Problem 3.2.6 (Eliminating the cubic term)

Consider the system

$$
\dot{X}=R X-X^{2}+a X^{3}+O\left(X^{4}\right)
$$

where $R \neq 0$. We want to find a new variable x such that the system transforms into

$$
\dot{x}=R x-x^{2}+O\left(x^{4}\right) .
$$

This would be a big improvement, since the cubic term has been eliminated and the error term has been bumped up to fourth order.

Let $x=X+b X^{3}+O\left(X^{4}\right)$, where b will be chosen later to eliminate the cubic term in the differential equation for x. This is called a near-identity transformation, since x and X are practically equal; they differ by a tiny cubic term. (We have skipped the quadratic term X^{2}, because it is not needed-you should check this later.) Now we need to rewrite the system in terms of x; this calculation requires a few steps.
(a)

Show that the near-identity transformation can be inverted to yield $X=x+c x^{3}+O\left(x^{4}\right)$, and solve for c.

(b)

Write $\dot{x}=\dot{X}+3 b X^{2} \dot{X}+O\left(X^{4}\right)$, and substitute for X and \dot{X} on the right-hand side, so that everything depends only on x. Multiply the resulting series expansions and collect terms, to obtain $\dot{x}=R x-x^{2}+k x^{3}+O\left(x^{4}\right)$, where k depends on a, b, and R.
(c)

Now the moment of triumph: choose b so that $k=0$.
(d)

Is it really necessary to make the assumption $R \neq 0$? Explain.

