
Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of

knowledge about qualitative properties of generic smooth

families of vector fields and discrete maps. The theory

characterizes structurally stable invariant sets [...] The

logic of dynamical systems theory is subtle. The theory

abandons the goal of describing the qualitative dynamics

of all systems as hopeless and instead restricts its atten-

tion to phenomena that are found in selected systems. The

subtlety comes in specifying the systems of interest and

which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

W
e define a dynamical system (M, f ) and classify its solutions as equilibria,

periodic, and aperiodic. An ‘aperiodic’ solution is either ‘wandering’ or

belongs to a non–wandering set, which in turn can be decomposed into

into chain-recurrent sets. Various cases are illustrated with concrete examples,

such as the Rössler and Lorenz systems.

fast track:

chapter 19, p. 346

2.1 Dynamical systems

I would have written a shorter book, but I didn’t have the

time.

— Channeling Blaise Pascal

In a dynamical system we observe the world as it evolves with time. We express
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Figure 2.1: A trajectory traced out by the evolution

rule f t. Starting from the state space point x, after a

time t, the point is at f t(x).

f (x)f (x)
t

x

our observations as numbers and record how they change; given sufficiently de-

tailed information and understanding of the underlying natural laws, we see the

future in the present as in a mirror. The motion of the planets against the celestial section 1.3

firmament provides an example. Against the daily motion of the stars from East

to West, the planets distinguish themselves by moving among the fixed stars. An-

cients discovered that by knowing a sequence of planet’s positions–latitudes and

longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial sphere

suffices to completely specify the planet’s apparent motion. All possible values for

positions and velocities of the planets form the phase space of the system. More

generally, a state of a physical system, at a given instant in time, can be represented

by a single point in an abstract space called state spaceM (mnemonic: curly ‘M’

for a ‘manifold’). As the system changes, so does the representative point in state

space. We refer to the evolution of the totality of such points as a flow or dynamics,

and the function f t which specifies where the representative point is at time t as

the evolution rule. remark 2.1

If there is a definite rule f that tells us how this representative point moves in

M, the system is said to be deterministic. For a deterministic dynamical system,

the evolution rule takes one point of the state space and maps it into exactly one

point. However, this is not always possible. For example, knowing the tempera-

ture today is not enough to predict the temperature tomorrow; knowing the value

of a stock today will not determine its value tomorrow. The state space can be en-

larged, in the hope that in a sufficiently large state space it is possible to determine

an evolution rule, so we imagine that knowing the state of the atmosphere, mea-

sured over many points over the entire planet should be sufficient to determine the

temperature tomorrow. Even that is not quite true, and we are less hopeful when

it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-

ries cannot intersect. We say ‘almost’ because there might exist a set of measure

zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may chapter 15

think such sets a nuisance, but it is quite the contrary–they will enable us to parti-

tion state space, so that the dynamics can be better understood.

Locally, the state spaceM looks like Rd, meaning that a dynamical evolution

is an initial value problem, with d numbers sufficient to determine what will hap-

pen time t later. The local linear vector space (tangent space) at any given state

space point x ∈ M can be thought of as a ‘chart’ (however, we shall use this term

in a more restricted sense, only after the continuous time and continuous sym-

metries have been ‘quotiented out’, see sects. 3.1 and 13.1). Globally, the state

space may be a more complicated manifold such as a torus, a cylinder, or some
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Figure 2.2: A flow: The evolution rule f t can be used

to map a region Mi of the state space into the region

f t(Mi).
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other smooth geometric object. By manifold we mean a smooth differentiable d-

dimensional space which looks like Rd only locally. For example, the state space

of an autonomous Hamiltonian system the flow is confined to a curved constant

energy hyper-surface. When we need to stress that the dimension d ofM is greater

than one, we may refer to the point x ∈ M as xi where i = 1, 2, 3, . . . , d. If the

dynamics is described by a set of PDEs (partial differential equations), the state

space is the infinite dimensional function space. The evolution rule f t :M→M
tells us where a point x is inM after a time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed

mathematically by saying that the evolution rule f t can be differentiated as many

times as needed. Its action on a point x is sometimes indicated by f (x, t) to remind

us that f is really a function of two variables: the time and a point in state space.

Note that time is relative rather than absolute, so only the time interval is neces-

sary. This follows from the fact that a point in state space completely determines

all future evolution, and it is not necessary to know anything besides the time

interval. The time parameter can be a real variable (t ∈ R), in which case the evo-

lution is called a flow, or an integer (t ∈ Z), in which case the evolution advances

in discrete steps in time, given by iteration of a map. The evolution parameter

need not be the physical time; for example, a time-stationary solution of a partial

differential equation is parameterized by spatial variables. In such situations one

talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-

selves through their orbits: given a state x0 at initial time t0, the flow map

f t : x0 → x(x0, t)

yields the state x(t) time t later. This evolution rule traces out a sequence of

points x(t) = f t(x0), the orbit through the point x0 = x(0). We shall usually

omit the x0 label from x(x0, t). By extension, we can also talk of the evolution

of a regionMi of the state space. The language of continuum mechanics is quite

helpful in visualizing such deformations, not only in 3-dimensional space, but also

in state spaces of arbitrary dimension. Consider a motion f from the undeformed

(reference or initial) region (a ‘body’)Mi to the deformed (current or final) region

M f = f t(Mi). We may write the motion as a map

f t : Mi →M f , (2.1)
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Figure 2.3: A periodic point returns to the initial point

after a finite time, x = f Tp (x). Periodic orbit p is the

set of periodic points p =Mp = {x1, x2, · · · } swept out

by the trajectory of any one of them in the finite time

Tp.

x1
x(T) = x(0)

x2

x3

such that every x0 inMi is mapped to an x = f t(x0) inM f , as in figure 2.2, where

x denotes the state in the deformed region, and x0 represents the state in the initial,

undeformed region. exercise 2.1

The subset of points Mx0
⊂ M that belong to the infinite-time trajectory

of a given point x0 is called the orbit of x0; we shall talk about forward orbits,

backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous

curve; for a map, it is a sequence of points. In this book ‘trajectory’ refers to

a set of points or a curve segment traced out by x(t) over a finite time interval

t. ‘Orbit’ refers to the totality of states that can be reached from x0, with state

spaceM stratified into a union of such orbits (eachMx0
labeled by a single point

belonging to the set, x0 = x(0) for example). Under time evolution a trajectory

segment is mapped into another trajectory segment, but points within an orbit

are only shifted; the orbit considered as a set is unchanged. Hence an orbit is a

dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-

totic t → ∞ dynamics by a systematic hierarchy of compact time-invariant sets or

compact orbits (equilibria, periodic orbits, invariant tori, · · · ).

2.1.1 A classification of possible motions?

Ah, yes, Judgie, everything will go away someday. It’s the

waiting that’s so exquisitely wearing.

— Duke Ellington, to Robert Traver



What kinds of orbits are there? This is a grand question, and there are many

answers. The following chapters offer some. Here is a first attempt to classify all

possible orbits:

stationary: f t(x) = x for all t

periodic: f t(x) = f t+Tp (x) for a given minimum period Tp

aperiodic: f t(x) , f t′ (x) for all t , t′ .

A periodic orbit (or a cycle) p is the set of points Mp ⊂ M swept out by a

trajectory that returns to the initial point in a finite time. We refer to a point on a
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periodic orbit as a periodic point, see figure 2.3. Periodic orbits form a very small

subset of the state space, in the same sense that rational numbers are a set of zero

measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplest examples of ‘non-

wandering’ invariant sets preserved by dynamics. Dynamics can also preserve

higher-dimensional smooth compact invariant manifolds; most commonly en-

countered are the M-dimensional tori of Hamiltonian dynamics, with the notion of

periodic motion generalized to quasiperiodic (the superposition of M incommen-

surate frequencies) motion on a smooth torus, and families of solutions related

by a continuous symmetry. Further examples are afforded by stable / unstable

manifolds (swept by semi-infinite curves originating at an equilibrium along each

stability eigenvector) and the most mysterious of all invariant orbits, the infinite

time ergodic orbits. section 15.1

The ancients tried to make sense of all dynamics in terms of periodic motions,

epicycles, what we today call ‘integrable systems’. The embarrassing truth is that

for a generic dynamical system almost all motions are aperiodic. So we refine the

classification by dividing aperiodic motions into two subtypes: those that wander

off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighbor-

hoodM0 of x to which the orbit never returns

f t(x) <M0 for all t > tmin . (2.2)

In physics literature, the dynamics of such a state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task

is to prune them fromM as well as you can. What remains envelops the set of the

long-time orbits, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax

the notion of exact periodicity and replace it by the notion of recurrence. A point

is recurrent or non-wandering, if for any open neighborhood M0 of x and any

time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.3)

In other words, the orbit of a non-wandering point reenters the neighborhood

M0 infinitely often. We shall denote the non–wandering set of f by Ω, i.e., the

union of all the non-wandering points ofM. This non–wandering set of f is key

to understanding the long-time behavior of a dynamical system; all calculations

undertaken here will be carried out on non–wandering sets.

So much about individual trajectories. What about clouds of initial points? If

there exists a connected state space volume that maps into itself under forward

evolution (and you can prove that by the method of Lyapunov functionals, or

several other methods available in the literature), the flow is globally contracting

onto a subset of M which we shall refer to as the attractor. The attractor may
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be unique, or there can coexist any number of distinct attracting sets, each with

its own basin of attraction, the set of all points that fall into the attractor under

forward evolution. The attractor can be a fixed point (a sink), a periodic orbit

(a limit cycle), aperiodic, or any combination of the above. The most interesting

case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a

strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing example 2.3

and proving existence of a genuine, card-carrying strange attractor is a highly

nontrivial undertaking; it requires explaining notions like ‘transitive’ and ‘chain-

recurrent’ that we will be ready to discuss only in sect. 17.1.

Conversely, if we can enclose the non–wandering set Ω by a connected state

space volumeM0 and then show that almost all points withinM0, but not in Ω,

eventually exitM0, we refer to the non–wandering setΩ as a repeller. An example

of a repeller is not hard to come by–the pinball game of sect. 1.3 is a simple chaotic

repeller. Ω, the non–wandering set of f , is the union of all of the above, separately

invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that

almost all non-wandering points are aperiodic, that we have given up the ancients’

fixation on periodic motions. Nothing could be further from truth. As longer and

longer cycles approximate more and more accurately finite segments of aperiodic

trajectories, we shall establish control over non–wandering sets by defining them

as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better

grip on what chaotic motion might look like, we need to ponder flows in a little

more depth.

2.2 Flows

Knowing the equations and knowing the solution are two

different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f t is a family

of mappings of M → M parameterized by t ∈ R. Because t represents a time

interval, any family of mappings that forms an evolution rule must satisfy: exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’ appendix A7.1

f t+s = f t ◦ f s = f t( f s) . (2.4)
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The family of mappings f t(x) thus forms a continuous (1-parameter forward Lie

semi-) group. Why ‘semi-’group? It may fail to form a group if the dynamics

is not reversible, and the rule f t(x) cannot be used to rerun the dynamics back-

wards in time, with negative t; with no reversibility, we cannot define the inverse

f −t( f t(x)) = f 0(x) = x , in which case the family of mappings f t(x) does not form

a group. In exceedingly many situations of interest–for times beyond the Lya-

punov time, for asymptotic attractors, for dissipative partial differential equations,

for systems with noise, for non-invertible maps–the dynamics cannot be run back-

wards in time, hence, the circumspect emphasis on semigroups. On the other

hand, there are many settings of physical interest, where dynamics is reversible

(such as finite-dimensional Hamiltonian flows), and where the family of evolution

maps f t does form a group.

For infinitesimal times, flows can be defined by differential equations. We

write a trajectory, a smooth curve embedded in the state space as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.5)

and express the tangent to the curve at point x(t) as exercise 2.3

dx

dτ

∣

∣

∣

∣

∣

τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) , (2.6)

the time derivative of the evolution rule, a vector evaluated at the point x(t). By

considering all possible orbits, we obtain the vector ẋ(t) at any point x ∈ M. This

vector field is a (generalized) velocity field: remark 13.2

ẋ(t) = v(x) . (2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-

cedures for obtaining a set of differential equations for the vector field v(x) that

describes the evolution of a mechanical system. Equations of mechanics may ap-

pear different in form from (2.7), as they are often involve higher time derivatives,

but an equation that is second or higher order in time can always be rewritten as a

set of first order equations.

We are concerned here with a much larger world of general flows, mechanical

or not, all defined by a time-independent vector field (2.7). At each point of the

state space a vector indicates the local direction in which the orbit evolves. The

length of the vector |v(x)| is the speed at the point x, and the direction and length of

v(x) changes from point to point. When the state space is a complicated manifold

embedded in Rd, one can no longer think of the vector field as being embedded in

the state space. Instead, we have to imagine that each point x of state space has a

different tangent plane TMx attached to it. The vector field lives in the union of

all these tangent planes, a space called the tangent bundle

TM =
⋃

x∈M
TMx .

TMx is called a fiber at x, hence the whole thing is called the fiber bundle. Locally

a fiber bundle looks like the product of two Rd spaces.
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Figure 2.4: (a) The 2-dimensional vector field for

the Duffing system (2.21), together with a short

trajectory segment. (b) The flow lines. Each

‘comet’ represents the same time interval of a tra-

jectory, starting at the tail and ending at the head.

The longer the comet, the faster the flow in that

region.

(a) (b)

Figure 2.5: Lorenz “butterfly” strange attractor. (J.

Halcrow) -20 -10 0 10 20
0

10

20

30

40

50

X

Z

A simple example of a flow defined by a 2-dimensional vector field v(x) is

afforded by the unforced Duffing system, figure 2.4. Lorenz flow of figure 2.5,

and Rössler flow of figure 2.6 , are representative 3-dimensional flows.

example 2.1

p. 56

example 2.2

p. 56

example 2.3

p. 56

The instantaneous velocity vector v is tangent to the orbit, except at the equi-

librium points, where it vanishes.

If v(xq) = 0 , (2.8)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation

point, zero of the vector field v, standing wave, stationary solution, or steady

state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The

orbit remains forever stuck at xq. Otherwise the orbit passing through x0 at time

t = 0 can be obtained by integrating the equations (2.7):

x(t) = f t(x0) = x0 +

∫ t

0

dτ v(x(τ)) , x(0) = x0 . (2.9)

We shall consider here only autonomous flows, i.e., flows for which the vector

field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy

dτ
= w(y, τ) , (2.10)

can always be converted into a system where time does not appear explicitly. exercise 2.4

exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[

w(y, τ)
1

]

. (2.11)

flows - 26jan2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 2. GO WITH THE FLOW 45

Figure 2.6: A trajectory of the Rössler flow at time

t = 250. (G. Simon) -10
-5

0
5

10
15

X(t)

-10
-5

0
5

Y(t)

0

5

10

15

20

25

30

Z(t)

The new flow ẋ = v(x) is autonomous, and the orbit y(τ) can be read off x(t) by

ignoring the last component of x. exercise 6.3

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-

lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’

viewpoints. From the Eulerian perspective one only cares about what is the state

of system here and now; think of a field of grass, each grass blade the local ve-

locity vector. From the Lagrangian viewpoint one cares about where a state space

point come fromand where is it going to; think of the state space foliated into a

bowl of linguini, each noodle an orbit, marked with a label x0 somewhere along

it. In the Eulerian formulation the flow is defined by specifying (2.7), the veloc-

ity field v(x). In the Lagrangian formulation it is given by the finite time flow

(2.9), i.e., the totality of the trajectories x(t) comprising the deformed region, la-

beled by their origin x0 in the initial undeformed region. If we mark the orbit

x(t) by its initial point x0, we are describing the flow in the Lagrangian coordi-

nates. The Eulerian velocity v(x) at a fixed state space position x is equal to the

Lagrangian velocity v(x(t)) at the orbit passing through x at the instant t. Because

f t is a single-valued function, any point on the orbit can be used to label the orbit.

The transport of the ‘material point’ x0 at t = 0 to its value at the current point

x(t) = f t(x0) is a coordinate transformation from the Lagrangian coordinates to

the Eulerian coordinates.

In numerical work we are given the equations of motion (the local Eulerian

velocity field v(x)), but we care about the solutions of these equations (the global

Lagrangian flow). Conversely, in experimental work we observe ensembles of

Lagrangian trajectories from which we then extract the velocity field (in fluid

dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian

velocity field has been specified or extracted from the observational data, it is

straightforward to compute the Lagrangian trajectories, objects of great practical

interest in studies of long time dynamics, mixing, and transport.

flows - 26jan2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 2. GO WITH THE FLOW 46

fast track:

chapter 3, p. 64

2.3 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not al-

ways expressed in the most convenient way. In order to simplify a given problem,

one may stretch, rotate, bend and mix the coordinates, but in doing so, the vector

field will also change. The vector field lives in a (hyper)plane tangent to state

space and changing the coordinates of state space affects the coordinates of the

tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the initial

state spaceM into the reparameterized state space M̃ = h(M), with a point x ∈ M
related to a point y ∈ M̃ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one, a diffeomorphism on open neigh-

borhoods inM and M̃, so given any point y we can go back to x = h−1(y). For

smooth flows the reparameterized dynamics should support the same number of

derivatives as the initial one. If h is a (piecewise) analytic function, we refer to h

as a smooth conjugacy.

The evolution rule gt(y0) on M̃ can be computed from the evolution rule f t(x0)

on M by taking the initial point y0 ∈ M̃, going back to M, evolving, and then

mapping the final point x(t) back to M̃:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (2.12)

Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (2.12) is a

shorthand for y(t) = h( f t(h−1(y0))).

The vector field ẋ = v(x) is locally tangent to the flow f t; it is related to the

flow by differentiation (2.6) along the orbit. The vector field ẏ = w(y), y ∈ M̃
locally tangent to gt, follows by the chain rule: exercise A2.2

w(y) =
dgt

dt
(y)

∣

∣

∣

∣

∣

∣

t=0

=
d

dt

(

h ◦ f t ◦ h−1(y)
)

∣

∣

∣

∣

∣

t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (2.13)

In order to rewrite the right-hand side as a function of y, note that the ∂y differen-

tiation of h(h−1(y)) = y implies

∂h

∂x

∣

∣

∣

∣

∣

x

· ∂h
−1

∂y

∣

∣

∣

∣

∣

∣

y

= 1 → ∂h

∂x
(x) =

[

∂h−1

∂y
(y)

]−1

, (2.14)

flows - 26jan2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 2. GO WITH THE FLOW 47

so the equations of motion in the transformed coordinates, with the indices rein-

stated, are

ẏi = wi(y) =

[

∂h−1

∂y
(y)

]−1

i j

v j(h
−1(y)) . (2.15)

Imagine the state space as a rubber sheet with the flow lines drawn on it.

A coordinate change h corresponds to pulling and tugging on the rubber sheet

smoothly, without cutting, gluing, or self-intersections of the distorted rubber

sheet. Trajectories that are closed loops in M will remain closed loops in the

new manifold M̃, but their shapes will change. Globally, h deforms the rubber

sheet in a highly nonlinear manner, but locally it simply rescales and shears the

tangent field by the coordinate transformation Jacobian matrix ∂ jhi, yielding the

simple transformation law (2.13) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also

be reparameterized, s = s(t), with the concomitant modification of (2.15). An

example is the 2-body collision regularization of the helium Hamiltonian (8.8), to

be undertaken in appendix A2.2.

2.4 Life in extreme dimensions

Sometimes I’ve believed as many as six impossible things

before breakfast.

— Lewis Carroll

Systems described by partial differential equations [PDEs] are said to be ‘infinite

dimensional’ dynamical systems, because in order to uniquely specify the state

of a spatially extended ‘field’, one needs infinitely many numbers, one for the

value of the field at each configuration space point. Even though the state space

is infinite-dimensional, the long-time dynamics of many such systems of physical

interest is finite-dimensional, contained within a ‘strange attractor’ or an ‘inertial

manifold’. Most of us find it hard to peer into four dimensions. How are we

to visualize -and why we would have any hope of visualizing- dynamics in such

extreme dimensions? A representative point is a point, and its trajectory is a curve

in any 2- or 3-dimensional projection, so that is not so hard. What is hard is to get

an understanding of relative disposition of different states. The coordinates have

to be chosen thoughtfully, as in a randomly picked coordinate frame most orbits

of interest will appear minuscule.

A dynamical system is specified by the pair (M, f ), where d numbers uniquely

determine a state of the system, or the representative point x in the state space

manifoldM. Here we focus on how one constructs such state space, and how one

visualizes a representative point x and its trajectory f t(x) time t later. We shall re-

turn to dynamics, i.e., the evolution rule f t that maps a state space regionMi of the

state space into the region f t(Mi) (see figure 2.2) for such systems in chapter 30,

where we describe in some detail time-evolution equations for spatially-extended

systems, and discuss ‘turbulence’ that such systems may exhibit.
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Figure 2.7: (a) The Ring of Fire, visualized as

a Bunsen burner flame flutter, with u = u(x, t)

the velocity of the flame front at position x and

time t. (b) A profile of the velocity u of the flame

front at fixed time instant t folded out on a plane,

with spatial periodicity u(x, t) = u(x + 40, t) (from

ref. [30.23]).
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2.4.1 Configuration space: a fluttering flame front



Consider the flame front flutter of gas burning on your kitchen stove. Such ‘Bun-

sen burner’, invented by Göttingen chemistry prodigy Robert Bunsen in 1855, en-

tered popular culture in 1963 as Johnny Cash et al. [2.2] “Ring of Fire”. Its flame

front instabilities are perhaps the most familiar example of a nonlinear system that

exhibits ‘turbulence’ (or, more modestly, ‘spatiotemporally chaotic behavior’): a

typical configuration space (or the much abused word ‘physical’ space) visual-

ization is sketched in figure 2.7. Its state can be described by the ‘flame front

velocity’ u = u(x, t) on a periodic domain u(x, t) = u(x + L, t).

Spatial, ‘configuration’ or ‘physical’ space visualization of a state of such

system, figure 2.7, or a fixed time snapshot of velocity and vorticity fields in 3D

Navier-Stokes, or a visualization of the flame front flutter in time, figure 2.8, or a

time-evolving video of a fluid, offer little insight into detailed dynamics of such

systems. To understand the dynamics, one must turn to the complementary, and

often much more illuminating state space representations. In this context ‘flow’

refers to a d-dimensional flow in the dynamical state space, not the flow of a fluid,

and ‘velocity’ to the state space tangent field ẋ = v(x), not to the 3D configuration

space fluid velocity field u(x, t) ∈ R3. A ‘representative point’ is a full speci-

fication of the state x ∈ M of the system, In today’s experiments or numerical

simulations, this is a set of anything from 16 to 106 numbers, a complete snapshot

of the flame front figure 2.7 or the state of volume of turbulent fluid in a pipe at

an instant in time.

2.4.2 Constructing a state space

Think globally, act locally.

— Patrick Geddes



At this juncture, our everyday, plumber’s visual intuition actually interferes

with dynamical visualization of state space of a spatially-extended systems: while

the spatial dimension of the Ring of Fire is 1, its dimension as a dynamical system

is ∞. Absorbing this simple fact of life is the same rite of passage as going from

the 1 degree of freedom quantum mechanical oscillator to the ‘second quantiza-

tion’ of quantum field theory, with its infinitely many quantum oscillator degrees

of freedom.
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Figure 2.8: A spatiotemporal plot of the Ring

of Fire “turbulent” solution, periodic domain

u(x, t) = u(x + 20π
√

2, t) is obtained by plotting

the profile of figure 2.7 (b) for successive time in-

stants (vertical axes). The color indicates the value

of u at a given position and instant in time (from

ref. [A1.84]).
0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

t

x/(2π
√

2)

To develop some intuition about such dynamics we turn to experiments, or

numerical simulations, such as the Ring of Fire time evolution, figure 2.8. The

first thing we note is that while the dynamics might be ‘turbulent’, for many such

systems the long-time solutions tend to be smooth. That suggests that a discretiza-

tion, perhaps aided by interpolations such as n-point spatial derivatives might give

us a representation of the dynamics of reasonable accuracy.

Discrete mesh: You can subdivide the configuration domain into a sufficiently

fine discrete grid of N boxes, replace space derivatives in the governing equations

by approximate discrete derivatives, and integrate a finite set of first order differ-

ential equations for the discretized spatial components u j(t) = u( jL/N, t), by any

integration routine you trust. Most often that’s the best you can do.

The next thing we note is that the solutions for many physical systems of

physical interest tend to be not only smooth, but also that the laws that govern

them are invariant in form under operations such as translations. For example,

in configuration space the fluttering flame front governing equations should be

invariant in their form under rotations, time translations, and reflection x → −x,

u→ −u.

Spectral methods: The spatial periodicity u(x, t) = u(x + L, t) then suggests that

it might be convenient to work in the Fourier space,

u(x, t) =

+∞
∑

k=−∞
ũk(t) eiqk x , (2.16)

where ũk = xk + i yk = |ũk |eiφk , qk = 2πk/L, L is the domain size, x is the spatial

coordinate and τ is time. Thus a state of a spatially 1-dimensional extended system

can described by an infinite set of complex Fourier coefficients ũk(t). The velocity

field u(x, t) is real, so ũk = ũ∗−k
, and we can replace the sum by an k ≥ 0 sum,

with u writtan as its reflection-symmetric part (sum of cosines) plus its reflection-

antisymmetric part (sum of sines). This is an example of an infinite-dimensional

state space alluded to on page 47, in this section’s introduction. example 12.3

Intuitively the flame front is smooth, so Fourier coefficients ũk drop off fast

with k, and truncations of (2.16) to finite numbers of terms can yield highly ac-

curate states. In numerical computations this state space is truncated to a finite
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number of real dimensions. For example, a state might be specified by 2N real

Fourier coefficients, or ‘computational degrees of freedom’

x = (x1, y1, x2, y2, . . . , xN, yN)T . (2.17)

More sophisticated variants of such truncations are called in the literature Gälerkin

truncations, or Gälerkin projections.

Once a trajectory is computed in Fourier space, we can recover and plot the

corresponding spatiotemporal pattern u(x, t) over the configuration space, as in

figure 2.7 and figure 2.8, by inverting (2.16). Spatiotemporal patterns give us a

qualitative picture of the flow and a physical intuition about the energetics of the

flow, but no detailed dynamical information; for that, tracking the evolution in a

high-dimensional state space is much more informative.

2.4.3 State space, as visualized by dummies

This is dedicated to Student X

— Professore Dottore Gatto Nero



So the simplest way to construct (in practice a finite dimensional approximation

to) state space coordinates is by a discrete mesh u(x, t) → u j(t) or ‘spectral’ coef-

ficients u(x, t) → ũk(t). We shall refer to such coordinates as ‘computational de-

grees of freedom’. The same dynamics can look very different in different choices

of coordinates. And when we say that the dynamics is ‘61,506-dimensional’, we

mean that in order to capture a particular physical observable to so many signifi-

cant digits of accuracy, we need at least 61,506 degrees of freedom.

The question is: how is one to look at such state space flow? The laziest thing

to do is to examine the trajectory’s projections onto any three computational de-

grees of freedom, let’s say the first three Fourier modes (ũ1, ũ2, ũ3). Why would

you do that? Well, that’s what computer spews out. This won’t do. Let’s ac-

cept that you do not know much about high dimensions, but you have been born

someplace where they force you to watch grown men kick a ball, for hours on

end. Your choice of (ũ1, ũ2, ũ3) coordinates means that you (or the TV camera)

are standing at a corner of the field. Far, far away, at the opposite end of the field,

there is action - but you only see a few little moving silhouettes, and can hardly

see the ball.

Or, if you scholarly kind, and would rather while hours away evaluating Γ-

functions, here is a precise way of saying the same: chose a direction in a high-

dimensional state space, call it your basis vector e(1). Now pick a state u in state

space at random. That gives you a second vector. What is the angle between these

two vectors? The cosine of that angle you compute by evaluating the ‘dot’ product

(or L2 norm)

〈u|e(1)〉 = 1

V

∫

Ω

dx u · e(1) , ‖u‖2 = 〈u|u〉 . (2.18)
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Once you finish the exercise 2.11 you will know what every computer scientist exercise 2.11

knows: the expectation value of the angle between any two high-dimensional

vectors picked at random is 90o, with a very small variance. In other words,

in high dimension and with a random coordinate system, every distant silhouette

is vanishingly small. And your lazy (ũ1, ũ2, ũ3) coordinates are a random choice,

the turbulent state might require 105 such coordinates to be accurately resolved.

So, if you were a referee, or a cameraman, would your really just stand there,

in the far corner of the field?

2.4.4 Exact state-space portraiture: go where the action is

(J.F. Gibson and P. Cvitanović)

You are interested into dynamics and especially the recurrent dynamics, so

cross the field, and identify, by long-time numerical simulations or other means,

prominent states that characterize the observed recurrent coherent structures of

interest to you. If you form a basis set from them, and project the evolving state

x(t) onto this basis, coordinates so formed will capture close recurrences to these

states. That is, form orthonormal basis functions {e(1), e(2), . . . , e(n)} from a set of

linearly independent fluid states and produce a state-space trajectory

x(t) = (x1(t), x2(t), · · · , xn(t), · · · ) , xn(t) = 〈u(t)|e(n)〉 (2.19)

in the {e(n)} coordinate frame. The projection of the trajectory can be viewed in

any of the 2d planes {e(m), e(n)} or in 3d perspective views {e(ℓ), e(m), e(n)}. The di-

mensionality is lower than the full state space, so in such projections trajectories

can appear to cross. It is important to understand that this is low-dimensional visu-

alization, not low-dimensional modeling, a truncation to fewer computational de-

grees of freedom. The dynamics are computed with fully-resolved direct numer-

ical simulations and projected onto basis sets to produce low-dimensional state-

space portraits, tailored to specific purposes and specific regions of state space.

The resulting portraiture depends on the physical states involved and not on the

choice of a numerical representation. The portraits reveal dynamical information

visually, providing insight into dynamics that can guide further analysis.

There is an infinity of possible basis sets, but two types of bases appear par-

ticularly natural: (a) a global basis, determined by a set of dynamically important

states, or (b) a local basis, defined, for example, in terms of a given equilibrium

and its linear stability eigenvectors. section 4.8

With this road map in hand, we can take a stroll through the state space of

a spatiotemporally turbulent flow. Like many dynamical narratives, this might

turn into a long trek through unfamiliar landscapes with many landmarks of local

interest. It is amazing that such a promenade is possible even in 105 dimensions.

But a detailed road map is a necessary prerequisite for solving at least three of

your outstanding problems: (a) uncovering the interrelations between (in principle

infinite number of) unstable invariant solutions of a turbulent flow, (b) a partition
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of state space is a needed for a systematic exploration of turbulent dynamics, and

(c) linear stability eigenvectors and their unstable-manifold continuations will be

needed to control and chaperon a given spatiotemporal state to a desired target

state.



In summary, when dealing with spatiotemporally extended systems, you’ll

need dual vision - you will have to think both in the configuration space, and in

the state space. We will return to how this works in sect. 30.5.

2.5 Computing trajectories

On two occasions I have been asked [by members of Par-

liament], ’Pray, Mr. Babbage, if you put into the machine

wrong figures, will the right answers come out?’ I am not

able rightly to apprehend the kind of confusion of ideas

that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically



whatever dynamical equations you face. Sooner or later, you need to implement

some finite time-step prescription for integration of the equations of motion (2.7).

The simplest is the Euler integrator which advances the trajectory by δτ× velocity

at each time step:

xi → xi + vi(x) δτ . (2.20)

This might suffice to get you started, but as soon as you need higher numerical ac-

curacy, you will need something better. There are many excellent reference texts

and computer programs that can help you learn how to solve differential equations

numerically using sophisticated numerical tools, such as pseudo-spectral methods

or implicit methods. If a ‘sophisticated’ integration routine takes days and gob- exercise 2.6

bles up terabits of memory, you are using brain-damaged high level software. Try

writing a few lines of your own Runge-Kutta code in some mundane everyday

language. While you absolutely need to master the requisite numerical methods, exercise 2.7

this is neither the time nor the place to expound upon them; how you learn them is

your business. And if you have developed some nice routines for solving problems exercise 2.9

in this text or can point another student to some, let us know. exercise 2.10

Résumé

Start from a state space point and evolve it for a finite time, you trace out its

trajectory. Evolve it forward and backward for infinite time, you get the orbit, the

set of all states reachable by evolution from a given state space point. An orbit is

a time-invariant notion: time evolution marches points along it, but the set itself

does not change. The flow describes the time evolution of all state space points,
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i.e., the totality of all orbits: the evolution law f turns the state space into a bowl

of spaghetti, with each individual spaghetto an orbit.

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-

cession of nearly periodic but unstable motions. In the same spirit, turbulence in

spatially extended systems can be described in terms of recurrent spatiotemporal

patterns. Pictorially, dynamics drives a given spatially extended system through

a repertoire of unstable patterns; as we watch a turbulent system evolve, every so

often we catch a glimpse of a familiar pattern. For any finite spatial resolution

and finite time, the system follows approximately a pattern belonging to a finite

repertoire of possible patterns. The long-term dynamics can be thought of as a

walk through the space of such patterns. Recasting this image into mathematics is

the subject of this book.

The state-space portraits are dynamically intrinsic, since the projections are

defined in terms of solutions of the equations of motion, and representation in-

dependent, since the L2 product (2.18) is independent of the numerical repre-

sentation. The method can be applied to any high-dimensional dissipative flow.

Production of state-space portraits requires numerical data of configuration space

fields evolving in time (obtained obtained from simulation or experiment), es-

timates of important physical states (such as equilibria and their linear stability

eigenfunctions), and a method of computing the inner product between velocity

fields over the physical domain.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In ChaosBook, state space is the set

of admissible states in a general d- or∞-dimensional dynamical system. The term phase

space is reserved for Hamiltonian state spaces of 2D-dimensions, where D is the number

of Hamiltonian degrees of freedom. If the state space is a continuous smooth manifold

much of the literature [2.4, A1.72] refers to it as ‘phase space,’ but we find the control

engineering usage sharper: in the state space (or ‘time-domain’) description of an au-

tonomous physical system, the state of the system is represented as a vector within the

‘state space,’ space whose axes are the state variables, and the evolution of a state is given

by differential equations which are first-order in time. Hopf [2.6] would refer to such a

state as an ‘instantaneous phase’ of the system obeying a ‘differential law of the phase

motion’. The distinction made here is needed in a text where one treats deterministic dy-

namical systems, stochastic systems and quantum-mechanical systems. The term ‘phase’

has a precise meaning in wave mechanics, quantum mechanics and dynamics of inte-

grable systems at the heart of Hamilton’s formulation of Newtonian mechanics, while

‘state space’ is more descriptive of the way the notion is used in the general theory of

dynamical systems. Further confusion arises when prefix spatio- as in ‘spatiotemporal’ is

used in reference to states extended in the (1, 2, or 3-dimensional) physical configuration

space. They may exhibit spatial wave-like behaviors, but their state space is ∞-dimens-

ional.

Much of the literature denotes the vector field in a first order differential equation

(2.7) by f (x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’

or ‘flow map’ x(x0, t) = Φ(x0, t), or φt(x0), or something else. Here we treat maps and

flows - 26jan2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 2. GO WITH THE FLOW 54

flows on an equal footing, and we save Greek letters for matters quantum-mechanical. We

reserve the notation f t(x) for maps such as (2.9) and refer to a state space velocity vector

field as v(x). We come to regret this choice very far into the text, only by the time we

delve into Navier-Stokes equations.

Remark 2.2 Rössler and Duffing flows. The Duffing system (2.21) arises in the study

of electronic circuits [2.7]. The Rössler flow (2.27) is the simplest flow which exhibits

many of the key aspects of chaotic dynamics. It was introduced in ref. [2.8] as a set of

equations describing no particular physical system, but capturing the essence of Lorenz

chaos in the most simple of smooth flows. Otto Rössler, a man of classical education, was

inspired in this quest by that rarely cited grandfather of chaos, Anaxagoras (456 B.C.).

This and references to earlier work can be found in refs. [2.9, 2.10, 2.11]. We recommend

in particular the inimitable Abraham and Shaw illustrated classic [14.23] for its beautiful

sketches of many flows, including the Rössler flow. Timothy Jones [2.13] has a number

of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation. The Lorenz equation (2.22) is the most celebrated

early illustration of “deterministic chaos” [A1.72] (but not the first - that honor goes to

Dame Cartwright [A1.5]). Lorenz’s paper, which can be found in reprint collections

refs. [23.5, 3.8], is a pleasure to read, and it is still one of the best introductions to the

physics motivating such models (read more about Lorenz here). The equations, a set of

ODEs in R3, exhibit strange attractors. W. Tucker [28.28, 28.29, 28.30] has proven rigor-

ously via interval arithmetic that the Lorenz attractor is strange for the original parameters

(no stable orbits) and that it has a long stable periodic orbit for slightly different parame-

ters. In contrast to the hyperbolic strange attractors such as the weakly perturbed cat map,

the Lorenz attractor is structurally unstable. Frøyland [2.21] has a nice brief discussion

of Lorenz flow. Frøyland and Alfsen [2.22] plot many periodic and heteroclinic orbits of

the Lorenz flow; some of the symmetric ones are included in ref. [2.21]. Guckenheimer-

Williams [2.23] and Afraimovich-Bykov-Shilnikov [2.24] offer an in-depth discussion of

the Lorenz equation. The most detailed study of the Lorenz equation was undertaken by

Sparrow [2.25]. For a geophysics derivation, see Rothman course notes [2.26]. For a

physical interpretation of ρ as “Rayleigh number,” see Jackson [2.27] and Seydel [2.28].

The Lorenz truncation to 3 modes is so drastic that the model bears no relation to the

geophysical hydrodynamics problem that motivated it. For detailed pictures of Lorenz in-

variant manifolds consult Vol II of Jackson [2.27] and “Realtime visualization of invariant

manifolds” by Ronzan. The Lorenz attractor is a very thin fractal – as we saw, stable man-

ifold thickness is of the order 10−4 – whose fractal structure has been accurately resolved

by D. Viswanath [2.29, 2.30]. If you wonder what analytic function theory has to say

about Lorenz, check ref. [2.31]. Refs. [2.32, 2.33] might also be of interest. (continued

in remark 11.1)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic

system exhibits ‘chaos’ if its orbits are locally unstable (positive Lyapunov exponent)

and globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov expo-

nents and discuss their evaluation, but already at this point it would be handy to have

a few quick numerical methods to diagnose chaotic dynamics. Laskar’s frequency anal-

ysis method [2.34] is useful for extracting quasi-periodic and weakly chaotic regions of
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state space in Hamiltonian dynamics with many degrees of freedom. For pointers to other

numerical methods, see ref. [2.35].

Remark 2.5 High-dimensional flows and their visualizations. Dynamicist’s vision

of turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [2.4], see

appendix A1.5. Much about high-dimensional state spaces is counterintuitive. The litera- appendix A1.5

ture on why the expectation value of the angle between any two high-dimensional vectors

picked at random is 90o is mostly about spikey spheres: see the draft of the Hopcroft and

Kannan [2.36] book and Ravi Kannan’s course; lecture notes by Hermann Flaschka on

Some geometry in high-dimensional spaces; Wegman and Solka [2.37] visualizations of

high-dimensional data; Spruill paper [2.38]; a lively mathoverflow.org thread on “Intuitive

crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [30.5] and described here are akin in spirit

to the low-dimensional projections of the POD modeling [A1.73], in that both methods

aim to capture key features and dynamics of the system in just a few dimensions. But

the method described here is very different from POD in a key way: we construct basis

sets from exact solutions of the fully-resolved dynamics rather than from the empirical

eigenfunctions of the POD. Exact solutions and their linear stability modes (a) character-

ize the spatially-extended states precisely, as opposed to the truncated expansions of the

POD, (b) allow for different basis sets and projections for different purposes and different

regions of state space, (c) our low-dimensional projections are not meant to suggest low-

dimensional ODE models; they are only visualizations, every point in these projections is

still a point the full state space, and (d) the method is not limited to Fourier mode bases.

(J.F. Gibson and P. Cvitanović)

Remark 2.6 Dynamical systems software: J.D. Meiss [2.41] has maintained for

many years Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynam-

ical Systems website www.dynamicalsystems.org. The website glossary contains most

of Meiss’s FAQ plus new ones, as well as an up-to-date software list [2.42] with links

to DSTool, xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics main-

tains links to dynamical systems software packages on eom.springer.de/D/d130210.htm.

Kuznetsov [2.43] Appendix D.9 gives an exhaustive overview of software available in

2004. (see also remark 15.1)
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2.6 Examples

10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected at the ends of chapters. If

you want to return back to the main text, click on [click to return] pointer on the

margin.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is

afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.21)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-

tion coordinates (x(t), y(t)) of state spaceM, but they belong to a different space, the

tangent bundle TM.

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =

















ẋ
ẏ
ż

















=

















σ(y − x)
ρx − y − xz

xy − bz

















(2.22)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,

and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the

origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria

at remark 2.3

xEQ1,2
= (±

√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.23)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,

but here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a

homoclinic orbit at ρ = 13.56 . . . . Beyond that, an infinity of associated periodic orbits

are generated, until ρ = 24.74 . . . , where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice

σ = 10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined

to the strange attractor depicted in figure 2.5, and the positions of its equilibria are

marked in figure 11.2. (continued in example 3.4) click to return: p. ??

Example 2.3 Rössler strange attractor: The Duffing flow of figure 2.4 is bit of a

bore–every orbit ends up in one of the two attractive equilibrium points. Let’s construct

a flow that does not die out, but exhibits a recurrent dynamics. Start with a harmonic

oscillator

ẋ = −y , ẏ = x . (2.24)

The solutions are reit, re−it, and the whole x-y plane rotates with constant angular

velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.25)
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or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with

the same average angular velocity, but trajectories are now spiraling out. Any flow in

the plane either escapes, falls into an attracting equilibrium point, or converges to a limit

cycle. Richer dynamics requires at least one more dimension. In order to prevent the

trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c

by adding

ż = b + z(x − c) , c > 0 . (2.26)

As x crosses c, z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back,

start decreasing x by modifying its equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied

example of an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.27)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is asexercise 2.8

simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for

so ‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.8):

x± = (
1

2
± 1

2

√

1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )

(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) (2.28)

One is close to the origin by construction. The other, some distance away, exists be-

cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-

tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6

(see also figure 14.7 (a)). Trajectories that start out sufficiently close to the origin seem

to converge to a strange attractor. We say ‘seem’ as there exists no proof that such

an attractor is asymptotically aperiodic–it might well be that what we see is but a long

transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and

similar figures in what follows are examples of ‘strange attractors.’

The Rössler flow is the simplest flow which exhibits many of the key aspects of

chaotic dynamics; we shall use it and the 3-pinball (see chapter 9) systems through-

out ChaosBook to motivate introduction of Poincaré sections, return maps, symbolic

dynamics, cycle expansions, and much else. Rössler flow is integrated in exercise 2.7,

its equilibria are determined in exercise 2.8, its Poincaré sections constructed in ex-

ercise 3.1, and the corresponding return Poincaré map computed in exercise 3.2. Its

volume contraction rate is computed in exercise 4.3, its topology investigated in exer-

cise 4.4, the shortest Rössler flow cycles are computed and tabulated in exercise 7.1,

and its Lyapunov exponents evaluated in exercise 6.4. (continued in exercise 2.8 and

example 3.3) (R. Paškauskas)click to return: p. ??
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The exercises that you should do have underlined titles. The rest (smaller type)

are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Orbits do not intersect. An orbit in the state spaceM
is the set of points one gets by evolving x ∈ M forwards

and backwards in time:

Mx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the

same curve.

2.2. Evolution as a group. The trajectory evolution f t is

a one-parameter semigroup, where (2.4)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the semi-

group of evolution functions comes from the commuta-

tive character of the time parameter under addition. Can

you think of any other semigroup replacing time?

2.3. Almost ODE’s.

(a) Consider the point x on R evolving according

ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that

a point of a vector field v where the velocity is zero is a

fixed point of the dynamics f t.

2.5. Gradient systems. Gradient systems (or ‘potential

problems’) are a simple class of dynamical systems for

which the velocity field is given by the gradient of an

auxiliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the

reals R.

(a) Show that the velocity of the particle is in the di-

rection of most rapid decrease of the function φ.

(b) Show that all extrema of φ are fixed points of the

flow.

(c) Show that it takes an infinite amount of time for

the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient

systems.

2.6. Runge-Kutta integration. Implement the fourth-

order Runge-Kutta integration formula (see, for exam-

ple, ref. [2.44]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what

you believe to be a better numerical integration routine,

and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some

other integration routine to integrate numerically the

Rössler flow (2.27). Does the result look like a ‘strange

attractor’?

2.8. Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the

Rössler system (2.27). How many are there?

(b) Assume that b = a. As we shall see, some surpris-

ingly large, and surprisingly small numbers arise

in this system. In order to understand their size,

introduce parameters

ǫ = a/c , D = 1 − 4ǫ2 , p± = (1 ±
√

D)/2 .

Express all the equilibria in terms of (c, ǫ,D, p±),
expand to the first order in ǫ, and evaluate for

a = b = 0.2, c = 5.7 in (2.27). In the case stud-

ied ǫ ≈ 0.03, so these estimates are quite accurate.

(continued in exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations nu-

merically is not for the faint of heart. It is not always

possible to establish that a set of nonlinear ordinary
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differential equations has a solution for all times and

there are many cases were the solution only exists for

a limited time interval, as, for example, for the equation

ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer

this question?

(b) Let’s test the integrator you wrote in exercise 2.6.

The equation

ẍ = x (2.29)

with initial conditions x(0) = 2 and ẋ = 0 has the

solution x(t) = e−t(1 + e2 t) . Can your integrator

reproduce this solution for the interval t ∈ [0, 10]?

Check your solution by plotting the error as com-

pared to the exact result.

(c) Test your integrator for

ẍ = −x (2.30)

with the same initial conditions and integration in-

terval.

(d) Now we will try something a little harder. The

equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.

For initial conditions, we will always use ẍ(0) =

ẋ(0) = x(0) = 0 . Can you reproduce the re-

sult x(12) = 0.8462071873 (all digits are sig-

nificant)? Even though the equation being inte-

grated is chaotic, the time intervals are not long

enough for the exponential separation of trajecto-

ries to be noticeable (the exponential growth fac-

tor is ≈ 2.4).

(e) Determine the time interval for which the solution

of ẋ = x2, x(0) = 1 exists.

2.10. Classical collinear helium dynamics. In order to ap-

ply periodic orbit theory to quantization of helium we

shall need to compute classical periodic orbits of the he-

lium system. In this exercise we commence their evalu-

ation for the collinear helium atom (8.8)

H =
1

2
p2

1 +
1

2
p2

2 −
Z

r1

− Z

r2

+
1

r1 + r2

.

The nuclear charge for helium is Z = 2. Colinear he-

lium has only 3 degrees of freedom and the dynamics

can be visualized as a motion in the (r1, r2), ri ≥ 0 quad-

rant. In (r1, r2)-coordinates the potential is singular for

ri → 0 nucleus-electron collisions. These 2-body col-

lisions can be regularized by rescaling the coordinates,

with details given in sect. A2.2. In the transformed coor-

dinates (x1, x2, p1, p2) the Hamiltonian equations of mo-

tion take the form

Ṗ1 = 2Q1













2 −
P2

2

8
− Q2

2(1 +
Q2

2

R4
)













Ṗ2 = 2Q2













2 −
P2

1

8
− Q2

1(1 +
Q2

1

R4
)













Q̇1 =
1

4
P1Q2

2 , Q̇2 =
1

4
P2Q2

1 . (2.31)

where R = (Q2
1
+ Q2

2
)1/2.

(a) Integrate the equations of motion by the fourth or-

der Runge-Kutta computer routine of exercise 2.6

(or whatever integration routine you like). A

convenient way to visualize the 3-dimensional

state space orbit is by projecting it onto the 2-

dimensional (r1(t), r2(t)) plane. (continued in ex-

ercise 3.4)

(Gregor Tanner, Per Rosenqvist)

2.11. In high dimensions any two vectors are (nearly) or-

thogonal. Among humble plumbers laboring with ex-

tremely high-dimensional ODE discretizations of fluid

and other PDEs, there is an inclination to visualize the

∞-dimensional state space flow by projecting it onto a

basis constructed from a few random coordinates, let’s

say the 2nd Fourier mode along the spatial x direction

against the 4th Chebyshev mode along the y direction.

It’s easy, as these are typically the computational de-

grees of freedom. As we will now show, it’s easy but

not smart, with vectors representing the dynamical states

of interest being almost orthogonal to any such random

basis.

Suppose your state space M is a real 10 247-

dimensional vector space, and you pick from it two vec-

tors x1, x2 ∈ M at random. What is the angle between

them likely to be?

By asking for ‘angle between two vectors’ we have im-

plicitly assumed that there exist is a dot product

x1
⊤ · x2 = ‖ x1 ‖ ‖ x2 ‖ cos(θ12) ,

so let’s make these vectors unit vectors,
w

w

w

w

w
x j

w

w

w

w

w
= 1 .

When you think about it, you would be hard put to

say what ’uniform probability’ would mean for a vec-

tor x ∈ M = R10 247, but for a unit vector it is obvious:

probability that x direction lies within a solid angle dΩ

is dΩ/(unit hyper-sphere surface).

So what is the surface of the unit sphere (or, the total

solid angle) in d dimensions? One way to compute it is
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to evaluate the Gaussian integral

Id =

∫ ∞

−∞
dx1 · · · dxd e−

1
2 (x2

1
+···+x2

d) (2.32)

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Recast the integrals in polar coordinate form. You

know how to compute this integral in 2 and 3

dimensions. Show by induction that the surface

S d−1 of unit d-ball, or the total solid angle in even

and odd dimensions is given by

S 2k =
2(2π)k

(2k − 1)!!
, S 2k+1 =

2πk+1

k!
. (2.33)

(c) Show, by examining the form of the integrand in

the polar coordinates, that for arbitrary, perhaps

even complex dimension d ∈ C

S d−1 = 2πd/2/Γ(d/2) .

In Quantum Field Theory integrals over 4-

momenta are brought to polar form and evaluated

as functions of a complex dimension parameter d.

This procedure is called the ‘dimensional regular-

ization’.

(d) Check your formula for d = 2 (1-sphere, or the

circle) and d = 3 (2-sphere, or the sphere).

(e) What limit does S d does tend to for large d? (Hint:

it’s not what you think. Try Sterling’s formula).

So now that we know the volume of a sphere, what is a

the most likely angle between two vectors x1, x2 picked

at random? We can rotate coordinates so that x1 is

aligned with the ‘z-axis’ of the hypersphere. An angle

θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P(θ)dθ of finding two vec-

tors at angle θ is given by the area of the merid-

ional strip of width dθ, and derive the formula for

it:

P(θ) =
1
√
π

Γ(d/2)

Γ((d − 1)/2)
.

(One can write analytic expression for this in

terms of beta functions, but it is unnecessary for

the problem at hand).

(g) Show that for large d the probability P(θ) tends

to a normal distribution with mean θ = π/2 and

variance 1/d.

So, in d-dimensional vector space the two random vec-

tors are nearly orthogonal, within accuracy of θ = π/2±
1/d.

If you are a humble plumber, and the notion of a vector

space is some abstract hocus-pocus to you, try thinking

this way. Your 2nd Fourier mode basis vector is some-

thing that wiggles twice along your computation do-

main. Your turbulent state is very wiggly. The product

of the two functions integrated over the computational

domain will average to zero, with a small leftover. We

have just estimated that with dumb choices of coordinate

bases this leftover will be of order of 1/10 247, which is

embarrassingly small for displaying a phenomenon of

order ≈ 1.

Several intelligent choices of coordinates for state space

projections are described in Gibson et al. [30.5] and the

web tutorial ChaosBook.org/tutorials.

Sara A. Solla and P. Cvitanović
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