Exercises

Exercise 26.1 Period doubling in your pocket: Take a programmable

 pocket calculator or Matlab or whatever makes you feel good and program the function$$
f(x)=\lambda-x^{2} .
$$

The game consists in staring at the display, and looking for regularities in the sequences of iterates.
(a) (no thinking) Try to determine fixed point $x_{*}=f\left(x_{*}\right)$ by blind iteration. Chose some value of λ a bit bigger than 0 , and initial x between -1 and 1. Enter the initial x_{0} and read off the next x_{1}. Start again, with x_{1} as input. The number x_{2} appears on the display. Is it a fixed point? Press the button again, and again, until $x_{n}=x_{*}$ to desired accuracy.
(f) (no thinking) Increase λ in small steps, as long as the trajectory does not blow up, let transients die, and then plot few hundred consecutive x_{n}. Generate a figure to replace the hand drawn figure 26.14,
(c) (thinking) Determine the smallest positive λ for which almost any initial x_{0} iterates to $-\infty$.
(b) (no thinking) Try $\lambda=3 / 4$. How's the convergence now?
(c) (thinking) Determine λ for which the fixed point x_{*} goes unstable.
(d) (no thinking) Try also λ : $1,1.31070274134,1.38154748443,1.3979453597$.
(e) (thinking) Compute the next number in this series. Estimate Feigenbaum δ.
(g) (thinking) Determine numerically scaling factors α_{m} which overlay (approximately) neighborhood of $x=0$ for superstable $f^{2(m-1)}(x)$ over the neighborhood for $\alpha_{m} f^{2^{m}}\left(f^{2^{m}}\left(x / \alpha_{m}\right)\right)$ for $4,8,16, \cdots$ superstable cycles. Draw a figure to replace the hand drawn figure 26.26.

