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Geometry of chaos
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We start out with a recapitulation of the basic notions of dynamics. Our aim is
narrow; we keep the exposition focused on prerequisites to the applications to
be developed in this text. We assume that the reader is familiar with dynamics

on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a broad stroke
description, since describing all possible behaviors of dynamical systems is beyond
human ken. While for a novice there is no shortcut through this lengthy detour, a
sophisticated traveler might bravely skip this well-trodden territory and embark upon the
journey at chapter 18.

The fate has handed you a flow. What are you to do about it?

1. Define your dynamical system (M, f ): the space M of its possible states, and the
law f t of their evolution in time.

2. Pin it down locally–is there anything about it that is stationary? Try to determine its
equilibria / fixed points (chapter 2).

3. Cut across it, represent as a Poincaré map from a section to a section (chapter 3).

4. Explore the neighborhood by linearizing the flow; check the linear stability of its
equilibria / fixed points, their stability eigen-directions (chapters 4 and 5).

5. Does your system have a symmetry? If so, you must use it (chapters 10 to 12). Slice
& dice it (chapter 13).

6. Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (chapter 14).

7. Now venture global distances across the system by continuing local tangent space
into stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (chapter 15).

8. Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (chapter 7 and chapter 16).

Along the way you might want to learn about Lyapunov exponents (chapter 6), classical
mechanics (chapter 8), and billiards (chapter 9).
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Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

—Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there are
holes large enough to steam a Eurostar train through them. Here we learn
about harmonic oscillators and Keplerian ellipses - but where is the chap-

ter on chaotic oscillators, the tumbling Hyperion? We have just quantized hydro-
gen, where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems where things fall apart;
the center cannot hold; every trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a somewhat advanced, cyclist level

indicates that the section requires a hearty stomach and is probably best
skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic



link to a related video



[exercise 1.2] on margin links to an exercise that might clarify a point in the text
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CHAPTER 1. OVERTURE 4

indicates that a figure is still missing–you are urged to fetch it

We start out by making promises–we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a histori-
cal overview of the development of chaotic dynamics to appendix A1, and head
straight to the starting line: A pinball game is used to motivate and illustrate most
of the concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life
and meet them with greater calm, but in reality we have
done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were
weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and acces-
sible in systems as noisy as slices of rat brains. Poincaré, the first to understand
deterministic chaos, already said as much (modulo rat brains). Once this topology
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is understood, a powerful theory yields the observable consequences of chaotic
dynamics, such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
this material, so you are on your own. We will teach you how to evaluate a deter-
minant, take a logarithm–stuff like that. Ideally, this should take 100 pages or so.
Well, we fail–so far we have not found a way to traverse this material in less than
a semester, or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats, The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,’ have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-order ap-
proximations to physical systems, and weak nonlinearities are then accounted for
perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibits amazingly rich struc-
ture which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree of cycles (periodic or-
bits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should be
very different from those for the nearly integrable systems: a good starting ap-
proximation here is the stretching and folding of baker’s dough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a game of pinball. The
remainder of the chapter is a quick tour through the material covered in Chaos-
Book. Do not worry if you do not understand every detail at the first reading–the
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Figure 1.1: A physicist’s bare bones game of pinball.

intention is to give you a feeling for the main themes of the book. Details will
be filled out later. If you want to get a particular point clarified right now, [section section 1.4

1.4] on the margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has tried
pool, billiards or snooker–the game is about beating chaos–so we start our story
about what chaos is, and what to do about it, with a game of pinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’ in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, point-like, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at the disks from random starting
positions and angles; they spend some time bouncing between the disks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [1.2], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
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Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.

1

2

3

23132321

2313

as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate
how they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres
are taken or whether objects are taken other than spheres. From this one
sees then that everything proceeds mathematically–that is, infallibly–in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of phys-
ical system that we shall use here as a paradigm of ‘chaos.’ His claim is wrong in a
deep and subtle way: a state of a physical system can never be specified to infinite
precision, and by this we do not mean that eventually the Heisenberg uncertainty
principle kicks in. In the classical, deterministic dynamics there is no way to take
all the circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can appear to
us to be stochastic; disentangling the deterministic from the stochastic is the main
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Figure 1.3: Unstable trajectories separate with time.
  x(0)δ

  x(t)δ

x(t)x(0)

challenge in many real-life settings, from stock markets to palpitations of chicken
hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each other
separate exponentially with time, and in a finite (and in practice, a very small)
number of bounces their separation δx(t) attains the magnitude of L, the charac-
teristic linear extent of the whole system, figure 1.2. This property of sensitivity

to initial conditions can be quantified as

|δx(t)| ≈ eλt |δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy δx = |δx(0)| of the initial data, the chapter 6

dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajecto-
ries would only separate, never to meet again. What is also needed is mixing, the
coming together again and again of trajectories. While locally the nearby trajec-
tories separate, the interesting dynamics is confined to a globally finite region of
the state space and thus the separated trajectories are necessarily folded back and
can re-approach each other arbitrarily closely, infinitely many times. For the case
at hand there are 2n topologically distinct n bounce trajectories that originate from
a given disk. More generally, the number of distinct trajectories with n bounces
can be quantified as section 18.1

N(n) ≈ ehn

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy” (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically–that is, as Baron Leibniz would have it, infallibly. When a physi-
cist says that a certain system exhibits ‘chaos,’ he means that the system obeys
deterministic laws of evolution, but that the outcome is highly sensitive to small
uncertainties in the specification of the initial state. The word ‘chaos’ has in this
context taken on a narrow technical meaning. If a deterministic system is locally
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Figure 1.4: Dynamics of a chaotic dynamical sys-
tem is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)

(a) (b)

unstable (positive Lyapunov exponent) and globally mixing (positive entropy)–
figure 1.4–it is said to be chaotic.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unsta-
ble periodic orbits) and global mixing (intertwining of their stable and unstable
manifolds). In a chaotic system any open ball of initial conditions, no matter how
small, will in a finite time overlap with any other finite region and in this sense
spread over the extent of the entire asymptotically accessible state space. Once
this is grasped, the focus of theory shifts from attempting to predict individual
trajectories (which is impossible) to a description of the geometry of the space
of possible outcomes, and evaluation of averages over this space. How this is
accomplished is what ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon,’ French for ‘vor-
tex,’ and intuitively it refers to irregular behavior of spatially extended system
described by deterministic equations of motion–say, a bucket of sloshing water
described by the Navier-Stokes equations. But in practice the word ‘turbulence’
tends to refer to messy dynamics which we understand poorly. As soon as a
phenomenon is understood better, it is reclaimed and renamed: ‘a route to chaos’,
‘spatiotemporal chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimens-
ional attractors visualized as a succession of nearly periodic but unstable motions.
In the same spirit, we shall think of turbulence in spatially extended systems in
terms of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system (clouds, say) through a repertoire of unstable patterns;
as we watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabet of admissible patterns,
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and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical frac-
tals.

— Richard P. Taylor [1.4, 1.5]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet we
have no trouble keeping track of the annual motions of planets. The rule of thumb
is this; if the Lyapunov time (1.1)–the time by which a state space region initially
comparable in size to the observational accuracy extends across the entire acces-
sible state space–is significantly shorter than the observational time, you need to
master the theory that will be developed here. That is why the main successes of
the theory are in statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,’ so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsic dimension – the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers in elucidating problems of fully
developed turbulence, quantum field theory of strong interactions and early cos-
mology have been modest at best. Even that is a caveat with qualifications. There
are applications–such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted from
our collective understanding. The computer pictures and numerical plots of frac-
tal science of the 1980’s have overshadowed the deep insights of the 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have to do as the illustra-
tion of the power of fractal analysis. Fractal science posits that certain quantities remark 1.7
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5,’ the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [1.6].

(Lyapunov exponents, generalized dimensions, . . . ) can be estimated on a com-
puter. While some of the numbers so obtained are indeed mathematically sensible
characterizations of fractals, they are in no sense observable and measurable on
the length-scales and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature is
circumstantial [1.7], in studies of probabilistically assembled fractal aggregates
we know of nothing better than contemplating such quantities. In deterministic
systems we can do much better.

1.4 A game of pinball

Formulas hamper the understanding.

—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat belts
and turn off all electronic devices. But first, a disclaimer: If you understand the
rest of this chapter on the first reading, you either do not need this book, or you are
delusional. If you do not understand it, it is not because the people who figured
all this out first are smarter than you: the most you can hope for at this stage is to
get a flavor of what lies ahead. If a statement in this chapter mystifies/intrigues,
fast forward to a section indicated by [section ...] on the margin, read only the
parts that you feel you need. Of course, we think that you need to learn ALL of it,
or otherwise we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, II. count, III. measure. First, we determine
the intrinsic dimension of the system–the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
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Figure 1.6: Binary labeling of the 3-disk pinball tra-
jectories; a bounce in which the trajectory returns to
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

between regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame front can
turn out to have a very few chaotic degrees of freedom. In this regime the chaotic
dynamics is restricted to a space of low dimension, the number of relevant param-
eters is small, and we can proceed to step II; we count and classify all possible chapter 14

chapter 18topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the part of the observer. This
we shall do in sect. 1.4.2. If successful, we can proceed with step III: investigate
the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III–measure–in sect. 1.5. The three sections that chapter 23

follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight to sect. 1.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a
sequence of labels indicating the order in which the disks are visited; for example,
the two trajectories in figure 1.2 have itineraries 2313 , 23132321 respectively. exercise 1.1

section 2.1Such labeling goes by the name symbolic dynamics. As the particle cannot collide
two times in succession with the same disk, any two consecutive symbols must
differ. This is an example of pruning, a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general a difficult problem, but with the
game of pinball we are lucky–for well-separated disks there are no further pruning
rules. chapter 15

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, figure 1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries. section 14.6

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there for-
ever. Your game would be just as good if you managed to get it to keep bouncing

intro - 9apr2009 ChaosBook.org version15.9, Jun 24 2017
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Figure 1.7: The 3-disk pinball cycles 12323 and
121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig. 1.9.

between the three disks forever, or place it on any periodic orbit. The only rub
is that any such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important–they form the skeleton onto which all
trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall sometimes refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn in
figure 1.7–but it is rather hard to perceive the systematics of orbits from their con-
figuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces–the ball just travels at constant velocity along a straight line–
so we can reduce the 4-dimensional flow to a 2-dimensional map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajectory
just after the moment of impact is defined by sn, the arc-length position of the
nth bounce along the billiard wall, and pn = p sin φn the momentum component
parallel to the billiard wall at the point of impact, see figure 1.9. Such section of a
flow is called a Poincaré section. In terms of Poincaré sections, the dynamics is example 15.9

reduced to the set of six maps Psk←s j
: (sn, pn) 7→ (sn+1, pn+1), with s ∈ {1, 2, 3},
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (s0, p0) . (a) Strips of initial pointsM12,
M13 which reach disks 2, 3 in one bounce, respec-
tively. (b) Strips of initial pointsM121,M131M132

andM123 which reach disks 1, 2, 3 in two bounces,
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-
dius : center separation ratio a:R = 1:2.5. (Y.
Lan)
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from the boundary of the disk j to the boundary of the next disk k. chapter 9

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories orig-
inating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips M12, M13. Embedded within them there
are four stripsM121,M123,M131,M132 of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are divided into 2n distinct strips:
the Mith strip consists of all points with itinerary i = s1s2s3 . . . sn, s = {1, 2, 3}.
The unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point s1s2s3 . . . sn with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a naviga-
tion chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12 . . . either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
example 20.4

What is a good physical quantity to compute for the game of pinball? Such a sys-
tem, for which almost any trajectory eventually leaves a finite region (the pinball
table) never to return, is said to be open, or a repeller. The repeller escape rate

is an eminently measurable quantity. An example of such a measurement would
be an unstable molecular or nuclear state which can be well approximated by a
classical potential with the possibility of escape in certain directions. In an ex-
periment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure 1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks. exercise 1.2
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For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces, or the survival probability is given by

Γ̂1 =
|M0|

|M|
+
|M1|

|M|
, Γ̂2 =

|M00|

|M|
+
|M10|

|M|
+
|M01|

|M|
+
|M11|

|M|
,

Γ̂n =
1
|M|

(n)
∑

i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |Mi| is the area of
the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.2) to fall off exponentially with n and tend to the limit chapter 27

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la

méchanique céleste

We shall now show that the escape rate γ can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughly γ = 0.4103384077693464893384613078192 . . . , you do not need this
book. If you have no clue, hang on.
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Figure 1.10: The Jacobian matrix Jt maps an infinites-
imal displacement δx at x0 into a displacement Jt(x0)δx
a finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eq. (20.25) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory evolves,
it carries along and distorts its infinitesimal neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0) to
linear order, the evolution of the distance to a neighboring trajectory x(t) + δx(t)
is given by the Jacobian matrix J:

δxi(t) =
d

∑

j=1

Jt(x0)i jδx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

. (1.4)

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just state the result. The section 9.2

Jacobian matrix describes the deformation of an infinitesimal neighborhood of
x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, figure 1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than unity in
magnitude), and change their distance only sub-exponentially (or not at all) along
the marginal directions (those whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in figure 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ≈ L, then the area of the ith strip is
Mi ≈ Lli for a strip of width li.
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Each strip i in figure 1.9 contains a periodic point xi. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width li is well-approximated by the contraction around the periodic point xi

within the interval,

li = ai/|Λi| , (1.5)

where Λi is the unstable eigenvalue of the Jacobian matrix Jt(xi) evaluated at
the ith periodic point for t = Tp, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors ai reflect the
overall size of the system and the particular distribution of starting values of x. As
the asymptotic trajectories are strongly mixed by bouncing chaotically around the
repeller, we expect their distribution to be insensitive to smooth variations in the
distribution of initial points. section 19.4

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth of
Λi, so we neglect them. If the hyperbolicity assumption is justified, we can replace section 21.1.1

|Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =

(n)
∑

i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞
∑

n=1

Γnzn . (1.6)

Recall that for large n the nth level sum (1.2) tends to the limit Γn → e−nγ, so the
escape rate γ is determined by the smallest z = eγ for which (1.6) diverges:

Γ(z) ≈
∞
∑

n=1

(ze−γ)n
=

ze−γ

1 − ze−γ
. (1.7)

This is the property of Γ(z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of periodic orbits:

Γ(z) =
∞
∑

n=1

zn

(n)
∑

i

|Λi|
−1

=
z

|Λ0|
+

z

|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.8)

For sufficiently small z this sum is convergent. The escape rate γ is now given by section 21.3

the leading pole of (1.7), rather than by a numerical extrapolation of a sequence of
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γn extracted from (1.3). As any finite truncation n < ntrunc of (1.8) is a polyno-
mial in z, convergent for any z, finding this pole requires that we know something
about Γn for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity of
Γ(z) from finite truncations of (1.8) by methods such as Padé approximants. How-
ever, as we shall now show, it pays to first perform a simple resummation that
converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λr
p. A

prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of np symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.
By the chain rule for derivatives the stability of a cycle is the same everywhere exercise 18.2

section 4.5along the orbit, so each prime cycle of length np contributes np terms to the sum
(1.8). Hence (1.8) can be rewritten as

Γ(z) =
∑

p

np

∞
∑

r=1

(

znp

|Λp|

)r

=
∑

p

nptp

1 − tp

, tp =
znp

|Λp|
(1.9)

where the index p runs through all distinct prime cycles. Note that we have re-
summed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n ≤ np approximation, but an asymptotic, infinite

time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. The npznp factors in (1.9) suggest rewriting
the sum as a derivative

Γ(z) = −z
d

dz

∑

p

ln(1 − tp) .

Hence Γ(z) is z× derivative derivative of the logarithm of the infinite product

1/ζ(z) =
∏

p

(1 − tp) , tp =
znp

|Λp|
. (1.10)

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole of Γ(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.10). The escape rate is related by (1.7) to a divergence of Γ(z), and Γ(z) diverges section 27.1

whenever 1/ζ(z) has a zero. section 22.4

Easy, you say: “Zeros of (1.10) can be read off the formula, a zero

zp = |Λp|
1/np

for each term in the product. What’s the problem?” Dead wrong!
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1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical chapter 16

optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped–including cycles longer than the shortest
omitted does not improve the accuracy. The result of such numerics is a table of
the shortest cycles, their periods and their stabilities. section 33.3

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·

= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)

+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.11)

The virtue of the expansion is that the sum of all terms of the same total length chapter 23

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section. section 23.1

The calculation is now straightforward. We substitute a finite set of the eigen-
values and lengths of the shortest prime cycles into the cycle expansion (1.11), and
obtain a polynomial approximation to 1/ζ. We then vary z in (1.10) and determine
the escape rate γ by finding the smallest z = eγ for which (1.11) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the section 23.2.2

dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
figure 1.11; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab}minus its shadowing
approximation by shorter cycles {a} and {b} (see figure 1.12),

tab − tatb = tab(1 − tatb/tab) = tab

(

1 −
∣

∣

∣

∣

∣

Λab

ΛaΛb

∣

∣

∣

∣

∣

)

, (1.12)
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, together
with their linearized neighborhoods, (right frame). In-
dicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

Figure 1.12: A longer cycle p′′ shadowed by a pair (a
‘pseudo orbit’) of shorter cycles p and p′.

p

p"
p’

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (tp = znp ), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on, so its
itinerary is 2321. In terms of the bounce types shown in figure 1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes
these bounces are very close to the corresponding angles for 0 and 1 cycles. Also
the distances traversed between bounces are similar so that the 2-cycle expanding
eigenvalue Λ01 is close in magnitude to the product of the 1-cycle eigenvalues
Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo
orbit’ {a}{b} (see figure 1.12), lie close to each other in state space; long shadow-
ing pairs have to start out exponentially close to beat the exponential growth in
separation with time. If the weights associated with the orbits are multiplicative
along the flow (for example, by the chain rule for products of derivatives) and
the flow is smooth, the term in parenthesis in (1.12) falls off exponentially with
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the cycle length, and therefore the curvature expansions are expected to be highly
convergent. chapter 28

1.6 Change in time

MEN are deplorably ignorant with respect to natural
things and modern philosophers as though dreaming in the
darkness must be aroused and taught the uses of things the
dealing with things they must be made to quit the sort of
learning that comes only from books and that rests only
on vain arguments from probability and upon conjectures.

— William Gilbert, De Magnete, 1600

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
withinM at time t is expected to decay exponentially

Γ(t) =

∫

M
dxdy δ(y − f t(x))

∫

M
dx

→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over y tests
whether this trajectory is still inM at time t. The kernel of this integral

Lt(y, x) = δ
(

y − f t(x)
)

(1.13)

is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, f n(x) is the nth iterate of the
map f . For continuous flows, f t(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel Lt in terms of A, the generator of
infinitesimal time translations

Lt = etA ,

very much in the way the quantum evolution is generated by the Hamiltonian H, section 19.6

the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2n). As we have already seen, this exponential proliferation
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Figure 1.13: The trace of an evolution operator is con-
centrated in tubes around prime cycles, of length Tp

and thickness 1/|Λp|
r for the rth repetition of the prime

cycle p.

of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n → ∞ limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beyond belief, this distribution
is still generated by a simple deterministic law, and with some luck and insight,
our labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changes everything. So far
our formulation has been heuristic, but in the evolution operator formalism the es-
cape rate and any other dynamical average are given by exact formulas, extracted
from the spectra of evolution operators. The key tools are trace formulas and
spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for Lt(x, y) enables us to evaluate the trace. Identify y with x

and integrate x over the whole state space. The result is an expression for trLt as
a sum over neighborhoods of prime cycles p and their repetitions section 21.2

trLt =
∑

p

Tp

∞
∑

r=1

δ(t − rTp)
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

, (1.14)

where Tp is the period of prime cycle p, and the monodromy matrix Mp is the
flow-transverse part of Jacobian matrix J (1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After the rth return to a Poincaré
section, the initial tube Mp has been stretched out along the expanding eigen-

directions, with the overlap with the initial volume given by 1/
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

→

1/|Λp|, the same weight we obtained heuristically in sect. 1.5.1.
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The ‘spiky’ sum (1.14) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigen-
value sum tr eAt =

∑

esαt, while the right-hand side equals zero everywhere except
for the set t = rTp. A Laplace transform smooths the sum over Dirac delta func-
tions in cycle periods and yields the trace formula for the eigenspectrum s0, s1, · · ·

of the classical evolution operator: chapter 21

∫ ∞

0+
dt e−st trLt = tr

1
s −A

=

∞
∑

α=0

1
s − sα

=
∑

p

Tp

∞
∑

r=1

er(βAp−sTp)
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

. (1.15)

The beauty of trace formulas lies in the fact that everything on the right-hand-
side–prime cycles p, their periods Tp and the eigenvalues of Mp–is an invariant
property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities exercise 4.1

d

ds
ln det (s −A) = tr

d

ds
ln(s − A) = tr

1
s −A

, (1.16)

and integrating over s. In this way the spectral determinant of an evolution oper-
ator becomes related to the traces that we have just computed: chapter 22

det (s −A) = exp





















−
∑

p

∞
∑

r=1

1
r

e−sTpr

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣





















. (1.17)

The 1/r factor is due to the s integration, leading to the replacement Tp → Tp/rTp

in the periodic orbit expansion (1.15). section 22.5

We have now retraced the heuristic derivation of the divergent sum (1.7) and
the dynamical zeta function (1.10), but this time with no approximations: formula
(1.17) is exact. The computation of the zeros of det (s − A) proceeds very much
like the computations of sect. 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing
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The replacement of individual trajectories by evolution operators which propa-
gate densities feels like a bit of voodoo. Nevertheless, something very radical and
deeply foundational has taken place. Understanding the distinction between evo-
lution of individual trajectories and the evolution of the densities of trajectories is
key to understanding statistical mechanics–this is the conceptual basis of the sec-
ond law of thermodynamics, and the origin of irreversibility of the arrow of time
for deterministic systems with time-reversible equations of motion: reversibility is
attainable for distributions whose measure in the space of density functions goes
exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return to
the perfect white/red separation. However, that cannot be–in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Ångströms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrium, and transports us into
regions hitherto inaccessible with the tools of equilibrium statistical mechanics.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but trade in the un-
controllable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assumptions. chapter 24

The classical Boltzmann equation for evolution of 1-particle density is based on
stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle col-
lision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cy-
cle averaging formulas such as the cycle expansion for the diffusion constant
2dD = limT→∞〈x(T )2〉/T of a particle diffusing chaotically across a spatially-
periodic array, section 24.1

D =
1

2d

1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk

)2

|Λp1 · · ·Λpk
|
, (1.18)

where n̂p is a translation along one period of a spatially periodic ‘runaway’ tra-
jectory p. Such formulas are exact; the issue in their applications is what are
the most effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calculable to
any desired accuracy from the microscopic dynamics.
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Figure 1.14: (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip drag
force. (Y. Lan)

(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

The concepts of equilibrium statistical mechanics do help us, however, to un-
derstand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and chapter 29

even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), TLyap ≈ λ

−1 ln |L/δx| . Beyond that,
chaos rules. And so the most successful applications of ‘chaos theory’ have so far
been to problems where observation time is much longer than a typical ‘turnover’
time, such as statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics, where the notion of tracking accurately a
given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguishable
from the probabilistic random walk diffusion, in low dimensional settings the de-
terministic diffusion is quite recognizable, through the fractal dependence of the
diffusion constant on the system parameters, and perhaps through non-Gaussion
relaxation to equilibrium (non-vanishing Burnett coefficients). section 24.2.1
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Several tabletop experiments that could measure transport on macroscopic
scales are sketched in figure 1.14 (each a tabletop, but an expensive tabletop). Fig-
ure 1.14 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bouncing
down the washboard, losing some energy at each bounce, or a charged particle in
a constant electric field trickling across a periodic condensed-matter device. The
interplay between chaotic dynamics and energy loss results in a terminal mean ve-
locity/conductance, a function of the washboard slant or external electric field that
the periodic theory can predict accurately. Figure 1.14 (b) depicts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a dilute cloud of atoms placed onto
a standing wave established by strong laser fields. Interaction of gravity with gen-
tle time-periodic jiggling of the EM fields induces a diffusion of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Figure 1.14 (c)
depicts a tip of an atomic force microscope (AFM) bouncing against a periodic
atomic surface moving at a constant velocity. The frictional drag experienced
is the interplay of the chaotic bouncing of the tip and the energy loss at each
tip/surface collision, accurately predicted by the periodic orbit theory. None of ChaosBook.org/projects

these experiments have actually been carried out, (save for some numerical exper-
imentation), but are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lattice
diffusion constant, and AFM tip drag force. But the experimental proposal is sex-
ier than that, and goes into the heart of dynamical systems theory. remark A1.1

Smale 1960s theory of the hyperbolic structure of the non–wandering set
(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which -
in non-technical terms - asserts that all trajectories of a chaotic dynamical system
deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in figure 1.14 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one of the
groves. An arbitrarily small change in the washboard slope can result in loss of
this collision, change a forward scattering into a backward scattering, and lead to
a discontinuous contribution to the mean velocity. You might hold out hope that
such events are rare and average out, but not so - a loss of a short cycle leads to a
significant change in the cycle-expansion formula for a transport coefficient, such
as (1.18).

When we write an equation, it is typically parameterized by a set of parameters
by as coupling strengths, and we think of dynamical systems obtained by a smooth
variation of a parameter as a ‘family.’ We would expect measurable predictions to
also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a name. That the struc-
tural stability conjecture turned out to be badly wrong is, however, not a blow for
chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps the most section 15.2

dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintuitive
for a physicist - transport coefficients are not smooth functions of system parame- section 24.2
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ters, rather they are non-monotonic, nowhere differentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependence of the transport on
system parameters, the periodicity of the microscopic lattice is degraded by impu-
rities, and probabilistic assumptions of traditional statistical mechanics apply. So
the proposal is to –by measuring macroscopic transport– conductance, diffusion,
drag –observe determinism on nanoscales, and –for example– determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not nec-
essarily lead to an increase in the mean flow; mean flow dependence on pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom are
important, and chaotic motion time and space scales are commensurate with the
external driving and spatial scales. Further degrees of freedom act as noise that
smooths out the above fractal effects and restores a smooth functional dependence
of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as I can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreachable,
a domain traditionally traversed only by mathematical physicists and mathemati-
cians. What distinguishes it from mathematics is the insistence on computability
and numerical convergence of methods offered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might state that in a given setting,
for times in excess of 1032 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use to a hard-working
plumber, especially if her hands-on experience is that within the span of a few
typical ‘turnaround’ times the dynamics seems to settle on a (transient?) attractor
of dimension less than 3. If rigor, magic, fractals or brains is your thing, read
remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the
nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path integrals,
group theory, coding theory, graph theory, ergodic theory, linear operator theory,
quantum mechanics, etc.. We include material into the text proper on ‘need-to-
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know’ basis, relegate technical details to appendices, and give pointers to further
reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction
of individual trajectories. The dynamics of densities of trajectories is described
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution
operators. The key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby pe-
riodic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating the associated curvatures. A curvature measures
the deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off for
(almost) all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the hy-
perbolicity assumption, i.e., the assumption of exponential shrinkage of all strips
of the pinball repeller. By dropping the ai prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution of starting x (which should
anyhow be impossible due to the exponential growth of errors), but in exchange
we gain an effective description of the asymptotic behavior of the system. The
pleasant surprise of cycle expansions (1.10) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook – un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning,
discrete symmetries, periodic orbits, averaging over chaotic sets, evolution oper-
ators, dynamical zeta functions, spectral determinants, cycle expansions, quantum
trace formulas, zeta functions, and so on to the semiclassical quantization of he-
lium – should give the reader some confidence in the broad sway of the theory.
The formalism should work for any average over any chaotic set which satisfies
two conditions:
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1. the weight associated with the observable under consideration is multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coeffi-
cients and quantum eigenvalues. A big surprise is that the semi-classical quantum
mechanics of systems classically chaotic is very much like the classical mechanics
of chaotic systems; both are described by zeta functions and cycle expansions of
the same form, with the same dependence on the topology of the classical flow.
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But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. This text aims to bridge the gap between the
physics and mathematics dynamical systems literature. The intended audience is Hen-
riette Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything she is told. As a complementary presentation we recommend Gaspard’s
monograph [A1.65] which covers much of the same ground in a highly readable and
scholarly manner.

As far as the prerequisites are concerned–ChaosBook is not an introduction to non-
linear dynamics. Nonlinear science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the textbook by Strogatz [1.9], an
introduction to the applied mathematician’s visualization of flows, fixed points, mani-
folds, bifurcations. It is the most accessible introduction to nonlinear dynamics–a book
on differential equations in nonlinear disguise, and its broadly chosen examples and many
exercises make it a favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [1.10] is preferable: an elegant introduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensions–a good companion to Chaos-
Book. Introduction more comfortable to physicists is the textbook by Ott [A1.66], with
the baker’s map used to illustrate many key techniques in analysis of chaotic systems. Ott
is perhaps harder than the above two as first books on nonlinear dynamics. Sprott [1.12]
and Jackson [2.27] textbooks are very useful compendia of the ’70s and onward ‘chaos’
literature which we, in the spirit of promises made in sect. 1.1, tend to pass over in si-
lence.

An introductory course should give students skills in qualitative and numerical anal-
ysis of dynamical systems for short times (trajectories, fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic systems. For the
dynamical systems material covered here in chapters 2 to 4, as well as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsov [2.43]. A good introduc-
tion to numerical experimentation with physically realistic systems is Tufillaro, Abbott,
and Reilly [1.15]. Korsch and Jodl [1.16] and Nusse and Yorke [1.17] also emphasize
hands-on approach to dynamics. With this, and a graduate level-exposure to statistical
mechanics, partial differential equations and quantum mechanics, the stage is set for any
of the one-semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consult ChaosBook.org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulas, zeta func-
tions, cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermody-
namic formalism, period doubling, renormalization operators. A graduate level introduc-
tion to statistical mechanics from the dynamical point view is given by Dorfman [1.18];
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the Gaspard monograph [A1.65] covers the same ground in more depth. Driebe mono-
graph [1.19] offers a nice introduction to the problem of irreversibility in dynamics. The
role of ‘chaos’ in statistical mechanics is critically dissected by Bricmont in his highly
readable essay “Science of Chaos or Chaos in Science?” [1.20].

Spatiotemporal dynamical systems. Partial differential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmetries and bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [A1.74]
offer a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as
a staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos. Semiclassical propagators, density of states, trace formulas, semiclassi-
cal spectral determinants, billiards, semiclassical helium, diffraction, creeping, tunneling,
higher-order ~ corrections. For further reading on this topic, consult the quantum chaos
part of ChaosBook.org.

Remark 1.3 Periodic orbit theory. This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook. The role of unstable periodic
orbits was already fully appreciated by Poincaré [A1.67, A1.1], who noted that hidden
in the apparent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increas-
ing lengths and self-similar structure, and suggested that the cycles should be the key to
chaotic dynamics. Periodic orbits have been at core of much of the mathematical work on
the theory of the classical and quantum dynamical systems ever since. We refer the reader
to the reprint selection [1.24] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. We give a short shrift to the theory of bifur-
cations, and the KAM (Kolmogorov-Arnol’d-Moser) tori make only a tangential appear-
ance. We recommend Robinson’s advanced graduate level exposition of dynamical sys-
tems theory [14.4] from Smale perspective. The most extensive reference is the treatise by
Katok and Hasselblatt [19.25], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [A1.7],
Bowen [A1.70] and Sinai [A39.1]. Sinai’s paper is prescient and offers a vision and
a program that ties together dynamical systems and statistical mechanics. It is written
for readers versed in statistical mechanics. For a dynamical systems exposition, consult
Anosov and Sinai [1.30]. Markov partitions were introduced by Sinai in ref. [1.31]. The
classical text (though certainly not an easy read) on the subject of dynamical zeta func-
tions is Ruelle’s Statistical Mechanics, Thermodynamic Formalism [A39.14]. In Ruelle’s
monograph transfer operator technique (or the ‘Perron-Frobenius theory’) and Smale’s
theory of hyperbolic flows are applied to zeta functions and correlation functions. The
status of the theory from Ruelle’s point of view is compactly summarized in his 1995 Pisa
lectures [1.33]. Further excellent mathematical references on thermodynamic formalism
are Parry and Pollicott’s monograph [21.2] with emphasis on the symbolic dynamics as-
pects of the formalism, and Baladi’s clear and compact reviews of the theory of dynamical
zeta functions [1.35, A1.16].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poincaré tilings, modular domains,

intro - 9apr2009 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 1. OVERTURE 32

Selberg Zeta functions, Riemann hypothesis, . . .Why? While this beautiful mathematics
has been very inspirational, especially in studies of quantum chaos, almost no powerful
method in its repertoire survives a transplant to a physical system that you are likely to
care about.

Remark 1.6 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’
was discussed by Maxwell, then 30 years later by Poincaré. In weather prediction, the
Lorenz’ ‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book
review by W. S. Franklin [3.16]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed
meteorologist, and in 1972 he repackaged it as the ‘Butterfly Effect’.

Remark 1.7 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Hausdorff and fractal dimensions. Addison’s intro-
duction to fractal dimensions [1.37] offers a well-motivated entry into this field. While in
studies of probabilistically assembled fractals such as diffusion limited aggregates (DLA)
better measures of ‘complexity’ are lacking, for deterministic systems there are much
better, physically motivated and experimentally measurable quantities (escape rates, dif-
fusion coefficients, spectrum of helium, ...) that we focus on here.

Remark 1.8 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, there is a line of research in neu-
ronal dynamics that focuses on possible unstable periodic states, described for example in
refs. [1.38, 1.39, 1.40, 1.41].
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A guide to exercises

God can afford to make mistakes. So can Dada!

—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try to
work through the essential exercises. As not to fragment the text, the exercises are
indicated by text margin boxes such as the one on this margin, and collected at the exercise 23.2

end of each chapter. By the end of a (two-semester) course you should have com-
pleted at least three small projects: (a) compute everything for a 1-dimensional
repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute a part
of the quantum 3-disk game of pinball, or the helium spectrum, or if you are
interested in statistical rather than the quantum mechanics, compute a transport
coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1, exercise 11.1, exercise 14.1

2. pinball simulator, exercise 9.1, exercise 16.4

3. pinball stability, exercise 16.6, exercise 16.4

4. pinball periodic orbits, exercise 16.5, exercise 16.3

5. helium integrator, exercise 2.10, exercise 7.4

6. helium periodic orbits, exercise 16.10

• Averaging, numerical

1. pinball escape rate, exercise 20.3

• Averaging, periodic orbits

1. cycle expansions, exercise 23.1, exercise 23.2

2. pinball escape rate, exercise 23.4, exercise 23.5

3. cycle expansions for averages, exercise 23.1, exercise 27.3

4. cycle expansions for diffusion, exercise 24.1

5. pruning, transition graphs, exercise 18.6

6. desymmetrization exercise 25.1

7. intermittency, phase transitions, exercise 29.6

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. Solutions to many of the
problems are available upon request. A clean solution, a pretty figure, or a nice
exercise that you contribute to ChaosBook will be gratefully acknowledged. Often
going through a solution is more instructive than reading the chapter that problem
is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics. As periodic trajectories
will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in sect. 18.4). Show
that the 3-disk pinball has 3 · 2n−1 itineraries of length
n. List periodic orbits of lengths 2, 3, 4, 5, · · · . Verify
that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, · · · . Try to sketch them.
(continued in exercise 15.7)

1.2. Sensitivity to initial conditions. Assume that two pin-
ball trajectories start out parallel, but separated by 1
Ångström, and the disks are of radius a = 1 cm and
center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the
size of system (assuming that the trajectories have been
picked so they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score (num-
ber of bounces) in a game without cheating, by hook or
crook (by the end of chapter 23 you should be in position
to make very accurate estimates).
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