Exercises

Exercise 26.1 Period doubling in your pocket: Take a programmable pocket calculator or Matlab or whatever makes you feel good and program the function

$$f(x) = \lambda - x^2 \,.$$

The game consists in staring at the display, and looking for regularities in the sequences of iterates.

- (a) (no thinking) Try to determine fixed point $x_* = f(x_*)$ by blind iteration. Chose some value of λ a bit bigger than 0, and initial x between -1 and 1. Enter the initial x_0 and read off the next x_1 . Start again, with x_1 as input. The number x_2 appears on the display. Is it a fixed point? Press the button again, and again, until $x_n = x_*$ to desired accuracy.
- (f) (no thinking) Increase λ in small steps, as long as the trajectory does not blow up, let transients die, and then plot few hundred consecutive x_n . Generate a figure to replace the hand drawn figure 26.14.
- (c) (thinking) Determine the smallest positive λ for which almost any initial x_0 iterates to $-\infty$.
- (b) (no thinking) Try $\lambda = 3/4$. How's the convergence now?
- (c) (thinking) Determine λ for which the fixed point x_* goes unstable.
- (d) (no thinking) Try also λ : 1, 1.31070274134, 1.38154748443, 1.3979453597.
- (e) (thinking) Compute the next number in this series. Estimate Feigenbaum δ .
- (g) (thinking) Determine numerically scaling factors α_m which overlay (approximately) neighborhood of x = 0 for superstable $f^{2^{(m-1)}}(x)$ over the neighborhood for $\alpha_m f^{2^m}(f^{2^m}(x/\alpha_m))$ for 4, 8, 16, \cdots superstable cycles. Draw a figure to replace the hand drawn figure 26.26.