
Chapter 19

Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare, The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 8 and 9 we learned how to track an individual trajectory, and
saw that such a trajectory can be very complicated. In chapter 4 we stud-
ied a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-
voluted, as we shall see, the density of these points might evolve in a manner that
is relatively smooth. The evolution of the density of representative points is for
this reason (and other that will emerge in due course) of great interest. So are
the behaviors of other properties carried by the evolving swarm of representative
points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of linear action of evolution operators.
We shall also show that the important, long-time “natural” invariant densities are
unspeakably unfriendly and essentially uncomputable everywhere singular func-
tions with support on fractal sets. Hence, in chapter 20 we rethink what is it that
the theory needs to predict (“expectation values” of “observables”), relate these
to the eigenvalues of evolution operators, and in chapters 21 to 23 show how to
compute these without ever having to compute a “natural” invariant density ρ0.
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Figure 19.1: (a) First level of partitioning: A
coarse partition of M into regions M0, M1, and
M2. (b) n = 2 level of partitioning: A refinement
of the above partition, with each region Mi subdi-
vided into Mi0, Mi1, and Mi2.
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19.1 Measures

Do I then measure, O my God, and know not what I mea-
sure?

—St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote by dμ(x) = ρ(x)dx. An intuitive way to define and
construct a physically meaningful measure is by a process of coarse-graining.
Consider a sequence 1, 2, ..., n, ... of increasingly refined partitions of state space,
figure 19.1, into 3 regions Mi defined by the characteristic function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise . (19.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction of
trajectories contained in the ith region Mi ⊂ M at the nth level of partitioning of
the state space:

Δμi =

∫
M

dμ(x)χi(x) =
∫
Mi

dμ(x) =
∫
Mi

dx ρ(x) . (19.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in state
space at time t. This density can be (and in chaotic dynamics, often is) an ar-
bitrarily ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect to the
Lebesgue measure (namely the uniform measure on the state space). We shall
assume that the measure is normalized

(n)∑
i

Δμi = 1 , (19.3)

where the sum is over subregions i at the nth level of partitioning. The infinites-
imal measure ρ(x) dx can be thought of as an infinitely refined partition limit of
Δμi = |Mi| ρ(xi) , where |Mi| is the volume of subregion Mi and xi ∈ Mi; also
ρ(x) is normalized∫

M
dx ρ(x) = 1 . (19.4)
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Figure 19.2: The evolution rule f tcan be used to map
a region Mi of the state space into the region f t(Mi).
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ff (     )Mi

Here |Mi| is the volume of region Mi, and all |Mi| → 0 as n → ∞.

19.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in a
region Mi at time t = 0. As the flow evolves, this region is carried into ft(Mi),
as in figure 19.2. No trajectory is created or destroyed, so the conservation of
representative points requires that∫

f t(Mi)
dx ρ(x, t) =

∫
Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand side to the
initial points x0 = f −t(x),∫

Mi

dx0 ρ( f t(x0), t)
∣∣∣det Jt(x0)

∣∣∣ = ∫
Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.28)

ρ(x, t) =
ρ(x0, 0)

|det Jt(x0)| , x = f t(x0) , (19.5)

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.

The relation (19.5) is linear in ρ, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

ρ(x, t) =
(
Lt ◦ ρ

)
(x) =

∫
M

dx0 δ
(
x − f t(x0)

)
ρ(x0, 0) . (19.6)

Let us check this formula. As long as the zero is not smack on the border of ∂M,
integrating Dirac delta functions is easy:

∫
M dx δ(x) = 1 if 0 ∈ M, zero otherwise.

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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Figure 19.3: The piecewise-linear skew ‘full tent
map’ (19.37), with Λ0 = 4/3, Λ1 = −4. See exam-
ple 19.1.
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The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its
argument evaluated at all of its zeros:

∫
dx δ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (19.7)

=
∑

{x:h(x)=0}

1
|h′(x)|

,

and in d dimensions the denominator is replaced by∫
dx δ(h(x)) =

∑
j

∫
M j

dx δ(h(x)) =
∑

j

1∣∣∣∣det
∂h(xj)
∂x

∣∣∣∣ , (19.8)

where M j is any open neighborhood that contains the single xj zero of h. Now
you can check that (19.6) is just a rewrite of (19.5):

(
Lt ◦ ρ

)
(x) =

∑
x0= f −t(x)

ρ(x0)
| f t(x0)′|

(1-dimensional)

=
∑

x0= f −t(x)

ρ(x0)
|det Jt(x0)|

(d-dimensional) . (19.9)

We shall refer to the integral operator with singular kernel (19.6) as the Perron-
Frobenius operator:

Lt(y, x) = δ
(
y − f t(x)

)
. (19.10)

The Perron-Frobenius operator assembles the density ρ(y, t) at time t by going
back in time to the density ρ(x, 0) at time t = 0. The family of Perron-Frobenius
operators

{Lt}
t∈R+ forms a semigroup parameterized by time

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

If you do not like the word “kernel” you might prefer to think of Lt(y, x) as a
matrix with indices x, y, and index summation in matrix multiplication replaced
by an integral over x,

(Lt ◦ ρ) (y) =
∫

dyLt(y, x)ρ(x) . In the next example Perron-
Frobenius operator is a matrix, and (19.11) illustrates a matrix approximation to
the Perron-Frobenius operator.



CHAPTER 19. TRANSPORTING DENSITIES 351

19.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (19.12)

As we are given deterministic dynamics and our goal is the computation of 
asymptotic averages of observables, our task is to identify interesting invariant 
measures for a given ft(x). Invariant measures remain unaffected by dynamics, so 
they are fixed points (in the infinite-dimensional function space of ρ densities) of 
the Perron-Frobenius operator (19.10), with the unit eigenvalue:

Ltρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (19.13)

We will construct explicitly such eigenfunction for the piecewise linear map in 
example 20.4, with ρ(y) = const and eigenvalue 1. 

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transfor-
mations experienced by an initial smooth distribution ρ(x) under the action of f ,

ρ0(x) = lim
t→∞

∫
M

dy δ(x − f t(y)) ρ(y, 0) ,
∫
M

dy ρ(y, 0) = 1 . (19.14)

Intuitively, the “natural” measure should be the measure that is the least sensitive
to the (in practice unavoidable) external noise, no matter how weak, or round-off
errors in a numerical computation.

19.4.1 Natural measure

In computer experiments, as the Hénon example of figure19.5, the long time evo-
lution of many “typical” initial conditions leads to the same asymptotic distribu-
tion. Hence the natural measure (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural density,
or even “natural invariant”) is defined as the limit

ρx0
(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limt→∞

1
t

∫ t

0
dτ δ(y − f τ(x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(
y − f k(x0)

)
maps ,

(19.15)

where x0 is a generic initial point. Generated by the action of f , the natural
measure satisfies the stationarity condition (19.13) and is thus invariant by con-
struction.

Staring at an average over infinitely many Dirac deltas is not a prospect we
cherish. From a computational point of view, the natural measure is the visitation
frequency defined by coarse-graining, integrating (19.15) over the Mi region

Δμi = lim
t→∞

ti
t
, (19.16)

where ti is the accumulated time that a trajectory of total duration t spends in the
Mi region, with the initial point x0 picked from some smooth density ρ(x).

Let a = a(x) b e a n y observable. In physical applications the observable a(x) 
is necessarily a smooth function. The observable reports on some property of the 
dynamical system.

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016

http://youtube.com/embed/XSmhwbvgTms
http://youtube.com/embed/_RFby4uM7yo


CHAPTER 19. TRANSPORTING DENSITIES 353

The space average of the observable a with respect to a measure ρ is given by
the d-dimensional integral over the state space M:

〈a〉ρ =
∫
M

dx ρ(x)a(x)∫
(19.17)

By its construction, 〈a〉ρ is a function(al) of ρ. F o r ρ = ρ0 natural measure we 
shall drop the subscript in the definition of the space average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (19.15) into (19.17), we see that the natural
measure corresponds to a time average of the observable a along a trajectory of
the initial point x0,

ax0 = lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) . (19.18)

Analysis of the above asymptotic time limit is the central problem of ergodic
theory. The Birkhoff ergodic theorem asserts that if an invariant measure ρ ex-
ists, the limit a(x0) for the time average (19.18) exists for (almost) all initial x0. 
Still, Birkhoff theorem says nothing about the dependence on x0 of time averages
ax0 (or, equivalently, that the construction of natural measures (19.15) leads to a
“single” density, independent of x0). This leads to one of the possible definitions
of ergodic evolution: f is ergodic if for any integrable observable a in (19.18)
the limit function is constant. If a flow enjoys such a property the time averages
coincide (apart from a set of ρ measure 0) with space averages

lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) = 〈a〉 . (19.19)

http://youtube.com/embed/CWuAOpHsQLg
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Figure 19.5: Natural measure (19.16) for the Hénon
map (3.17) strange attractor at parameter values
(a, b) = (1.4, 0.3). See figure 3.6 for a sketch of the
attractor without the natural measure binning. See ex-
ample 19.2. (Courtesy of J.-P. Eckmann)
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19.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we cannot 
do better than to measure ρ averaged over some region Mi; the coarse-graining is 
not an approximation but a physical necessity. One is free to think of a measure 
as a probability density, as long as one keeps in mind the distinction between 
deterministic and stochastic flows. In deterministic evolution the evolution kernels 
are not probabilistic; the density of trajectories is transported deterministically. 

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you will never need to compute them, at least not
in this book. How so? The evolution operators to which we next turn, and the
trace and determinant formulas to which they will lead us, will assign the correct
weights to desired averages without recourse to any explicit computation of the
coarse-grained measure Δρi.

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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Résumé

In physically realistic settings the initial state of a system can be specified only to
a finite precision. If the dynamics is chaotic, it is not possible to calculate the long
time trajectory of a given initial point. Depending on the desired precision, and
given a deterministic law of evolution, the state of the system can then be tracked
for a finite time only.

The study of long-time dynamics thus requires trading in the evolution of a
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially
this means trading in nonlinear dynamical equations on a finite dimensional space
x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector space of
density functions ρ(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator,

ρ(x, t) =
(
Lt ◦ ρ

)
(x) ,

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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The most physical of stationary measures is the natural measure, a measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the notion of 
an individual deterministic trajectory loses meaning, is much shorter than the 
observation time, the “sharp” observables are those dual to time, the eigenvalues 
of evolution operators. This is very much the same situation as in quantum 
mechanics; as atomic time scales are so short, what is measured is the energy, the 
quantum-mechanical observable dual to the time. 
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19.7 Examples

Example 19.1 Perron-Frobenius operator for a piecewise-linear map: Consider
the expanding 1-dimensional map f (x) of figure 19.3, a piecewise-linear 2–branch map
with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

f (x) =

{
f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] . (19.37)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point x0 as
the “Ulam” map. Assume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (19.38)

As can be easily checked using (19.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] Markov matrix L with matrix elements(

ρ0

ρ1

)
→ Lρ =

[ 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

] (
ρ0

ρ1

)
, (19.39)

measure - 9mar2015 ChaosBook.org version15.8, Oct 18 2016
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stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| = 1,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respec-
tively, the fractions of state space taken up by the |M0|, |M1| intervals. This simple
explicit matrix representation of the Perron-Frobenius operator is a consequence of the
piecewise linearity of f , and the restriction of the densities ρ to the space of piece-
wise constant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(continued in example 20.4)

Example 19.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (19.16) for the Hénon attractor (3.17) is given by the histogram
in figure 19.5. The state space is partitioned into many equal-size areas Mi, and the
coarse grained measure (19.16) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area Mi. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

Exercises

19.1. Integrating over Dirac delta functions. Check the
delta function integrals in

(a) 1 dimension (19.7),∫
dx δ(h(x)) =

∑
{x:h(x)=0}

1
|h′(x)|

, (19.40)

(b) and in d dimensions (19.8), h : Rd → Rd,∫
Rd

dx δ(h(x)) =
∑

j

∫
M j

dx δ(h(x))

=
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣ .(19.41)

where M j are arbitrarily small regions enclosing
the zeros x j (with x j not on the boundary ∂M j).
For a refresher on Jacobian determinants, read, for
example, Stone and Goldbart Sect. 12.2.2.

(c) The delta function can be approximated by a se-
quence of Gaussians∫

dx δ(x) f (x) = lim
σ→0

∫
dx

e−
x2

2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal

expression∫
R

dx δ(x2)

makes sense.

19.2. Derivatives of Dirac delta functions. Consider
δ(k)(x) = ∂k

∂xk δ(x) .

Using integration by parts, determine the value of∫
R

dx δ′(y) , where y = f (x) − x (19.42)∫
dx δ(2) (y) =

∑
{x:y(x)=0}

1
|y′|

{
3

(y′′)2

(y′)4
− y′′′

(y′)3

}
(19.43)

∫
dx b(x)δ(2)(y) =

∑
{x:y(x)=0}

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3

+b

(
3

(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(19.44)

These formulas are useful for computing effects of weak
noise on deterministic dynamics [9].

19.3. Lt generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,∫

M
dzLt2 (y, z)Lt1(z, x) = Lt2+t1 (y, x) , t1, t2 ≥ 0 .

exerMeasure - 12sep2003 ChaosBook.org version15.8, Oct 18 2016
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(19.45)

As the flows in which we tend to be interested are in-
vertible, the L’s that we will use often do form a group,
with t1, t2 ∈ R.

19.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in
the interval [0, 1] for the tent map

f (x) = a(1 − 2|x − 0.5|)

for several values of a.

(b) Determine analytically the a dependence of the es-
cape rate γ(a).

(c) Compare your results for (a) and (b).

19.5. Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (19.39).

(b) The maximum value of the first map is 1. Com-
pute an invariant measure for this map.

(c) Compute the leading eigenvalue of L for this map.

(d) For this map there is an infinite number of in-
variant measures, but only one of them will be
found when one carries out a numerical simula-
tion. Determine that measure, and explain why
your choice is the natural measure for this map.

(e) In the second map the maximum occurs at α =
(3 −

√
5)/2 and the slopes are ±(

√
5 + 1)/2. Find

the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (

√
5 + 1)/2.

(medium difficulty)

19.6. Escape rate for a flow conserving map. Adjust Λ0,
Λ1 in (19.37) so that the gap between the intervals M0,
M1 vanishes. Show that the escape rate equals zero in
this situation.

19.7. Eigenvalues of the Perron-Frobenius operator for the
skew full tent map. Show that for the skew full tent
map

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] .

(19.46)

the eigenvalues are available analytically, compute the
first few.

exerMeasure - 12sep2003 ChaosBook.org version15.8, Oct 18 2016
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