the n’th particle, xn its instantaneous
position, and fn the instantaneous force acting on the particle. Due to the mutual
interactions between the particles, the forces may depend on the instantaneous
positions and velocities of all the particles, including themselves,

fn = fn

(
x1, . . . , xN ,

dx1

dt
, . . . ,

dxN

dt
, t

)
. (B-2)

The forces will in general also depend on parameters describing the external in-
fluences from the system’s environment, for example Earth’s gravity. The explicit
dependence on t in the last argument of the force usually derives from such time
dependent external influences. It is, however, often possible to view the envi-
ronment as just another collection of particles and include it in a larger isolated
body without any influences from the environment.

The dynamics of a collection of particles thus becomes a web of coupled second
order differential equations in time. In principle these equations may be solved
numerically for all times t, given initial positions and velocities for all particles
at a definite instant of time, say t = t0. Unfortunately, the large number of
molecules in any macroscopic body usually presents an insurmountable obstacle
to such an endeavor. Even for smaller numbers of particles, deterministic chaos
may effectively prevent any long-term numeric integration of the equations of
motion.

B.2 Force and momentum

A number of quantities describe the system as a whole. The total mass of the
system is defined to be

M =
∑

n

mn , (B-3)

and the total force

F =
∑

n

fn . (B-4)

Notice that these are truly definitions. Nothing in Newton’s laws tells us that
it is physically meaningful to add masses of different particles, or worse, forces
acting on different particles. As shown in problem B.1, there is nothing in the
way for making a different definition of total force.
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The choice made here is particularly convenient for particles moving in a con-
stant field of gravity, such as we find on the surface of the Earth, because the
gravitational force on a particle is directly proportional to the mass of the parti-
cle. With the above definitions, the total gravitational force, the weight, becomes
proportional to the total mass. This additivity of weights, the observation that
a volume of flour balances an equal volume of flour, independently of how it is
subdivided into smaller volumes, goes back to the dawn of history.

Having made these definitions, the form of the equations of motion (B-1) tells
us that we should also define the average of the particle positions weighted by
the corresponding masses

xM =
1
M

∑
n

mnxn . (B-5)

For then the equations of motion imply that

M
d2xM

dt2
= F . (B-6)

Formally, this equation is of the same form as Newton’s second law for a single
particle, so the center of mass moves like a point particle under influence of the
total force. But before we get carried completely away, it should be remembered
that the total force depends on the positions and velocities of all the particles,
not just on the center of mass position xM and its velocity dxM/dt. The above
equation is in general not a solvable equation of motion for the center of mass.

There are, however, important exceptions. The state of a stiff body is character-
ized by the position and velocity of its center of mass, together with the body’s
orientation and its rate of change. If the total force on the body does not depend
on the orientation, the above equation becomes truly an equation of motion for
the center of mass. It is fairly easy to show that for a collection of spherically
symmetric stiff bodies, the gravitational forces can only depend on the positions
of the centers of mass, even if the bodies rotate. It was Newton’s good fortune
that planets and stars to a good approximation behave like point particles.

It is convenient to reformulate the above equation by defining the total mo-
mentum of the body,

P =
∑

n

mn
dxn

dt
, (B-7)

Like the total force it is a purely kinematic quantity, depending only on the
particle velocities, calculated as the sum over the individual momenta mndxn/dt
of each particle. The equations of motion (B-1) imply that the total momentum
obeys the equation

dP
dt

= F , (B-8)
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which is evidently equivalent to (B-6).
Again it should be remarked that this equation cannot be taken as an equation

of motion, except in very special circumstances. It should rather be viewed as
a constraint (or rather three since it is a vector equation) that follows from
the true equations of motion, independently of what form the forces take. This
constraint is particularly useful if the total momentum is known to be constant,
or equivalently the center of mass has constant velocity, because then the total
force must vanish.

B.3 Moment of force and angular momentum

Similarly, the total moment of force acting on the system is defined as

M =
∑

n

xn × fn , (B-9)

Like the total force, it is a dynamic quantity calculated from the sum of the
individual moments of force acting on the particles.

The corresponding kinematic quantity is the total angular momentum,

L =
∑

n

xn ×mn
dxn

dt
. (B-10)

Differentiating after time we find

dL
dt

=
∑

n

mn

(
dxn

dt
× dxn

dt
+ xn × d2xn

dt2

)
.

The first term in the parenthesis vanishes because the cross product of a vector
with itself always vanishes, and using the equations of motion in the second term,
we obtain

dL
dt

= M . (B-11)

Like the equation for total momentum and total force, (B-8), this equation is
also a constraint that must be fulfilled, independently of the nature of the forces
acting on the particles. Angular momentum has to do with the state of rotation
of the body as a whole. If the total angular momentum is known to be constant,
as for a non-rotating body, the total moment of force must vanish. This is what
lies behind the lever principle.

From the earliest times levers have been used to lift and move heavy weights, such
as those found in stone age monuments. A primitive lever is simply a long stick
with one end wedged under a heavy stone. Applying a small “mansized” force
orthogonally to the other end of the stick, the product of the long arm and the
small force translates into a much larger force at the end of the small arm wedged
under the stone. The total moment vanishes, when the stick is not moving.
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The moment of force and the angular momentum both depend explicitly on
the choice of origin of the coordinate system. These quantities might as well have
been calculated around any other fixed point c, leading to

M(c) =
∑

n

(xn − c)× fn = M− c×F , (B-12)

L(c) =
∑

n

(xn − c)×mn
d(xn − c)

dt
= L− c×P . (B-13)

This shows that if the total force vanishes, the total moment of force becomes
independent of the choice of origin, and similarly if the total momentum vanishes,
the total angular momentum will be independent of the choice of origin.

If a point c exists such that M(c) = 0 we get M = c×F . In that case, the
point c is called the center of action or point of attack for the total force F . In
general there is no guarantee that a center of action exists, since it requires the
total force F to be orthogonal to the total moment M. Even if the center of
action exists, it is not unique because any other point c+ kF with arbitrary k is
as good a center of action as c. In constant gravity where fn = mng0, it follows
immediately that the center of mass is also the center of action for gravity, or as
it is mostly called, the center of gravity.

B.4 Power and kinetic energy

Forces generally perform work on the particles they act on. The total rate of
work or power performed by the forces acting on all the particles making up a
body is

P =
∑

n

fn ·
dxn

dt
. (B-14)

Notice that there is a dot-product between the force and the velocity. In non-
anglosaxon countries this is called effect rather than power.

The corresponding kinematic quantity is the total kinetic energy,

T =
1
2

∑
n

mn

(
dxn

dt

)2

, (B-15)

which is the sum of individual kinetic energies of each particle. Differentiating
after time and making use of the equations of motion (B-1), we find

dT
dt

= P . (B-16)

The rate of change of the kinetic energy equals the power.
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B.5 Internal and external forces

The force acting on a particle may often be split into an internal part due to the
other particles in the system, and an external part due to the system’s environ-
ment,

fn = f int
n + f ext

n . (B-17)

The internal forces, in particular gravitational forces, are often two-particle forces
with fn,n′ denoting the force that particle n′ exerts on particle n. The total
internal force on particle n thus becomes

f int
n =

∑

n′
fn,n′ . (B-18)

Most two-particle forces also obey Newton’s third law, which states that the force
from n′ on n is equal and opposite to the force from n on n′,

fn,n′ = −fn′,n . (B-19)

Although the external forces may themselves stem from two-particle forces of
this kind, this is ignored as long as the nature of the environment is unknown.

Strong theorems follow from the above assumptions about the form of the
internal forces. The first is that the total internal force vanishes,

F int =
∑

n

f int
n =

∑

n,n′
fn,n′ = 0 . (B-20)

where we have used the antisymmetry (B-19). This expresses the simple fact that
you cannot lift yourself by your bootstraps; baron Münchausen notwithstanding.

The momentum rate equation (B-8) thus takes the form

dP
dt

= Fext , (B-21)

showing that it is sufficient to know the total external force acting on a system
in order to calculate its rate of change of momentum. The details of the internal
forces can be ignored as long as they are of two-particle kind and obey Newton’s
third law.

Under the same assumptions, the internal moment of force becomes

M =
∑

n,n′
xn × fn,n′ =

1
2

∑

n,n′
(xn − xn′)× fn,n′ . (B-22)

This does not in general vanish, except for the case of central forces where

fn,n′ ∼ xn − xn′ . (B-23)
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Gravitational forces (and others) are of this kind. Provided the internal forces
stem from central two-particle forces, the total moment of force equal the external
moment, so that

dL
dt

= Mext . (B-24)

This rule is, however, not on nearly the same sure footing as the corresponding
equation for the momentum rate (B-21).

Finally, there is not much to be said about the kinetic energy rate (B-16),
which in general has non-vanishing internal and external contributions.

B.6 Hierarchies of particle interactions

Under what circumstances can a collection of point particles itself be viewed as a
point particle? The dynamics of the solar system may to a good approximation
be described by a system of interacting point particles, although the planets and
the sun in no way are pointlike at our own scale. At the scale of the whole
universe, even galaxies are sometimes treated as point particles.

A point particle approximation may be in place as long as the internal co-
hesive forces that keep the interacting bodies together are much stronger than
the external forces. In addition to mass and momentum, such a point particle
may also have to be endowed with an intrinsic angular momentum (spin), and
an intrinsic energy. The material world appears in this way as a hierarchy of
approximately point-like interacting particles, from atoms to galaxies, at each
level behaving as if they had no detailed internal structure. Corrections to the
ideal point-likeness can later be applied to add more detail to this overall picture.
Over the centuries this extremely reductionist method has shown itself to be very
fruitful, but it is an open (scientific) question whether it can continue indefinitely.
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Problems

B.1 Try to define the total force to be F ′ =
P

n mnfn rather than (B-4), and inves-
tigate what this entails for the global properties of a system. Can you build a consistent
mechanics on this definition?

B.2 Show that the total momentum is P = MdxM/dt where xM is the center of
mass position.


