
Chapter 25

Discrete symmetry factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

To those versed in Quantum Mechanics (QM), utility of symmetries in reduc-
ing spectrum calculations is sine qua non: if a group of symmetries com-
mutes with the Hamiltonian, irreducible representations of the symmetry

group block-diagonalize it, each block spanned by a set of the degenerate eigen-
states of the same energy. Like most QM gymnastics, this block-diagonalization
has nothing to do with quantum mysteries, it is just linear algebra. As we shall
show here, classical spectral determinants factor in the same way, given that the
evolution operator Lt(y, x) for a system f t(x) is invariant under a discrete symme-
try group G = {e, g2, g3, · · · , g|G|} of order |G|. In the process we 1.) learn that the
classical dynamics, once recast into the language of evolution operators, is much
closer to quantum mechanics than is apparent in the Newtonian, ODE formula-
tion (linear evolution operators, group-theoretical spectral decompositions, . . .),
2.) that once the symmetry group is quotiented out, the dynamics simplifies, and
3.) it’s a triple home run: simpler symbolic dynamics, fewer cycles needed, much
better convergence of cycle expansions. Once you master this, going back to your
pre-desymmetrization ways is unthinkable.

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cycle p
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dµ-dimensional irreps D(µ)(g) of the symmetry group,

(1 − tp)mp =
∏
µ

det
(
1 − D(µ)(hp̂)tp̂

)dµ
, tp = t|G|/mp

p̂ ,

where t p̂ is the cycle weight evaluated on the relative periodic orbit p̂, |G| is the
order of the group, h p̂ is the group element relating the fundamental domain cycle
p̂ to a segment of the full space cycle p, and mp is the multiplicity of the p cycle.
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As dynamical zeta functions have particularly simple cycle expansions, a geomet-
rical shadowing interpretation of their convergence, and suffice for determination
of leading eigenvalues, we shall use them to explain the group-theoretic factoriza-
tions; the full spectral determinants can be factorized using the same techniques.

This chapter is meant to serve as a detailed guide to the computation of dyn-
amical zeta functions and spectral determinants for systems with discrete symme-
tries. Familiarity with basic group-theoretic notions is assumed, with some details
relegated to appendix A10.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working out two cases of physical interest:
C2 = D1 and C3v = D3 symmetries. C2v = D1 × D1 and C4v = D4 symmetries
are discussed in appendix A25. We start with a review of some basic facts of the
group representation theory.

25.1 Transformation of functions

So far we have recast the problem of long time dynamics into language of lin-
ear operators acting of functions, simplest one of which is ρ(x, t), the density of
trajectories at time t. First we will explain what discrete symmetries do to such
functions, and then how they affect their evolution in time.

Let g be an abstract group element in G. For a discrete group a group element
is typically indexed by a discrete label, g = g j. For a continuous group it is
typically parametrized by a set of continuous parameters, g = g(θm). As discussed
on page 167, linear action of a group element g ∈ G on a state x ∈ M is given by
its matrix representation, a finite non-singular [d×d] matrix D(g):

x→ x′ = D(g) x . (25.1)

example 25.1

p. 483

example 25.2

p. 483

How does the group act on a function ρ of x? Denote by U(g) the operator
ρ′(x) = U(g) ρ(x) that returns the transformed function. One defines the trans-
formed function ρ′ by requiring that it has the same value at x′ = D(g)x as the
initial function has at x,

ρ′(x′) = U(g) ρ(D(g)x) = ρ(x) .

Replacing x → D(g)−1x, we find that a group element g ∈ G acts on a function
ρ(x) defined on state spaceM by its operator representation

U(g) ρ(x) = ρ(D(g)−1x) . (25.2)

This is the conventional, Wigner definition of the effect of transformations on
functions that should be familiar to master quantum mechanicians. Again: U(g) is
an ‘operator’, not a matrix - it is an operation whose only meaning is exactly what
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CHAPTER 25. DISCRETE SYMMETRY FACTORIZATION 467

(25.2) says. And yes, Mathilde, the action on the state space points is D(g)−1x,
not D(g)x.

Consider next the effect of two successive transformations g1, g2:

U(g2)U(g1) ρ(x) = U(g2) ρ(D(g1)−1x) = ρ(D(g2)−1D(g1)−1x)

= ρ(D(g1g2)−1x) = U(g)ρ(x) .

Hence if g1g2 = g, we have U(g2)U(g1) = U(g): so operators U(g) form a repre-
sentation of the group.

25.2 Taking care of fundamentals

Instant gratification takes too long.
— Carrie Fisher

If a dynamical system (M, f ) is equivariant under a discrete symmetry (visualize
the 3-disk billiard, figure 11.2), the state spaceM can be tiled by a fundamental
domain M̂ and its images M̂2 = g2M̂, M̂3 = g3M̂, . . . under the action of the
symmetry group G = {e, g2, . . . , g|G|} ,

section 11.3

M =
∑
g∈G

M̂g = M̂ ∪ M̂2 ∪ M̂3 · · · ∪ M̂|G| . (25.3)

example 25.3

p. 483

25.2.1 Regular representation

Take an arbitrary function ρ(x) defined over the state space x ∈ M. If the state
space is tiled by a fundamental domain M̂ and its copies, function ρ(x) can be
written as a |G|-dimensional vector of functions, each function defined over the
fundamental domain x̂ ∈ M̂ only. The natural choice of a function space basis is
the |G|-component regular basis vector

ρ
reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 =


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 , (25.4)

constructed from an arbitrary function ρ(x) defined over the entire state spaceM,
by applying U(g−1) to ρ(x̂) for each g ∈ G, with state space points restricted to the
fundamental domain, x̂ ∈ M̂.
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Now apply group action operator U(g) to a regular basis vector:

U(g)


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 =


ρ( D(g−1)x̂ )
ρ(D(g−1g2)x̂)

...
ρ(D(g−1g|G|)x̂)

 .
It acts by permuting the components. (And yes, Mathilde, the pesky g−1 is inher-
ited from (25.2), and there is nothing you can do about it.) Thus the action of the
operator U(g) on a regular basis vector can be represented by the corresponding
[|G|×|G|] permutation matrix, called the left regular representation Dreg(g),

U(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 = Dreg(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 .
A product of two permutations is a permutation, so this is a matrix representation
of the group. To compute its entries, write out the matrix multiplication explicitly,
labeling the vector components by the corresponding group elements,

ρ
reg
b (x̂) =

G∑
a

Dreg(g)ba ρ
reg
a (x̂) .

A product of two group elements g−1a is a unique element b, so the ath row of
Dreg(g) is all zeros, except the bth column which satisfies g = b−1a. We arrange the
columns of the multiplication table by the inverse group elements, as in table 25.1.
Setting multiplication table entries with g to 1, and the rest to 0 then defines the
regular representation matrix Dreg(g) for a given g,

Dreg(g)ab = δg,b−1a . (25.5)

For instance, in the case of the 2-element group {e, σ} the Dreg(g) can be either
the identity or the interchange of the two domain labels,

Dreg(e) =

[
1 0
0 1

]
, Dreg(σ) =

[
0 1
1 0

]
. (25.6)

The multiplication table for D3 is a more typical, nonabelian group example:
see table 25.1. The multiplication tables for C2 and C3 are given in table 25.2.

The regular representation of group identity element e is always the identity
matrix. As Dreg(g) is a permutation matrix, mapping a tile M̂a into a different tile
M̂ga , M̂a if g , e, only Dreg(e) has diagonal elements, and

tr Dreg(g) = |G| δg,e . (25.7)

example 25.4

p. 483

example 25.5

p. 484
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D3 e σ12 σ23 σ31 C1/3 C2/3

e e σ12 σ23 σ31 C1/3 C2/3

(σ12)−1 σ12 e C1/3 C2/3 σ23 σ31
(σ23)−1 σ23 C2/3 e C1/3 σ31 σ12
(σ31)−1 σ31 C1/3 C2/3 e σ12 σ23
(C1/3)−1 C2/3 σ23 σ31 σ12 e C1/3

(C2/3)−1 C1/3 σ31 σ12 σ23 C2/3 e

Dreg(σ23) =



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


, Dreg(C1/3) =



0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0


Table 25.1: (top) The multiplication table of D3, the group of symmetries of a triangle. (bottom)
By (25.5), the 6 regular representation matrices Dreg(g) of dihedral group D3 have ‘1’ at the location
of g in the D3 multiplication table table 25.1, ‘0’ elsewhere. For example, the regular representation
of the action of operators U(σ23) and U(C2/3) on the regular basis (25.4) are shown here.

25.2.2 Irreps: to get invariants, average

A representation D(µ)(g) acting on dµ-dimensional vector space V (µ) is an irre-
ducible representation (irrep) of group G if its only invariant subspaces are V (µ)

and the null vector {0}. To develop a feeling for this, one can train on a number of
simple examples, and work out in each case explicitly a similarity transformation
S that brings Dreg(g) to a block diagonal form

S −1Dreg(g)S =


D(1)(g)

D(2)(g)
. . .

 (25.8)

for every group element g, such that the corresponding subspace is invariant under
actions g ∈ G, and contains no further nontrivial subspace within it. For the prob-
lem at hand we do not need to construct invariant subspaces ρ(µ)(x) and D(µ)(g)
explicitly. We are interested in the symmetry reduction of the trace formula, and
for that we will need only one simple result (lemma, theorem, whatever): the reg-
ular representation of a finite group contains all of its irreps µ, and its trace is
given by the sum

tr Dreg(g) =
∑
µ

dµ χ(µ)(g) , (25.9)

where dµ is the dimension of irrep µ, and the characters χ(µ)(g) are numbers intrin-
sic to the group G that have to be tabulated only once in the history of humanity.
And they all have been. The finiteness of the number of irreps and their dimen-
sions dµ follows from the dimension sum rule for tr Dreg(e), |G| =

∑
d2
µ.

The simplest example is afforded by the 1-dimensional subspace (irrep) given
by the fully symmetrized average of components of the regular basis function
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ρreg(x)

ρ(A1)(x) =
1
|G|

G∑
g

ρ(D(g) x) .

By construction, ρ(A1) is invariant under all actions of the group, U(g) ρ(A1)(x) =

ρ(A1)(x) . In other words, for every g this is an eigenvector of the regular repre-
sentation Dreg(g) with eigenvalue 1. Other eigenvalues, eigenvectors follow by
working out C3, CN (discrete Fourier transform!) and D3 examples.

example 25.6

p. 484

example 25.7

p. 484

example 25.8

p. 485

The beautiful Frobenius ‘character orthogonality’ theory of irreps (irreducible
representations) of finite groups follows, and is sketched here in appendix A25; it
says that all other invariant subspaces are obtained by weighted averages (‘projec-
tions’)

ρ(µ)(x) =
dµ
|G|

∑
g

χ(µ)(g) U(g) ρ(x) =
dµ
|G|

∑
g

χ(µ)(g) ρ(D(g−1)x) (25.10)

The above ρ(A1)(x) invariant subspace is a special case, with all χ(A1)(g) = 1.

By now the group acts in many different ways, so let us recapitulate:

g abstract group element, multiplies other elements
D(g) [d×d] state space transformation matrix, multiplies x ∈ M
U(g) operator, acts on functions ρ(x) defined over state spaceM

D(µ)(g) [dµ×dµ] irrep, acts on invariant subspace x ∈ M(µ)

Dreg(g) [|G|×|G|] regular matrix rep, acts on vectors x ∈ Mreg

Note that the state space transformation D(g) , D(e) can leave sets of ‘bound-
ary’ points invariant (or ‘invariant points’, see (10.9)); for example, under reflec-
tion σ across a symmetry plane, the plane itself remains invariant. The boundary
periodic orbits that belong to such pointwise invariant sets will require special
care in evaluations of trace formulas.

25.3 Dynamics in the fundamental domain

What happens in the fundamental domain, stays in the fun-
damental domain.

—Professore Dottore Gatto Nero

How does a group act on the evolution operator Lt(y, x)? As in (25.2), its value
should be the same if evaluated at the same points in the rotated coordinates,

U(g)Lt(y, x) = Lt(D(g)−1y,D(g)−1x) . (25.11)
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We are interested in a dynamical system invariant under the symmetry group G ,

i.e., with equations of motion invariant (equivariant) under all symmetries g ∈ G,
section 10.1

D(g) f t(x) = f t(D(g) x) , (25.12)

hence for the evolution operator defined by (20.24) (we can omit the observable
weight with no loss of generality, as long as the observable does not break the
symmetry):

U(g−1)Lt(y, x) = Lt(D(g) y,D(g) x)

= δ
(
D(g) y − f t(D(g) x)

)
= δ

(
D(g) (y − f t(x))

)
=

1
|det D(g)|

δ
(
y − f t(x)

)
.

For compact groups |det D(g)| = 1 by (10.3), so the evolution operator Lt(y, x) is
invariant under group actions,

U(g)Lt(y, x) = Lt(y, x) . (25.13)

This is as it should be. If G is a symmetry of dynamics, the law that moves
densities around should have the same form in all symmetry related coordinate
systems.

As the function ρ(x) that the evolution operator (20.24) acts on is now replaced
by the regular basis vector of functions (25.4) over the fundamental domain, the
evolution operator itself becomes a [|G|×|G|] matrix. If the initial point lies in tile
M̂a, its deterministic trajectory lands in the unique tile M̂b, with a unique relative
shift g = b−1a, with the only non-vanishing entry Lt(y, x)ba = Lt(D(b)ŷ,D(a)x̂)
wherever the regular representation Dreg(g)ba has entry 1 in row a and column
b. Using the evolution operator invariance (25.13) one can move the end point y
into the fundamental domain, and then use the relation g = b−1a to relate the start
point x to its image in the fundamental domain,

Lt(D(b)ŷ,D(a)x̂) = Lt(ŷ,D(g)x̂) ≡ L̂t(ŷ, x̂; g) .

For a given g all non-vanishing entries are the same, and the evolution operator
(20.24) is replaced by the [|G|×|G|] matrix of form

Lt
ba(ŷ, x̂; g) = Dreg(g)baL̂

t(ŷ, x̂; g) ,

if x̂ ∈ M̂a and ŷ ∈ M̂b, zero otherwise, and the evolution L̂t(ŷ, x̂; g) restricted to
M̂. Another way to say it is that the law of evolution in the fundamental domain
is given by

x̂(t) = f̂ t(x̂0) = D(g(t)) f t(x̂0) ,

where the matrix D(g(t)) is the group operation that maps the end point of the
full state space trajectory x(t) back to its fundamental domain representative x̂(t).
While the global trajectory runs over the full space M, the symmetry-reduced
trajectory is brought back into the fundamental domain M̂ every time it crosses
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into an adjoining tile; the two trajectories are related by the ‘reconstruction’ oper-
ation g = g(x̂0, t) which maps the global trajectory endpoint into its fundamental
domain image.

Now the traces (22.3) required for the evaluation of the eigenvalues of the
evolution operator can be computed on the fundamental domain alone

trLt =

∫
M

dxLt(x, x) =

G∑
g

tr Dreg(g)
∫
M̂

dx̂L̂t(x̂, x̂; g) . (25.14)

Nothing seems to have been gained: the trace of regular representation matrix
tr Dreg(g) = |G| δg,e guarantees that only those repeats of the fundamental domain
cycles p̂ that correspond to complete global cycles p contribute, and the factor
tr Dreg(e) = |G| simply says that integral over whole state space is |G| times the
integral over the fundamental domain.

example 25.10

p. 487

But not so fast! Nobody said that the traces of the irreps, tr D(µ)(g) = χ(µ)(g) ,
in the decomposition (25.9) are nonvanishing only for the identity operation e;
they pick up a contribution for every reconstruction operation g(x̂0, t),

trLt =
∑
µ

dµ tr L̂t
µ , tr L̂t

µ =

G∑
g

χ(µ)(g)
∫
M̂

dx̂ L̂t(x̂, x̂; g) , (25.15)

and then the fundamental domain trace
∫

dx̂ L̂t(x̂, x̂; g) picks up a contribution
from each fundamental domain prime cycle p̂, i.e., all relative periodic orbits

x̂ p̂ = gp̂ f T p̂(x̂p̂) , gp̂ = g(x̂p̂,T p̂) .

In chapter 11 we have shown that a discrete symmetry induces degeneracies
among periodic orbits and decomposes periodic orbits into repetitions of irre-
ducible segments; this reduction to a fundamental domain furthermore leads to
a convenient symbolic dynamics compatible with the symmetry, and, most impor-
tantly, to a factorization of dynamical zeta functions. This we now develop, first
in a general setting and then for specific examples.

25.4 Discrete symmetry factorizations

As we saw in chapter 11, discrete symmetries relate classes of periodic orbits and
reduce dynamics to a fundamental domain. Such symmetries simplify and im-
prove the cycle expansions in a rather beautiful way; in classical dynamics, just
as in quantum mechanics, the symmetrized subspaces can be probed by linear op-
erators of different symmetries. If a linear operator commutes with the symmetry,
it can be block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.

symm - 11apr2015 ChaosBook.org edition16.0, Jan 28 2018

http://youtube.com/embed/SnBUkUqsWTU
http://youtube.com/embed/NKSqbbiVE1o
http://youtube.com/embed/cwJAiar4S9k


CHAPTER 25. DISCRETE SYMMETRY FACTORIZATION 473

We start by working out the factorization of dynamical zeta functions for
reflection-symmetric systems in sect. 25.5, and the factorization of the corre-
sponding spectral determinants in example 25.9. As reflection symmetry is essen-
tially the only discrete symmetry that a map of the interval can have, this example
completes the group-theoretic factorization of determinants and zeta functions for
1-dimensional maps.

25.4.1 Factorization of dynamical zeta functions

Let p be the full orbit, p̂ the orbit in the fundamental domain and hp̂ an element
of Hp, the symmetry group of p. Restricting the volume integrations to the in-
finitesimal neighborhoods of the cycles p and p̂, respectively, and performing the
standard resummations, we obtain the identity

(1 − tp)mp = det
(
1 − Dreg(hp̂)t p̂

)
, (25.16)

valid cycle by cycle in the Euler products (22.11) for the dynamical zeta func-
tion. Here ‘det ′ refers to the [|G|×|G|] regular matrix representation Dreg(hp̂); as
we shall see, this determinant can be evaluated in terms of irrep characters, and
no explicit representation of Dreg(h p̂) is needed. Finally, if a cycle p is invariant
under the symmetry subgroup Hp ⊆ G of order hp, its weight can be written as a
repetition of a fundamental domain cycle

tp = thp

p̂ (25.17)

computed on the irreducible segment that corresponds to a fundamental domain
cycle.

According to (25.16) and (25.17), the contribution of a degenerate class of
global cycles (cycle p with multiplicity mp = |G|/hp) to a dynamical zeta function
is given by the corresponding fundamental domain cycle p̂:

(1 − thp

p̂ )mp = det
(
1 − Dreg(gp̂)tp̂

)
(25.18)

Let Dreg(g) =
⊕

µ dµD(µ)(g) be the decomposition of the regular matrix represen-
tation into the dµ-dimensional irreps µ of a finite group G. Such decompositions
are block-diagonal, so the corresponding contribution to the Euler product (22.8)
factorizes as

det (1 − Dreg(g)t) =
∏
µ

det (1 − D(µ)(g)t)dµ , (25.19)

where now the product extends over all distinct dµ-dimensional irreps, each con-
tributing dµ times. For the cycle expansion purposes, it has been convenient to
emphasize that the group-theoretic factorization can be effected cycle by cycle, as
in (25.18); but from the evolution operator point of view, the key observation is
that the symmetry reduces the evolution operator to a block diagonal form; this
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block diagonalization implies that the dynamical zeta functions (22.11) factorize
as

1
ζ

=
∏
µ

1

ζ
dµ
µ

,
1
ζµ

=
∏

p̂

det
(
1 − D(µ)(gp̂)t p̂

)
. (25.20)

Determinants of d-dimensional irreps can be evaluated using the expansion of
determinants in terms of traces,

det (1 + M) = 1 + tr M +
1
2

(
(tr M)2 − tr M2

)
+

1
6

(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · · +

1
d!

(
(tr M)d − · · ·

)
, (25.21)

and each factor in (25.19) can be evaluated by looking up the characters χ(µ)(g) =

tr D(µ)(g) in standard tables [12]. In terms of characters, we have for the 1-
dimensional representations

det (1 − D(µ)(g)t) = 1 − χ(µ)(g)t ,

for the 2-dimensional representations

det (1 − D(µ)(g)t) = 1 − χ(µ)(g)t +
1
2

(
χ(µ)(g)2 − χ(µ)(g2)

)
t2,

and so forth.

In the fully symmetric subspace tr DA1(g) = 1 for all orbits; hence a straight-
forward fundamental domain computation (with no group theory weights) always
yields a part of the full spectrum. In practice this is the most interesting subspec-
trum, as it contains the leading eigenvalue of the evolution operator.

exercise 25.2

25.4.2 Factorization of spectral determinants

Factorization of the full spectral determinant (22.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above. By
(25.14) the trace of the evolution operator Lt splits into the sum of inequivalent
irreducible subspace contributions

∑
µ trLt

µ, with

trLt
µ = dµ

∑
g∈G

χ(µ)(g)
∫
M̂

dx̂Lt(D(g)−1 x̂, x̂) .

This leads by standard manipulations to the factorization of (22.8) into

F(z) =
∏
µ

Fµ(z)dµ

Fµ(z) = exp

−∑
p̂

∞∑
r=1

1
r

χ(µ)(gr
p̂)zn p̂r

|det
(
1 − M̂r

p̂

)
|

 , (25.22)
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where M̂p̂ = D(g p̂)Mp̂ is the fundamental domain Jacobian. Boundary orbits
require special treatment, discussed in sect. 25.4.3, with examples given in the
next section as well as in the specific factorizations discussed below.

25.4.3 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical zeta func-
tions for the different symmetries we have to discuss an effect that arises for orbits
that run on a symmetry line that borders a fundamental domain. In our 3-disk
example, no such orbits are possible, but they exist in other systems, such as in
the bounded region of the Hénon-Heiles potential and in 1-d maps. For the sym-
metrical 4-disk billiard, there are in principle two kinds of such orbits, one kind
bouncing back and forth between two diagonally opposed disks and the other kind
moving along the other axis of reflection symmetry; the latter exists for bounded
systems only. While there are typically very few boundary orbits, they tend to be
among the shortest orbits, and their neglect can seriously degrade the convergence
of cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the Jacobian matrix Mp of the linearization per-
pendicular to the orbit and thus the eigenvalues. Typically, e.g. if the symmetry
is a reflection, some eigenvalues of Mp change sign. This means that instead of
a weight 1/det (1 − Mp) as for a regular orbit, boundary cycles also pick up con-
tributions of form 1/det (1 − D(g)Mp), where D(g) is a symmetry operation that
leaves the orbit pointwise invariant; see example 25.9.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of a dynamical zeta func-
tion (22.11) from a determinant like (22.8) usually starts with an expansion of the
determinants of the Jacobian. The leading order terms just contain the product of
the expanding eigenvalues and lead to the dynamical zeta function (22.11). Next
to leading order terms contain products of expanding and contracting eigenvalues
and are sensitive to their signs. Clearly, the weights tp in the dynamical zeta func-
tion will then be affected by reflections in the Poincaré section perpendicular to
the orbit. In all our applications it was possible to implement these effects by the
following simple prescription.

If an orbit is invariant under a little groupHp = {e, b2, . . . , bh}, then the corre-
sponding group element in (25.16) will be replaced by a projector. If the weights
are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (25.23)

In the cases that we have considered, the change of sign may be taken into account
by defining a sign function εp(g) = ±1, with the “-" sign if the symmetry element
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g flips the neighborhood. Then (25.23) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (25.24)

The factorizations (25.20), (25.22) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for C2 and D3 symmetries. D2 and D4 symmetries are worked
out in appendix A25.

25.5 C2 = D1 factorization

As the simplest example of implementing the above scheme consider the C2 = D1
symmetry. For our purposes, all that we need to know here is that each orbit or
configuration is uniquely labeled by an infinite string {si}, si = +,− and that the
dynamics is invariant under the + ↔ − interchange, i.e., it is C2 symmetric. The
C2 symmetry cycles separate into two classes, the self-dual configurations +−,
+ + −−, + + + − −−, + − − + − + +−, · · · , with multiplicity mp = 1, and the
asymmetric configurations +, −, + + −, − − +, · · · , with multiplicity mp = 2.
For example, as there is no absolute distinction between the “up" and the “down"
spins, or the “left" or the “right" lobe, t+ = t−, t++− = t+−−, and so on.

exercise 25.6

The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard si ∈ {+,−}

Ising spin labeling by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (25.25)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · · − + − + · · · maps into · · · 000 · · · = 0, − + +− = · · · − − + + − − + + · · ·

maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is given in
table 15.1.

Depending on the maximal symmetry groupHp that leaves an orbit p invariant
(see sect. 25.3 as well as example 25.9), the contributions to the dynamical zeta
function factor as

A1 A2

Hp = {e} : (1 − tp̂)2 = (1 − t p̂)(1 − tp̂)

Hp = {e, σ} : (1 − t2
p̂) = (1 − t p̂)(1 + tp̂) , (25.26)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)

H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t2
0
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This yields two binary cycle expansions. The A1 subspace dynamical zeta function
is given by the standard binary expansion (23.8). The antisymmetric A2 subspace
dynamical zeta function ζA2 differs from ζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)

(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)

(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (25.27)

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect. 25.4.3) with
group-theoretic factor hp = (e + σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̂)(1 − 0tp̂) (25.28)

This is the 1/ζ part of the boundary orbit factorization discussed in example 25.9,
where the factorization of the corresponding spectral determinants for the 1-dim-
ensional reflection symmetric maps is worked out in detail.

example 25.9

p. 486

25.6 D3 factorization: 3-disk game of pinball

The next example, the D3 symmetry, can be worked out by a glance at figure 15.12 (a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure 15.12 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced
by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type 0 reflects
the projectile to the disk it comes from (back–scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·
maps into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into
· · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions for short
cycles is given in table 15.2.
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D3 has two 1-dimensional irreps, symmetric and antisymmetric under reflec-
tions, denoted A1 and A2, and a pair of degenerate 2-dimensional representations
of mixed symmetry, denoted E. The contribution of an orbit with symmetry g to
the 1/ζ Euler product (25.19) factorizes according to

det (1 − Dreg(h)t) =
(
1 − χ(A1)(h)t

) (
1 − χ(A2)(h)t

) (
1 − χ(E)(h)t + χ(A2)(h)t2

)2

(25.29)

with the three factors contributing to the D3 irreps A1, A2 and E, respectively, and
the 3-disk dynamical zeta function factorizes into ζ = ζA1ζA2ζ

2
E . Substituting the

D3 characters [12]

D3 A1 A2 E
e 1 1 2

C,C2 1 1 −1
σv 1 −1 0

into (25.29), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

g p̂ A1 A2 E

e : (1 − t p̂)6 = (1 − t p̂)(1 − t p̂)(1 − 2t p̂ + t2
p̂)2

C,C2 : (1 − t3
p̂)2 = (1 − t p̂)(1 − t p̂)(1 + tp̂ + t2

p̂)2

σv : (1 − t2
p̂)3 = (1 − t p̂)(1 + t p̂)(1 + 0t p̂ − t2

p̂)2. (25.30)

where σv stands for any one of the three reflections.

The Euler product (22.11) on each irreducible subspace follows from the fac-
torization (25.30). On the symmetric A1 subspace the ζA1 is given by the standard
binary curvature expansion (23.8). The antisymmetric A2 subspace ζA2 differs
from ζA1 only by a minus sign for cycles with an odd number of 0’s, and is given
in (25.27). For the mixed-symmetry subspace E the curvature expansion is given
by

1/ζE = (1 + zt1 + z2t2
1)(1 − z2t2

0)(1 + z3t100 + z6t2
100)(1 − z4t2

10)

(1 + z4t1001 + z8t2
1001)(1 + z5t10000 + z10t2

10000)

(1 + z5t10101 + z10t2
10101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t2
1 − t2

0) + z3(t001 − t1t2
0)

+z4
[
t0011 + (t001 − t1t2

0)t1 − t2
01

]
(25.31)

+z5
[
t00001 + t01011 − 2t00111 + (t0011 − t2

01)t1 + (t2
1 − t2

0)t100
]

+ · · ·

We have reinserted the powers of z in order to group together cycles and pseudo-
cycles of the same length. Note that the factorized cycle expansions retain the
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curvature form; long cycles are still shadowed by (somewhat less obvious) com-
binations of pseudo-cycles.

Referring back to the topological polynomial (18.40) obtained by setting tp =

1, we see that its factorization is a consequence of the D3 factorization of the ζ
function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (25.32)

as obtained from (23.8), (25.27) and (25.31) for tp = 1.

Their symmetry is K = {e, σ}, so according to (25.23), they pick up the group-
theoretic factor gp = (e +σ)/2. If there is no sign change in tp, then evaluation of
det (1 − e+σ

2 t p̂) yields

A1 A2 E

boundary: (1 − tp)3 = (1 − tp̂)(1 − 0tp̂)(1 − tp̂)2 , tp = t p̂ . (25.33)

However, if the cycle weight changes sign under reflection, tσ p̂ = −tp̂, the bound-
ary orbit does not contribute to the subspace symmetric under reflection across the
orbit;

A1 A2 E

boundary: (1 − tp)3 = (1 − 0tp̂)(1 − tp̂)(1 − tp̂)2 , tp = t p̂ . (25.34)

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and ease of their evaluation.
Once this is appreciated, it is hard to conceive of a calculation without factor-
ization; it would correspond to quantum mechanical calculations without wave–
function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums to
the cycle expansions does not reduce the exponential growth in number of cycles
with the cycle length, in practice only the short orbits are used, and for them the
labor saving is dramatic. For example, for the 3-disk game of pinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta functions.
One reason is that the unfactorized dynamical zeta function has many closely
spaced zeros and zeros of multiplicity higher than one; since the cycle expansion
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is a polynomial expansion in topological cycle length, accommodating such be-
havior requires many terms. The dynamical zeta functions on separate subspaces
have more evenly and widely spaced zeros, are smoother, do not have symmetry-
induced multiple zeros, and fewer cycle expansion terms (short cycle truncations)
suffice to determine them. Furthermore, the cycles in the fundamental domain
sample state space more densely than in the full space. For example, for the 3-
disk problem, there are 9 distinct (symmetry unrelated) cycles of length 7 or less
in full space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 different
periodic points in 1/6-th the state space, i.e., an increase in density by a factor 3
with the same numerical effort.

We emphasize that the symmetry factorization (25.30) of the dynamical zeta
function is intrinsic to the classical dynamics, and not a special property of quantal
spectra. The factorization is not restricted to the Hamiltonian systems, or only to
the configuration space symmetries; for example, the discrete symmetry can be
a symmetry of the Hamiltonian phase space [16]. In conclusion, the manifold
advantages of the symmetry reduced dynamics should thus be obvious; full state
space cycle expansions, such as those of exercise 25.4, are useful only for cross-
checking purposes.

Commentary

Remark 25.1. Symmetry reductions in periodic orbit theory. Some of the standard
references on characters and irreps of compact groups are refs. [2, 6, 8, 12, 21]. We found
Tinkham [19] introduction to the basic concepts the most enjoyable.

This chapter is based on a collaborative effort with B. Eckhardt. The group-theoretic
factorizations of dynamical zeta functions that we develop here were first introduced
and applied in ref. [3]. They are closely related to the symmetrizations introduced by
Gutzwiller [10] in the context of the semiclassical periodic orbit trace formulas, put
into more general group-theoretic context by Robbins [16], whose exposition, together
with Lauritzen’s [13] treatment of the boundary orbits, has influenced the presentation
given here. The symmetry reduced trace formula for a finite symmetry group G =

{e, g2, . . . , g|G|} with |G| group elements, where the integral over Haar measure is replaced
by a finite group discrete sum |G|−1 ∑

g∈G = 1 , derived in ref. [3]. A related group-
theoretic decomposition in context of hyperbolic billiards was utilized in ref. [1], and for
the Selberg’s zeta function in ref. [20]. One of its loftier antecedents is the Artin factor-
ization formula of algebraic number theory, which expresses the zeta-function of a finite
extension of a given field as a product of L-functions over all irreps of the corresponding
Galois group.

The techniques of this chapter have been applied to computations of the 3-disk clas-
sical and quantum spectra in refs. [7, 17], and to a “Zeeman effect" pinball and the x2y2

potentials in ref. [4, 5]. In a larger perspective, the factorizations developed above are
special cases of a general approach to exploiting the group-theoretic invariances in spec-
tra computations, such as those used in enumeration of periodic geodesics [15, 18] for
hyperbolic billiards [9] and Selberg zeta functions [11].
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Remark 25.2. Other symmetries. In addition to the symmetries exploited here,
time reversal symmetry and a variety of other non-trivial discrete symmetries can induce
further relations among orbits; we shall point out several of examples of cycle degenera-
cies under time reversal. We do not know whether such symmetries can be exploited for
further improvements of cycle expansions.
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25.7 Examples

Example 25.1. A matrix representation of 2-element group C2: If a 2-dimensional
map f (x) has the symmetry x1 → −x1, x2 → −x2, the symmetry group G consists of the
identity and C = C1/2, a rotation by π around the origin. The map f must then commute
with rotations by π, f (D(C)x) = D(C) f (x), with the matrix representation of C given by
the [2 × 2] matrix

D(C) =

[
−1 0
0 −1

]
. (25.35)

C satisfies C2 = e and can be used to decompose the state space into mutually orthog-
onal symmetric and antisymmetric subspaces by means of projection operators (25.50).

(continued in example 25.3)
click to return: p. 466

Example 25.2. A matrix representation of cyclic group C3: A 3-dimensional matrix
representation of the 3-element cyclic group C3 = {e,C1/3,C2/3} is given by the three
rotations by 2π/3 around z-axis in a 3-dimensional state space,

D(e) =

1 1
1

 , D(C1/3) =

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

1

 ,
D(C2/3) =

cos 4π
3 − sin 4π

3
sin 4π

3 cos 4π
3

1

 .
(continued in example 25.4) (X. Ding)

click to return: p. 466

Example 25.3. A 2-tiles state space: The state space M = {x1-x2 plane} of ex-
ample 25.1, with symmetry group G = {e,C}, can be tiled by a fundamental domain
M̂ = {half-plane x1 ≥ 0}, and CM̂ = {half-plane x1 ≤ 0}, its image under rotation by π.

click to return: p. 467

Example 25.4. The regular representation of cyclic group C3: (continued from
example 25.2) Take an arbitrary function ρ(x) over the state space x ∈ M, and define a
fundamental domain M̂ as a 1/3 wedge, with axis z as its (symmetry invariant) edge. The
state space is tiled with three copies of the wedge,

M = M̂1 ∪ M̂2 ∪ M̂3 = M̂ ∪C1/3M̂ ∪C2/3M̂ .

Function ρ(x) can be written as the 3-dimensional vector of functions over the fundamen-
tal domain x̂ ∈ M̂,

(ρreg
1 (x̂), ρreg

2 (x̂), ρreg
3 (x̂)) = (ρ(x̂), ρ(C1/3 x̂), ρ(C2/3 x̂)) . (25.36)

The multiplication table of C3 is given in table 25.2. By (25.5), the regular representation
matrices Dreg(g) have ‘1’ at the location of g in the multiplication table, ‘0’ elsewhere.
The actions of the operator U(g) are now represented by permutations matrices (blank
entries are zeros):

Dreg(e) =

1 1
1

 , Dreg(C1/3) =

 1
1

1

 , Dreg(C2/3) =

 1
1

1

 . (25.37)

(X. Ding)
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C2 e σ
e e σ
σ−1 σ e

C3 e C1/3 C2/3

e e C1/3 C2/3

(C1/3)−1 C2/3 e C1/3

(C2/3)−1 C1/3 C2/3 e

Table 25.2: The multiplication tables of the 2-element group C2, and C3, the group of symmetries
of a 3-blade propeller.

C2 e σ
A 1 1
B 1 -1

C3 e C1/3 C2/3

0 1 1 1
1 1 ω ω2

2 1 ω2 ω

D3 e 3σ 2C
A 1 1 1
B 1 -1 1
E 2 0 -1

Table 25.3: C2, C3 and D3 character tables. The classes {σ12, σ13, σ14}, {C1/3,C2/3} are denoted 3σ,
2C, respectively.

Example 25.5. The regular representation of dihedral group D3: The multiplication
table of D3 is given in table 25.1. By (25.5), the 6 regular representation matrices Dreg(g)
have ‘1’ at the location of g in the multiplication table, ‘0’ elsewhere. For example,
the regular representation of the action of operators U(σ23) and U(C2/3) are given in
table 25.1. (X. Ding)
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Example 25.6. Irreps of cyclic group C3: (continued from example 25.4) We
would like to generalize the symmetric-antisymmetric functions decomposition of C2 to
the order 3 group C3. Symmetrization can be carried out on any number of functions, but
there is no obvious ‘antisymmetrization’. We draw instead inspiration from the Fourier
transformation for a finite periodic lattice, and construct from the regular basis (25.36) a
new set of basis functions

ρ0(x̂) =
1
3

[
ρ(x̂) + ρ(C1/3 x̂) + ρ(C2/3 x̂)

]
(25.38)

ρ1(x̂) =
1
3

[
ρ(x̂) + ωρ(C1/3 x̂) + ω2ρ(C2/3 x̂)

]
(25.39)

ρ2(x̂) =
1
3

[
ρ(x̂) + ω2ρ(C1/3 x̂) + ωρ(C2/3 x̂)

]
. (25.40)

The representation of group C3 in this new basis is block diagonal by inspection:

D(e) =

1 1
1

 , D(C1/3) =

1 0 0
0 ω 0
0 0 ω2

 , D(C2/3) =

1 0 0
0 ω2 0
0 0 ω

 . (25.41)

Here ω = e2iπ/3. So C3 has three 1-dimensional irreps ρ0, ρ1 and ρ2. Generalization to
any Cn is immediate: this is just a finite lattice Fourier transform. (X. Ding)
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Example 25.7. Character table of D3: (continued from example 25.5) Let us con-
struct table 25.3. Spectroscopists conventions are to use labels A and B for symmetric,
respectively antisymmetric nondegenerate irreps, and E for the doubly degenerate irreps.
So 1-dimensional representations are denoted by A and B, depending on whether the basis
function is symmetric or antisymmetric with respect to transpositions σi j. E denotes the
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2-dimensional representation. As D3 has 3 classes, the dimension sum rule d2
1 +d2

2 +d2
3 = 6

has only one solution d1 = d2 = 1, d3 = 2. Hence there are two 1-dimensional irreps and
one 2-dimensional irrep. The first column is 1, 1, 2, and the first row is 1, 1, 1 corre-
sponding to the 1-d symmetric representation. We take two approaches to figure out the
remaining 4 entries. First, since B is antisymmetric 1-d representation, so the characters
should be ±1. We anticipate χ(B)(σ) = −1 and can quickly figure out the remaining 3
positions. We check the obtained table satisfies the orthonormal relations. Second, denote
χ(B)(σ) = x and χ(E)(σ) = y, then from the orthonormal relation of the second column
with the first column and itself, we obtain 1 + x + 2y = 0, and 1 + x2 + y2 = 6/3, we get
two sets of solutions, one of them can be shown not compatible with other orthonormality
relations, so x = −1, y = 0. Similarly, we can get the other two characters. (X. Ding)

click to return: p. 470

Example 25.8. Basis for irreps of D3: (continued from example 25.7) From ta-
ble 25.3, we have

PAρ(x) =
1
6

[
ρ(x) + ρ(σ12x) + ρ(σ23x) + ρ(σ31x) + ρ(C1/3x) + ρ(C2/3x)

]
(25.42)

PBρ(x) =
1
6

[
ρ(x) − ρ(σ12x) − ρ(σ23x) − ρ(σ31x) + ρ(C1/3x) + ρ(C2/3x)

]
(25.43)

For projection into irrep E, we need to figure out the explicit matrix representation first.
Obviously, the following 2 by 2 matrices are E irrep.

DE(e) =

[
1 0
0 1

]
, DE(C1/3) =

[
ω 0
0 ω2

]
, DE(C2/3) =

[
ω2 0
0 ω

]
(25.44)

DE(σ12) =

[
0 1
1 0

]
, DE(σ23) =

[
0 ω2

ω 0

]
, DE(σ31) =

[
0 ω
ω2 0

]
(25.45)

So apply projection operator on ρ(x) and ρ(σ12x):

PE
1 ρ(x) =

1
3

[
ρ(x) + ωρ(C1/3x) + ω2ρ(C2/3x)

]
(25.46)

PE
2 ρ(x) =

1
3

[
ρ(x) + ω2ρ(C1/3x) + ωρ(C2/3x)

]
(25.47)

PE
1 ρ(σ12x) =

1
3

[
ρ(σ12x) + ωρ(σ31x) + ω2ρ(σ23x)

]
(25.48)

PE
2 ρ(σ12x) =

1
3

[
ρ(σ12x) + ω2ρ(σ31x) + ωρ(σ23x)

]
(25.49)

Under the invariant basis

{PAρ(x), PBρ(x), PE
1 ρ(x), PE

2 ρ(σ12x), PE
1 ρ(σ12x), PE

2 ρ(x)}

,

D(σ23) =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 ω2 0 0
0 0 ω 0 0 0
0 0 0 0 0 ω2

0 0 0 0 ω 0


D(C1/3) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 ω 0 0 0
0 0 0 ω2 0 0
0 0 0 0 ω 0
0 0 0 0 0 ω2


.

(X. Ding)
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Example 25.9. Reflection symmetric 1-d maps: Consider f , a map on the interval with
reflection symmetry f (−x) = − f (x). A simple example is the piecewise-linear sawtooth
map of figure 11.1. Denote the reflection operation by σx = −x. The symmetry of the
map implies that if {xn} is a trajectory, than also {σxn} is a trajectory because σxn+1 =

σ f (xn) = f (σxn) . The dynamics can be restricted to a fundamental domain, in this case
to one half of the original interval; every time a trajectory leaves this interval, it can be
mapped back using σ. Furthermore, the evolution operator is invariant under the group,
U(σ)Lt(y, x) = Lt(y, x). σ satisfies σ2 = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric subspaces by means of projection
operators

PA1 =
1
2

(1 + U(σ)) , PA2 =
1
2

(1 − U(σ)) ,

Lt
A1

(y, x) = PA1L
t(y, x) =

1
2

(
Lt(y, x) +Lt(−y, x)

)
,

Lt
A2

(y, x) = PA2L
t(y, x) =

1
2

(
Lt(y, x) − Lt(−y, x)

)
. (25.50)

To compute the traces of the symmetrization and antisymmetrization projection op-
erators (25.50), we have to distinguish three kinds of cycles: asymmetric cycles a, sym-
metric cycles s built by repeats of irreducible segments s̃, and boundary cycles b. Now
we show that the spectral determinant can be written as the product over the three kinds
of cycles: det (1 − Lt) = det (1 − Lt)adet (1 − Lt)s̃det (1 − Lt)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa} ∩ {σxa} = ∅, where {xa} is
the set of periodic points belonging to the cycle a. Thus σ generates a second orbit with
the same number of points and the same stability properties. Both orbits give the same
contribution to the first term and no contribution to the second term in (25.50); as they are
degenerate, the prefactor 1/2 cancels. Resuming as in the derivation of (22.11) we find
that asymmetric orbits yield the same contribution to the symmetric and the antisymmetric
subspaces:

det (1 − L±)a =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with σ on the set of
periodic points reproduces the set. The period of a symmetric cycle is always even (ns =

2ns̃) and the mirror image of the xs periodic point is reached by traversing the irreducible
segment s̃ of length ns̃, f ns̃ (xs) = σxs. δ(x − f n(x)) picks up 2ns̃ contributions for every
even traversal, n = rns̃, r even, and δ(x + f n(x)) for every odd traversal, n = rns̃, r odd.
Absorb the group-theoretic prefactor in the Floquet multiplier by defining the stability
computed for a segment of length ns̃,

Λs̃ = −
∂ f ns̃ (x)
∂x

∣∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhoodMs of the s cycle, we obtain
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the contribution to trLn
±:

zntrLn
± →

∫
Ms

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

= ns̃

even∑
r=2

δn,rns̃

tr
s̃

1 − 1/Λr
s̃
±

odd∑
r=1

δn,rns̃

tr
s̃

1 − 1/Λr
s̃


= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1 − 1/Λr
s̃
.

Substituting all symmetric cycles s into det (1 − L±) and resuming we obtain:

det (1 − L±)s̃ =
∏

s̃

∞∏
k=0

1 ∓ ts̃

Λk
s̃



Boundary cycles: In the example at hand there is only one cycle which is neither symmet-
ric nor antisymmetric, but lies on the boundary of the fundamental domain, the fixed point
at the origin. Such cycle contributes simultaneously to both δ(x − f n(x)) and δ(x + f n(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

=

∞∑
r=1

δn,r tr
b

1
2

(
1

1 − 1/Λr
b
±

1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
tr
b

1 − 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1

Λr
b

tr
b

1 − 1/Λ2r
b

.

Boundary orbit contributions to the factorized spectral determinants follow by resumma-
tion:

det (1 − L+)b =

∞∏
k=0

1 − tb
Λ2k

b

 , det (1 − L−)b =

∞∏
k=0

1 − tb
Λ2k+1

b


Only the even derivatives contribute to the symmetric subspace, and only the odd ones to
the antisymmetric subspace, because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the above
results:

F+(z) =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)∏
s̃

∞∏
k=0

1 − ts̃

Λk
s̃

 ∞∏
k=0

1 − tb
Λ2k

b



F−(z) =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)∏
s̃

∞∏
k=0

1 +
ts̃

Λk
s̃

 ∞∏
k=0

1 − tb
Λ2k+1

b

 (25.51)

exercise 25.1
click to return: p. 477

Example 25.10. 3-disk billiard / D3 cycle weights factorized: Compare, for ex-
ample, the contributions of the 12 and 0 cycles of figure 15.12. tr Dreg(h)L̂ does not
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get a contribution from the 0 cycle, as the symmetry operation that maps the first half
of the 12 into the fundamental domain is a reflection, and tr Dreg(σ) = 0. In contrast,
σ2 = e, tr Dreg(σ2) = 6 insures that the repeat of the fundamental domain fixed point
tr (Dreg(h)L̂)2 = 6t2

0, gives the correct contribution to the global trace trL2 = 3 · 2t12.

We see by inspection in figure 15.12 that t12 = t2
0 and t123 = t3

1.
click to return: p. 472
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Exercises

25.1. Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of different sym-
metries and fundamental domain cycles for the saw-
tooth map of figure 11.1. Compute the dynamical zeta
function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (25.51).

25.2. 2-dimensional asymmetric representation. The
above expressions can sometimes be simplified further
using standard group-theoretical methods. For example,
the 1

2

(
(tr M)2 − tr M2

)
term in (25.21) is the trace of the

antisymmetric part of the M × M Kronecker product.
Show that if α is a 2-dimensional representation, this is
the A2 antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2 (h)t2. (25.52)

25.3. Characters of D3. (continued from exer-
cise 10.4) D3 � C3v, the group of symmetries of an
equilateral triangle: has three irreducible representa-
tions, two one-dimensional and the other one of multi-
plicity 2.

(a) All finite discrete groups are isomorphic to a per-
mutation group or one of its subgroups, and ele-
ments of the permutation group can be expressed
as cycles. Express the elements of the group D3
as cycles. For example, one of the rotations is
(123), meaning that vertex 1 maps to 2, 2 → 3,
and 3→ 1.

(b) Use your representation from exercise 10.4 to
compute the D3 character table.

(c) Use a more elegant method from the group-theory
literature to verify your D3 character table.

(d) Two D3 irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed
by [2×2] matrices. Find the matrices for all six
group elements in this representation.

(Hint: get yourself a good textbook, like Hamer-
mesh [12] or Tinkham [19], and read up on classes and
characters.)

25.4. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (23.3) for the 3-disk pin-
ball, assuming no symmetries between disks, is given

by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)
(1 − z3t123)(1 − z3t132)(1 − z4t1213)
(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·

= 1 − z2t12 − z2t23 − z2t31 − z3(t123 + t132)
−z4[(t1213 − t12t13) + (t1232 − t12t23)
+(t1323 − t13t23)] (25.53)
−z5[(t12123 − t12t123) + · · · ] − · · ·

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (23.3) (see table 18.5
and figure 11.2) is given by:

1/ζ = (1 − z2t12)3(1 − z3t123)2(1 − z4t1213)3

(1 − z5t12123)6(1 − z6t121213)6

(1 − z6t121323)3 . . . (25.54)
= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t2

12)
−6z5 (t12123 − t12t123)
−z6 (6 t121213 + 3 t121323 + t3

12 − 9 t12t1213 − t2
123)

−6z7 (t1212123 + t1212313 + t1213123 + t2
12t123

−3 t12t12123 − t123t1213)
−3z8 (2 t12121213 + t12121313 + 2 t12121323

+2 t12123123 + 2 t12123213 + t12132123

+ 3 t2
12t1213 + t12t2

123 − 6 t12t121213

− 3 t12t121323 − 4 t123t12123 − t2
1213) − · · ·

25.5. 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how
do they factorize (how do they look in the A1, A2
and the E representations).

b) Find the shortest cycle with no symmetries and
factorize it as in a)

c) Find the shortest cycle that has the property that
its time reversal is not described by the same sym-
bolic dynamics.

d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizations (25.20)
and (25.22).

(Per Rosenqvist)
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25.6. C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system [14] the labels + and − stand for the
left or the right lobe of the attractor and the symme-
try is a rotation by π around the z-axis. Similarly, the
Ising Hamiltonian (in the absence of an external mag-
netic field) is invariant under spin flip. Work out the
factorizations for some of the short cycles in either sys-
tem.

25.7. Ising model. The Ising model with two states εi =

{+,−} per site, periodic boundary condition, and Hamil-
tonian

H(ε) = −J
∑

i

δεi,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that con-
tribute to each factor and their weights.

25.8. One orbit contribution. If p is an orbit in the fun-
damental domain with symmetry h, show that it con-
tributes to the spectral determinant with a factor

det
1 − Dreg(h)

tp

λk
p

 ,
where Dreg(h) is the regular representation of G.
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