
Chapter 28

Why does it work?

Bloch: “Space is the field of linear operators.”

Heisenberg: “Nonsense, space is blue and birds fly

through it.”

—Felix Bloch, Heisenberg and the early days of

quantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

A
s we shall see, the trace formulas and spectral determinants work well,

sometimes very well. The question is: Why? And it still is. The heuris-

tic manipulations of chapter 21 were naive and reckless, as we are facing

infinite-dimensional vector spaces and singular integral kernels.

We now outline the key ingredients of proofs that put the trace and determi-

nant formulas on solid footing. This requires taking a closer look at the evolution

operators from a mathematical point of view, since up to now we have talked

about eigenvalues without any reference to what kind of a function space the cor-

responding eigenfunctions belong to. We shall restrict our considerations to the

spectral properties of the Perron-Frobenius operator for maps, as proofs for more

general evolution operators follow along the same lines. What we refer to as a “the

set of eigenvalues” acquires meaning only within a precisely specified functional

setting: this sets the stage for a discussion of the analyticity properties of spectral

determinants. In example 28.1 we compute explicitly the eigenspectrum for the

three analytically tractable piecewise linear examples. In sect. 28.3 we review the

basic facts of the classical Fredholm theory of integral equations. The program

is sketched in sect. 28.4, motivated by an explicit study of eigenspectrum of the

Bernoulli shift map, and in sect. 28.5 generalized to piecewise real-analytic hy-

perbolic maps acting on appropriate densities. We show on a very simple example

that the spectrum is quite sensitive to the regularity properties of the functions

considered.

For expanding and hyperbolic finite-subshift maps analyticity leads to a very

strong result; not only do the determinants have better analyticity properties than
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the trace formulas, but the spectral determinants are singled out as entire functions

in the complex s plane. remark 28.1

The goal of this chapter is not to provide an exhaustive review of the rigorous the-

ory of the Perron-Frobenius operators and their spectral determinants, but rather

to give you a feeling for how our heuristic considerations can be put on a firm

basis. The mathematics underpinning the theory is both hard and profound.

If you are primarily interested in applications of the periodic orbit theory, you

should skip this chapter on the first reading.

fast track:

chapter 16, p. 293

28.1 Linear maps: exact spectra

We start gently; in example 28.1 we work out the exact eigenvalues and eigen-

functions of the Perron-Frobenius operator for the simplest example of unstable,

expanding dynamics, a linear 1-dimensional map with one unstable fixed point.

Ref. [28.6] shows that this can be carried over to d-dimensions. Not only that,

but in example 28.5 we compute the exact spectrum for the simplest example of a

dynamical system with an infinity of unstable periodic orbits, the Bernoulli shift.

Example 28.1 The simplest eigenspectrum - a single fixed point: In order to get

some feeling for the determinants defined so formally in sect. 22.2, let us work out a

trivial example: a repeller with only one expanding linear branch

f (x) = Λx , |Λ| > 1 ,

and only one fixed point xq = 0. The action of the Perron-Frobenius operator (19.10) is

Lφ(y) =

∫

dx δ(y − Λx)φ(x) =
1

|Λ|
φ(y/Λ) . (28.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1

|Λ|Λk
yk , k = 0, 1, 2, . . . (28.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger

equation: k labels the kth eigenfunction xk in the same spirit in which the number

of nodes labels the kth quantum-mechanical eigenfunction. A quantum-mechanical

amplitude with more nodes has more variability, hence a higher kinetic energy.

Analogously, for a Perron-Frobenius operator, a higher k eigenvalue 1/|Λ|Λk is

getting exponentially smaller because densities that vary more rapidly decay more

rapidly under the expanding action of the map.
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Example 28.2 The trace formula for a single fixed point: The eigenvalues Λ−k−1

fall off exponentially with k, so the trace of L is a convergent sum

trL =
1

|Λ|

∞
∑

k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1

| f (0)′ − 1|
,

in agreement with (21.6). A similar result follows for powers of L, yielding the single-

fixed point version of the trace formula for maps (21.9):

∞
∑

k=0

zesk

1 − zesk
=

∞
∑

r=1

zr

|1 − Λr |
, esk =

1

|Λ|Λk
. (28.3)

The left hand side of (28.3) is a meromorphic function, with the leading zero

at z = |Λ|. So what?

Example 28.3 Meromorphic functions and exponential convergence: As an

illustration of how exponential convergence of a truncated series is related to analytic

properties of functions, consider, as the simplest possible example of a meromorphic

function, the ratio

h(z) =
z − a

z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function h

can be represented by the power series

h(z) =

∞
∑

k=0

σkzk ,

where σ0 = a/b, and the higher order coefficients are given by σ j = (a − b)/b j+1.

Consider now the truncation of order N of the power series

hN(z) =

N
∑

k=0

σkzk =
a

b
+

z(a − b)(1 − zN/bN)

b2(1 − z/b)
.

Let ẑN be the solution of the truncated series hN(ẑN) = 0. To estimate the distance

between a and ẑN it is sufficient to calculate hN(a). It is of order (a/b)N+1, so finite order

estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pole (the leading

eigenvalue of L) from a finite truncation of a trace formula converges exponen-

tially, and (2) the non-leading eigenvalues of L lie outside of the radius of con-

vergence of the trace formula and cannot be computed by means of such cycle

expansion. However, as we shall now see, the whole spectrum is reachable at no

extra effort, by computing it from a determinant rather than a trace.

Example 28.4 The spectral determinant for a single fixed point: The spectral

determinant (22.3) follows from the trace formulas of example 28.2:

det (1 − zL) =

∞
∏

k=0

(

1 −
z

|Λ|Λk

)

=

∞
∑

n=0

(−t)n Qn , t =
z

|Λ|
, (28.4)

where the cummulants Qn are given explicitly by the Euler formula exercise 28.3

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · ·

Λ−n+1

1 − Λ−n
. (28.5)
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Figure 28.1: The Bernoulli shift map.

The main lesson to glean from this simple example is that the cummulants Qn

decay asymptotically faster than exponentially, as Λ−n(n−1)/2. For example, if we

approximate series such as (28.4) by the first 10 terms, the error in the estimate of

the leading zero is ≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a single

repelling fixed point. What about chaos? Systems where the number of unstable

cycles increases exponentially with their length? We now turn to the simplest

example of a dynamical system with an infinity of unstable periodic orbits.

Example 28.5 Eigenfunction of Bernoulli shift map. (continued from example 14.6) The

Bernoulli shift map figure 28.1

f (x) =

{

f0(x) = 2x , x ∈ I0 = [0, 1/2)
f1(x) = 2x − 1 , x ∈ I1 = (1/2, 1]

(28.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-

ator (19.9) assembles ρ(y) from its two preimages

Lρ(y) =
1

2
ρ

(

y

2

)

+
1

2
ρ

(

y + 1

2

)

. (28.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,

up to constant prefactors, with the Bernoulli polynomials Bn(x). These polynomials are

generated by the Taylor expansion of the exponential generating function

G(x, t) =
text

et − 1
=

∞
∑

k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x −

1

2
, . . .

The Perron-Frobenius operator (28.7) acts on the exponential generating function G as

LG(x, t) =
1

2

(

text/2

et − 1
+

tet/2ext/2

et − 1

)

=
t

2

ext/2

et/2 − 1
=

∞
∑

k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k.

The full operator has two components corresponding to the two branches. For

the n times iterated operator we have a full binary shift, and for each of the 2n branches

the above calculations carry over, yielding the same trace (2n − 1)−1 for every cycle on

length n. Without further ado we substitute everything back and obtain the determinant,

det (1 − zL) = exp















−
∑

n=1

zn

n

2n

2n − 1















=
∏

k=0

(

1 −
z

2k

)

, (28.8)
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verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,

1/2n, . . . .

The Bernoulli map spectrum looks reminiscent of the single fixed-point spec-

trum (28.2), with the difference that the leading eigenvalue here is 1, rather than

1/|Λ|. The difference is significant: the single fixed-point map is a repeller, with

escape rate (1.7) given by the L leading eigenvalue γ = ln |Λ|, while there is no

escape in the case of the Bernoulli map. As already noted in discussion of the

relation (22.18), for bounded systems the local expansion rate (here ln |Λ| = ln 2) section 22.4

is balanced by the entropy (here ln 2, the log of the number of preimages Fs ),

yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are correct for

two piecewise linear maps in 1 dimension, one with a single fixed point, and one

with a full binary shift chaotic dynamics. For a single fixed point, eigenfunctions

are monomials in x. For the chaotic example, they are orthogonal polynomials on

the unit interval. What about higher dimensions? We check our formulas on a

2-dimensional hyperbolic map next.

Example 28.6 The simplest of 2-dimensional maps - a single hyperbolic fixed

point: We start by considering a very simple linear hyperbolic map with a single

hyperbolic fixed point,

f (x) = ( f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .

The Perron-Frobenius operator (19.10) acts on the 2-dimensional density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (28.9)

What are good eigenfunctions? Cribbing the 1-dimensional eigenfunctions for the sta-

ble, contracting x1 direction from example 28.1 is not a good idea, as under the iter-

ation of L the high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would

get multiplied by exponentially exploding eigenvalues 1/Λk
s. This makes sense, as in

the contracting directions hyperbolic dynamics crunches up initial densities, instead of

smoothing them. So we guess instead that the eigenfunctions are of form

ϕk1k2
(x1, x2) = x

k2

2
/x

k1+1

1
, k1, k2 = 0, 1, 2, . . . , (28.10)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series in

the expanding direction, the x2 variable. The action of Perron-Frobenius operator on

this set of basis functions

Lϕk1k2
(x1, x2) =

σ

|Λu|

Λ
k1
s

Λ
k2
u

ϕk1k2
(x1, x2) , σ = Λs/|Λs|

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by

Λ
k1
s /Λ

k2+1
u factor in the eigenvalue. One verifies by an explicit calculation (undoing

the geometric series expansions to lead to (22.8)) that the trace of L indeed equals

1/|det (1−M)| = 1/|(1−Λu)(1−Λs)| , from which it follows that all our trace and spectral

determinant formulas apply. The argument applies to any hyperbolic map linearized

around the fixed point of form f (x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λd xd).
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So far we have checked the trace and spectral determinant formulas derived

heuristically in chapters 21 and 22, but only for the case of 1-dimensional and

2-dimensional linear maps. But for infinite-dimensional vector spaces this game

is fraught with dangers, and we have already been mislead by piecewise linear

examples into spectral confusions: contrast the spectra of example 19.1 and ex-

ample 20.4 with the spectrum computed in example 21.2.

We show next that the above results do carry over to a sizable class of piece-

wise analytic expanding maps.

28.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes very effective way to look at

operators is through their matrix representations. Evolution operators are moving

density functions defined over some state space, and as in general we can imple-

ment this only numerically, the temptation is to discretize the state space as in

sect. 19.3. The problem with such state space discretization approaches that they

sometimes yield plainly wrong spectra (compare example 20.4 with the result of

example 21.2), so we have to think through carefully what is it that we really

measure.

An expanding map f (x) takes an initial smooth density φn(x), defined on a

subinterval, stretches it out and overlays it over a larger interval, resulting in a new,

smoother density φn+1(x). Repetition of this process smoothes the initial density,

so it is natural to represent densities φn(x) by their Taylor series. Expanding

φn(y) =

∞
∑

k=0

φ
(k)
n (0)

yk

k!
, φn+1(y)k =

∞
∑

ℓ=0

φ
(ℓ)

n+1
(0)

yℓ

ℓ!
,

φ
(ℓ)

n+1
(0) =

∫

dx δ(ℓ)(y − f (x))φn(x)
∣

∣

∣

y=0
, x = f −1(0) ,

and substitute the two Taylor series into (19.6):

φn+1(y) = (Lφn) (y) =

∫

M

dx δ(y − f (x))φn(x) .

The matrix elements follow by evaluating the integral

Lℓk =
∂ℓ

∂yℓ

∫

dxL(y, x)
xk

k!

∣

∣

∣

∣

∣

∣

y=0

. (28.11)

we obtain a matrix representation of the evolution operator

∫

dxL(y, x)
xk

k!
=

∑

k′

yk′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into the yk′ com-

ponent of the density φn+1(y) one time step later, with y = f (x).
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We already have some practice with evaluating derivatives δ(ℓ)(y) = ∂ℓ

∂yℓ
δ(y) from

sect. 19.2. This yields a representation of the evolution operator centered on the

fixed point, evaluated recursively in terms of derivatives of the map f :

Lℓk =

∫

dx δ(ℓ)(x − f (x))
xk

k!

∣

∣

∣

∣

∣

∣

x= f (x)

(28.12)

=
1

| f ′|

(

d

dx

1

f ′(x)

)ℓ
xk

k!

∣

∣

∣

∣

∣

∣

∣

x= f (x)

.

The matrix elements vanish for ℓ < k, so L is a lower triangular matrix. The

diagonal and the successive off-diagonal matrix elements are easily evaluated it-

eratively by computer algebra

Lkk =
1

|Λ|Λk
, Lk+1,k = −

(k + 2)! f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal terms drop

off exponentially, as 1/|Λ|k+1, the terms below the diagonal fall off even faster, and

truncating L to a finite matrix introduces only exponentially small errors.

The trace formula (28.3) takes now a matrix form

tr
zL

1 − zL
= tr

zL

1 − zL
. (28.13)

In order to illustrate how this works, we work out a few examples.

In example 28.7 we show that these results carry over to any analytic single-

branch 1-dimensional repeller. Further examples motivate the steps that lead to

a proof that spectral determinants for general analytic 1-dimensional expanding

maps, and - in sect. 28.5, for 1-dimensional hyperbolic mappings - are also entire

functions.

Example 28.7 Perron-Frobenius operator in a matrix representation: As in ex-

ample 28.1, we start with a map with a single fixed point, but this time with a nonlin-

ear piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative

σ = σ(F′) = F′/|F′| , and the Perron-Frobenius operator acting on densities analytic in

an open domain enclosing the fixed point x = wq,

Lφ(y) =

∫

dx δ(y − f (x)) φ(x) = σ F′(y) φ(F(y)) .

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (28.14)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =

∞
∑

n=0

znφn =

∮

dw

2πi

φ(w)

w − z
, φn =

∮

dw

2πi

φ(w)

wn+1
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Figure 28.2: A nonlinear one-branch repeller with a

single fixed point wq. 0 0.5 1
w

0

0.5

1

f(w)

w *

Combining this with (28.22), we see that in this basis Perron-Frobenius operator L is

represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮

dw

2πi

σ F′(w)(F(w))n

wm+1
. (28.15)

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮

dw

2πi

σ F′(w)

w − F(w)
.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).

Hence exercise 28.6

tr L =
σ F′(w∗)

1 − F′(w∗)
=

1

| f ′(w∗) − 1|
.

This super-exponential decay of cummulants Qk ensures that for a repeller

consisting of a single repelling point the spectral determinant (28.4) is entire in

the complex z plane.

In retrospect, the matrix representation method for solving the density evolu-

tion problems is eminently sensible — after all, that is the way one solves a close

relative to classical density evolution equations, the Schrödinger equation. When

available, matrix representations for L enable us to compute many more orders

of cumulant expansions of spectral determinants and many more eigenvalues of

evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as (22.28) imply that

the dynamical zeta function is a meromorphic function. The practical import of

this observation is that it guarantees that finite order estimates of zeroes of dyn-

amical zeta functions and spectral determinants converge exponentially, or - in

cases such as (28.4) - super-exponentially to the exact values, and so the cycle

expansions to be discussed in chapter 23 represent a true perturbative approach to

chaotic dynamics.

Before turning to specifics we summarize a few facts about classical theory

of integral equations, something you might prefer to skip on first reading. The

purpose of this exercise is to understand that the Fredholm theory, a theory that
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works so well for the Hilbert spaces of quantum mechanics does not necessarily

work for deterministic dynamics - the ergodic theory is much harder.

fast track:

sect. 28.4, p. 522

28.3 Classical Fredholm theory

He who would valiant be ’gainst all disaster

Let him in constancy follow the Master.

—John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =

∫

dy δ(x − f (y)) φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =

∫

M

dyK(x, y)ϕ(y) , (28.16)

and one is tempted to resort to classical Fredholm theory in order to establish

analyticity properties of spectral determinants. This path to enlightenment is

blocked by the singular nature of the kernel, which is a distribution, whereas the

standard theory of integral equations usually concerns itself with regular kernels

K(x, y) ∈ L2(M2). Here we briefly recall some steps of Fredholm theory, before

working out the example of example 28.5.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =

∫

M

dyK(x, y)ϕ(y) + ξ(x) (28.17)

where ξ(x) is a given function in L2(M) and the kernelK(x, y) ∈ L2(M2) (Hilbert-

Schmidt condition). The natural object to study is then the linear integral operator

(28.16), acting on the Hilbert space L2(M): the fundamental property that follows

from the L2(Q) nature of the kernel is that such an operator is compact, that is

close to a finite rank operator.A compact operator has the property that for every

δ > 0 only a finite number of linearly independent eigenvectors exist correspond-

ing to eigenvalues whose absolute value exceeds δ, so we immediately realize

(figure 28.5) that much work is needed to bring Perron-Frobenius operators into

this picture.

We rewrite (28.17) in the form

Tϕ = ξ , T = 11 − K . (28.18)
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The Fredholm alternative is now applied to this situation as follows: the equation

Tϕ = ξ has a unique solution for every ξ ∈ L2(M) or there exists a non-zero

solution of Tϕ0 = 0, with an eigenvector of K corresponding to the eigenvalue 1.

The theory remains the same if instead of T we consider the operator Tλ = 11−λK

with λ , 0. AsK is a compact operator there is at most a denumerable set of λ for

which the second part of the Fredholm alternative holds: apart from this set the

inverse operator ( 11−λT )−1 exists and is bounded (in the operator sense). When λ

is sufficiently small we may look for a perturbative expression for such an inverse,

as a geometric series

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (28.19)

where Kn is a compact integral operator with kernel

Kn(x, y) =

∫

Mn−1

dz1 . . . dzn−1 K(x, z1) · · · K(zn−1, y) ,

andW is also compact, as it is given by the convergent sum of compact operators.

The problem with (28.19) is that the series has a finite radius of convergence,

while apart from a denumerable set of λ’s the inverse operator is well defined.

A fundamental result in the theory of integral equations consists in rewriting the

resolving kernelW as a ratio of two analytic functions of λ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K

(

x1 . . . xn

y1 . . . yn

)

=

∣

∣

∣

∣

∣

∣

∣

∣

K(x1, y1) . . . K(x1, yn)
. . . . . . . . .

K(xn, y1) . . . K(xn, yn)

∣

∣

∣

∣

∣

∣

∣

∣

we may write the explicit expressions

D(λ) = 1 +

∞
∑

n=1

(−1)n λ
n

n!

∫

Mn

dz1 . . . dznK

(

z1 . . . zn

z1 . . . zn

)

= exp















−

∞
∑

m=1

λm

m
trKm















(28.20)

D(x, y; λ) = K

(

x

y

)

+

∞
∑

n=1

(−λ)n

n!

∫

Mn

dz1 . . . dznK

(

x z1 . . . zn

y z1 . . . zn

)

The quantity D(λ) is known as the Fredholm determinant (see (22.19)):it is an

entire analytic function of λ, and D(λ) = 0 if and only if 1/λ is an eigenvalue of

K .

Worth emphasizing again: the Fredholm theory is based on the compactness

of the integral operator, i.e., on the functional properties (summability) of its ker-

nel. As the Perron-Frobenius operator is not compact, there is a bit of wishful

thinking involved here.
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28.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more

ignorant than ordinary people, who were only ignorant of

ordinary things.

—Terry Pratchett

Spaces of functions integrable L1, or square-integrable L2 on interval [0, 1]

are mapped into themselves by the Perron-Frobenius operator, and in both cases

the constant function φ0 ≡ 1 is an eigenfunction with eigenvalue 1. If we focus

our attention on L1 we also have a family of L1 eigenfunctions,

φθ(y) =
∑

k,0

exp(2πiky)
1

|k|θ
(28.21)

with complex eigenvalue 2−θ, parameterized by complex θ with Re θ > 0. By

varying θ one realizes that such eigenvalues fill out the entire unit disk. Such

essential spectrum, the case k = 0 of figure 28.5, hides all fine details of the

spectrum.

What’s going on? Spaces L1 and L2 contain arbitrarily ugly functions, allow-

ing any singularity as long as it is (square) integrable - and there is no way that

expanding dynamics can smooth a kinky function with a non-differentiable singu-

larity, let’s say a discontinuous step, and that is why the eigenspectrum is dense

rather than discrete. Mathematicians love to wallow in this kind of muck, but there

is no way to prepare a nowhere differentiable L1 initial density in a laboratory. The

only thing we can prepare and measure are piecewise smooth (real-analytic) den-

sity functions.

For a bounded linear operator A on a Banach space Ω, the spectral radius

is the smallest positive number ρspec such that the spectrum is inside the disk of

radius ρspec, while the essential spectral radius is the smallest positive number

ρess such that outside the disk of radius ρess the spectrum consists only of isolated

eigenvalues of finite multiplicity (see figure 28.5). exercise 28.5

We may shrink the essential spectrum by letting the Perron-Frobenius oper-

ator act on a space of smoother functions, exactly as in the one-branch repeller

case of sect. 28.1. We thus consider a smaller space, Ck+α, the space of k times

differentiable functions whose k’th derivatives are Hölder continuous with an ex-

ponent 0 < α ≤ 1: the expansion property guarantees that such a space is mapped

into itself by the Perron-Frobenius operator. In the strip 0 < Re θ < k + α most φθ
will cease to be eigenfunctions in the space Ck+α; the function φn survives only for

integer valued θ = n. In this way we arrive at a finite set of isolated eigenvalues

1, 2−1, · · · , 2−k, and an essential spectral radius ρess = 2−(k+α).

We follow a simpler path and restrict the function space even further, namely

to a space of analytic functions, i.e., functions for which the Taylor expansion is

convergent at each point of the interval [0, 1]. With this choice things turn out easy

and elegant. To be more specific, let φ be a holomorphic and bounded function on

converg - 9nov2008 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 28. WHY DOES IT WORK? 523

the disk D = B(0,R) of radius R > 0 centered at the origin. Our Perron-Frobenius

operator preserves the space of such functions provided (1 + R)/2 < R so all we

need is to choose R > 1. If Fs , s ∈ {0, 1}, denotes the s inverse branch of the

Bernoulli shift (28.6), the corresponding action of the Perron-Frobenius operator

is given by Lsh(y) = σ F′s (y) h ◦ Fs (y), using the Cauchy integral formula along

the ∂D boundary contour:

Lsh(y) = σ

∮

∂D

dw

2πi

h(w)F′s (y)

w − Fs(y)
. (28.22)

For reasons that will be made clear later we have introduced a sign σ = ±1 of the

given real branch |F′(y)| = σ F′(y). For both branches of the Bernoulli shift s = 1,

but in general one is not allowed to take absolute values as this could destroy

analyticity. In the above formula one may also replace the domain D by any

domain containing [0, 1] such that the inverse branches maps the closure of D into

the interior of D. Why? simply because the kernel remains non-singular under

this condition, i.e., w − F(y) , 0 whenever w ∈ ∂D and y ∈ Cl D. The problem

is now reduced to the standard theory for Fredholm determinants, sect. 28.3. The

integral kernel is no longer singular, traces and determinants are well-defined, and

we can evaluate the trace of LF by means of the Cauchy contour integral formula:

tr LF =

∮

dw

2πi

σF′(w)

w − F(w)
.

Elementary complex analysis shows that since F maps the closure of D into its

own interior, F has a unique (real-valued) fixed point x∗ with a multiplier strictly

smaller than one in absolute value. Residue calculus therefore yields exercise 28.6

tr LF =
σF′(x∗)

1 − F′(x∗)
=

1

| f ′(x∗) − 1|
,

justifying our previous ad hoc calculations of traces using Dirac delta functions.

Example 28.8 Perron-Frobenius operator in a matrix representation: As in ex-

ample 28.1, we start with a map with a single fixed point, but this time with a nonlin-

ear piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative

σ = σ(F′) = F′/|F′|

Lφ(z) =

∫

dx δ(z − f (x)) φ(x) = σ F′(z) φ(F(z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (28.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑

n≥0

znφn =

∮

dw

2πi

φ(w)

w − z
, φn =

∮

dw

2πi

φ(w)

wn+1

Combining this with (28.22), we see that in this basis L is represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮

dw

2πi

σ F′(w)(F(w))n

wm+1
. (28.24)

converg - 9nov2008 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 28. WHY DOES IT WORK? 524

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮

dw

2πi

σ F′(w)

w − F(w)
.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).

Hence

tr L =
σ F′(w∗)

1 − F′(w∗)
=

1

| f ′(w∗) − 1|
.

We worked out a very specific example, yet our conclusions can be gener-

alized, provided a number of restrictive requirements are met by the dynamical

system under investigation: exercise 28.6

1) the evolution operator is multiplicative along the flow,

2) the symbolic dynamics is a finite subshift,

3) all cycle eigenvalues are hyperbolic (exponentially bounded in

magnitude away from 1),

4) the map (or the flow) is real analytic, i.e., it has a piecewise ana-

lytic continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfied by the dynamical

systems that we actually desire to understand. Still, they are not devoid of physical

interest; for example, nice repellers like our 3-disk game of pinball do satisfy the

above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a finite

matrix in an appropriate basis; properties 3 and 4 enable us to bound the size

of the matrix elements and control the eigenvalues. To see what can go wrong,

consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following

weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(

y − f t(x)
)

,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow. Semi-

classical quantum mechanics suggest operators of this form with β = 1/2.The

problem with such operators arises from the fact that when considering the Ja-

cobian matrices Jab = JaJb for two successive trajectory segments a and b, the

corresponding eigenvalues are in general not multiplicative, Λab , ΛaΛb (unless

a, b are iterates of the same prime cycle p, so JaJb = J
ra+rb
p ). Consequently, this

evolution operator is not multiplicative along the trajectory. The theorems require

that the evolution be represented as a matrix in an appropriate polynomial basis,

and thus cannot be applied to non-multiplicative kernels, i.e., kernels that do not

satisfy the semi-group property Lt′Lt = Lt′+t.

Property 2 is violated by the 1-dimensional tent map (see figure 28.3 (a))

f (x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .
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Figure 28.3: (a) A (hyperbolic) tent map without

a finite Markov partition. (b) A Markov map with

a marginal fixed point.

(a)

0 0.5 1
x

0

0.5

1

f(x)

(b)

0 0.5 1
x

0

0.5

1

f(x)

I I0 1

All cycle eigenvalues are hyperbolic, but in general the critical point xc = 1/2

is not a pre-periodic point, so there is no finite Markov partition and the sym-

bolic dynamics does not have a finite grammar (see sect. 15.4 for definitions). In

practice, this means that while the leading eigenvalue of L might be computable,

the rest of the spectrum is very hard to control; as the parameter α is varied, the

non-leading zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see figure 28.3 (b))

f (x) =

{

x + 2x2 , x ∈ I0 = [0, 1
2
]

2 − 2x , x ∈ I1 = [1
2
, 1]

.

Here the interval [0, 1] has a Markov partition into two subintervals I0 and I1, and

f is monotone on each. However, the fixed point at x = 0 has marginal stability

Λ0 = 1, and violates condition 3. This type of map is called “intermittent” and

necessitates much extra work. The problem is that the dynamics in the neighbor-

hood of a marginal fixed point is very slow, with correlations decaying as power

laws rather than exponentially. We will discuss such flows in chapter 29.

Property 4 is required as the heuristic approach of chapter 21 faces two major

hurdles:

1. The trace (21.7) is not well defined because the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present approach,

so that the Banach space of analytic functions in a disk is preserved by the Perron-

Frobenius operator.

In attempting to generalize the results, we encounter several problems. First,

in higher dimensions life is not as simple. Multi-dimensional residue calculus is

at our disposal but in general requires that we find poly-domains (direct product

of domains in each coordinate) and this need not be the case. Second, and per-

haps somewhat surprisingly, the ‘counting of periodic orbits’ presents a difficult

problem. For example, instead of the Bernoulli shift consider the doubling map

(14.19) of the circle, x 7→ 2x mod 1, x ∈ R/Z. Compared to the shift on the
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interval [0, 1] the only difference is that the endpoints 0 and 1 are now glued to-

gether. Because these endpoints are fixed points of the map, the number of cycles

of length n decreases by 1. The determinant becomes:

det(1 − zL) = exp















−
∑

n=1

zn

n

2n − 1

2n − 1















= 1 − z. (28.25)

The value z = 1 still comes from the constant eigenfunction, but the Bernoulli

polynomials no longer contribute to the spectrum (as they are not periodic). Proofs

of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering purely ex-

panding maps. When stable and unstable directions co-exist we have to resort to

stranger function spaces, as shown in the next section.

28.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do not

know what that means.

—Federico Bonnetto, Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If f is an

area-preserving hyperbolic and real-analytic map of, for example, a 2-dimensional

torus then the Perron-Frobenius operator is unitary on the space of L2 functions,

and its spectrum is confined to the unit circle. On the other hand, when we

compute determinants we find eigenvalues scattered around inside the unit disk.

Thinking back to the Bernoulli shift example 28.5 one would like to imagine

these eigenvalues as popping up from the L2 spectrum by shrinking the function

space. Shrinking the space, however, can only make the spectrum smaller so this

is obviously not what happens. Instead one needs to introduce a ‘mixed’ function

space where in the unstable direction one resorts to analytic functions, as before,

but in the stable direction one instead considers a ‘dual space’ of distributions on

analytic functions. Such a space is neither included in nor includes L2 and we

have thus resolved the paradox. However, it still remains to be seen how traces

and determinants are calculated.

The linear hyperbolic fixed point example 28.6 is somewhat misleading, as we

have made explicit use of a map that acts independently along the stable and unsta-

ble directions. For a more general hyperbolic map, there is no way to implement

such direct product structure, and the whole argument falls apart. Her comes an

idea; use the analyticity of the map to rewrite the Perron-Frobenius operator acting

as follows (where σ denotes the sign of the derivative in the unstable direction):

Lh(z1, z2) =

∮ ∮

σ h(w1,w2)

(z1 − f1(w1,w2)( f2(w1,w2) − z2)

dw1

2πi

dw2

2πi
. (28.26)
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Figure 28.4: For an analytic hyperbolic map, specify-

ing the contracting coordinate wh at the initial rectangle

and the expanding coordinate zv at the image rectangle

defines a unique trajectory between the two rectangles.

In particular, wv and zh (not shown) are uniquely spec-

ified.

Here the function φ should belong to a space of functions analytic respectively

outside a disk and inside a disk in the first and the second coordinates; with the

additional property that the function decays to zero as the first coordinate tends

to infinity. The contour integrals are along the boundaries of these disks. It is

an exercise in multi-dimensional residue calculus to verify that for the above lin-

ear example this expression reduces to (28.9). Such operators form the building

blocks in the calculation of traces and determinants. One can prove the following:

Theorem: The spectral determinant for 2-dimensional hyperbolic analytic maps

is entire. remark 28.8

The proof, apart from the Markov property that is the same as for the purely

expanding case, relies heavily on the analyticity of the map in the explicit con-

struction of the function space. The idea is to view the hyperbolicity as a cross

product of a contracting map in forward time and another contracting map in back-

ward time. In this case the Markov property introduced above has to be elaborated

a bit. Instead of dividing the state space into intervals, one divides it into rectan-

gles. The rectangles should be viewed as a direct product of intervals (say hori-

zontal and vertical), such that the forward map is contracting in, for example, the

horizontal direction, while the inverse map is contracting in the vertical direction.

For Axiom A systems (see remark 28.8) one may choose coordinate axes close

to the stable/unstable manifolds of the map. With the state space divided into

N rectangles {M1,M2, . . . ,MN}, Mi = Ih
i
× Iv

i
one needs a complex extension

Dh
i
× Dv

i
, with which the hyperbolicity condition (which simultaneously guaran-

tees the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f (Mi) ∩ Int(M j) = ∅, or for each pair

wh ∈ Cl(Dh
i
), zv ∈ Cl(Dv

j
) there exist unique analytic functions of wh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i
), zh = zh(wh, zv) ∈ Int(Dh

j
), such that f (wh,wv) = (zh, zv).

Furthermore, if wh ∈ Ih
i

and zv ∈ Iv
j
, then wv ∈ Iv

i
and zh ∈ Ih

j
(see figure 28.4).

In plain English, this means for the iterated map that one replaces the coor-

dinates zh, zv at time n by the contracting pair zh,wv, where wv is the contracting

coordinate at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (28.26) acts on functions analytic outside

Dh
i

in the horizontal direction (and tending to zero at infinity) and inside Dv
i

in

the vertical direction. The contour integrals are precisely along the boundaries of

these domains.
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A map f satisfying the above condition is called analytic hyperbolic and the

theorem states that the associated spectral determinant is entire, and that the trace

formula (21.7) is correct.

Examples of analytic hyperbolic maps are provided by small analytic pertur-

bations of the cat map, the 3-disk repeller, and the 2-dimensional baker’s map.

28.6 Physics of eigenvalues and eigenfunctions

By now we appreciate that any honest attempt to look at the spectral prop-

erties of the Perron-Frobenius operator involves hard mathematics, but the reward

is of this effort is that we are able to control the analyticity properties of dynamical

zeta functions and spectral determinants, and thus substantiate the claim that these

objects provide a powerful and well-founded theory.

Often (see chapter 20) physically important part of the spectrum is just the

leading eigenvalue, which gives us the escape rate from a repeller, or, for a gen-

eral evolution operator, formulas for expectation values of observables and their

higher moments. Also the eigenfunction associated to the leading eigenvalue has

a physical interpretation (see chapter 19): it is the density of the natural measures,

with singular measures ruled out by the proper choice of the function space. This

conclusion is in accord with the generalized Perron-Frobenius theorem for evolu-

tion operators. In a finite dimensional setting, the statement is: remark 28.7

• Perron-Frobenius theorem: Let Li j be a non-negative matrix, such that

some finite n exists for which any initial state has reached any other state,

(Ln)i j > 0 ∀i, j: then

1. The maximal modulus eigenvalue is non-degenerate, real, and posi-

tive,

2. The corresponding eigenvector (defined up to a constant) has non-

negative coordinates.

We may ask what physical information is contained in eigenvalues beyond the

leading one: suppose that we have a probability conserving system (so that the

dominant eigenvalue is 1), for which the essential spectral radius satisfies 0 <

ρess < θ < 1 on some Banach space B. Denote by P the projection corresponding

to the part of the spectrum inside a disk of radius θ. We denote by λ1, λ2 . . . , λM

the eigenvalues outside of this disk, ordered by the size of their absolute value,

with λ1 = 1. Then we have the following decomposition

Lϕ =

M
∑

i=1

λiψiLiψ
∗
i ϕ + PLϕ (28.27)

when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1] matrix,

as λ0 is simple, due to the Perron-Frobenius theorem), whereas ψi is a row vector
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whose elements form a basis on the eigenspace corresponding to λi, and ψ∗
i

is

a column vector of elements of B∗ (the dual space of linear functionals over B)

spanning the eigenspace of L∗ corresponding to λi. For iterates of the Perron-

Frobenius operator, (28.27) becomes

Lnϕ =

M
∑

i=1

λn
i ψiL

n
i ψ
∗
i ϕ + PLnϕ . (28.28)

If we now consider, for example, correlation between initial ϕ evolved n steps and

final ξ,

〈ξ|Ln|ϕ〉 =

∫

M

dy ξ(y)
(

Lnϕ
)

(y) =

∫

M

dw (ξ ◦ f n)(w)ϕ(w) , (28.29)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L
∑

i=2

λn
i ω

(n)

i
(ξ, ϕ) + O(θn) , (28.30)

where

ω
(n)
i

(ξ, ϕ) =

∫

M

dy ξ(y)ψiL
n
i ψ
∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces of information:

they rule the convergence of expressions containing high powers of the evolution

operator to leading order (the λ1 contribution). Moreover if ω1(ξ, ϕ) = 0 then exercise 28.7

(28.29) defines a correlation function: as each term in (28.30) vanishes exponen-

tially in the n → ∞ limit, the eigenvalues λ2, . . . , λM determine the exponential

decay of correlations for our dynamical system. The prefactors ω depend on the

choice of functions, whereas the exponential decay rates (given by logarithms of

λi) do not: the correlation spectrum is thus a universal property of the dynamics

(once we fix the overall functional space on which the Perron-Frobenius operator

acts).

Example 28.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift ex-

ample (28.6) on the space of analytic functions on a disk: apart from the origin we have

only simple eigenvalues λk = 2−k, k = 0, 1, . . . . The eigenvalue λ0 = 1 corresponds to

probability conservation: the corresponding eigenfunction B0(x) = 1 indicates that the

natural measure has a constant density over the unit interval. If we now take any ana-

lytic function η(x) with zero average (with respect to the Lebesgue measure), it follows

that ω1(η, η) = 0, and from (28.30) the asymptotic decay of the correlation function is

(unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (28.31)

Thus, − logλ1 gives the exponential decay rate of correlations (with a prefactor that

depends on the choice of the function). Actually the Bernoulli shift case may be treated

exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-

mula

η(z) =

∫ 1

0

dw η(w) +

∞
∑

m=1

η(m−1)(1) − η(m−1)(0)

m!
Bm(z) . (28.32)
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Figure 28.5: Spectrum of the Perron-Frobenius oper-

ator acting on the space of Ck+α Hölder-continuous

functions: only k isolated eigenvalues remain between

the spectral radius, and the essential spectral radius

which bounds the “essential,” continuous spectrum.

essential spectrum

isolated eigenvaluespectral radius

As we are considering functions with zero average, we have from (28.29) and the fact

that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =

∞
∑

m=1

(2−m)n(η(m)(1) − η(m)(0))

m!

∫ 1

0

dz η(z)Bm(z) .

The decomposition (28.32) is also useful in realizing that the linear functionals ψ∗
i

are

singular objects: if we write it as

η(z) =

∞
∑

m=0

Bm(z)ψ∗m[η] ,

we see that these functionals are of the form

ψ∗i [ε] =

∫ 1

0

dwΨi(w)ε(w) ,

where

Ψi(w) =
(−1)i−1

i!

(

δ(i−1)(w − 1) − δ(i−1)(w)
)

, (28.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function ε

is analytic in neighborhoods of w,w − 1.

28.7 Troubles ahead

The above discussion confirms that for a series of examples of increasing gener-

ality formal manipulations with traces and determinants are justified: the Perron-

Frobenius operator has isolated eigenvalues, the trace formulas are explicitly ver-

ified, and the spectral determinant is an entire function whose zeroes yield the

eigenvalues. Real life is harder, as we may appreciate through the following

considerations:

• Our discussion tacitly assumed something that is physically entirely reason-

able: our evolution operator is acting on the space of analytic functions, i.e.,

we are allowed to represent the initial density ρ(x) by its Taylor expansions
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in the neighborhoods of periodic points. This is however far from being the exercise 28.1

only possible choice: mathematicians often work with the function space

C
k+α, i.e., the space of k times differentiable functions whose k’th deriva-

tives are Hölder continuous with an exponent 0 < α ≤ 1: then every yη with

Re η > k is an eigenfunction of the Perron-Frobenius operator and we have

Lyη =
1

|Λ|Λη
yη , η ∈ C .

This spectrum differs markedly from the analytic case: only a small number

of isolated eigenvalues remain, enclosed between the spectral radius and a

smaller disk of radius 1/|Λ|k+1, see figure 28.5. In literature the radius of

this disk is called the essential spectral radius.

In sect. 28.4 we discussed this point further, with the aid of a less trivial

1-dimensional example. The physical point of view is complementary to

the standard setting of ergodic theory, where many chaotic properties of a

dynamical system are encoded by the presence of a continuous spectrum,

used to prove asymptotic decay of correlations in the space of L2 square-

integrable functions. exercise 28.2

• A deceptively innocent assumption is hidden beneath much that was dis-

cussed so far: that (28.1) maps a given function space into itself. The ex-

panding property of the map guarantees that: if f (x) is smooth in a do-

main D then f (x/Λ) is smooth on a larger domain, provided |Λ| > 1. For

higher-dimensional hyperbolic flows this is not the case, and, as we saw in

sect. 28.5, extensions of the results obtained for expanding 1-dimensional

maps are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch, one fixed

point repeller can be extended to dynamical systems with Cantor sets of

periodic points: we showed this in sect. 28.4.

Résumé

Examples of analytic eigenfunctions for 1-dimensional maps are seductive, and

make the problem of evaluating ergodic averages appear easy; just integrate over

the desired observable weighted by the natural measure, right? No, generic natural

measure sits on a fractal set and is singular everywhere. The point of this book

is that you never need to construct the natural measure, cycle expansions will do

that job.

A theory of evaluation of dynamical averages by means of trace formulas

and spectral determinants requires a deep understanding of their analyticity and

convergence. We worked here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)

2. exact spectrum for a locally analytic map, matrix representation
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3. rigorous proof of existence of discrete spectrum for 2-dimensional hyper-

bolic maps

In the case of especially well-behaved “Axiom A” systems, where both the

symbolic dynamics and hyperbolicity are under control, it is possible to treat

traces and determinants in a rigorous fashion, and strong results about the ana-

lyticity properties of dynamical zeta functions and spectral determinants outlined

above follow.

Most systems of interest are not of the “axiom A” category; they are neither

purely hyperbolic nor (as we have seen in chapters 14 and 15 ) do they have

finite grammar. The importance of symbolic dynamics is generally grossly under

appreciated; the crucial ingredient for nice analyticity properties of zeta functions

is the existence of a finite grammar (coupled with uniform hyperbolicity).

The dynamical systems which are really interesting - for example, smooth

bounded Hamiltonian potentials - are presumably never fully chaotic, and the

central question remains: How do we attack this problem in a systematic and

controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true

in a lot of cases.

— M. Shub

Commentary

Remark 28.1 Surveys of rigorous theory. We recommend the references listed in re-

mark 1.1 for an introduction to the mathematical literature on this subject. For a physicist,

Driebe’s monograph [1.19] might be the most accessible introduction into mathematics

discussed briefly in this chapter. There are a number of reviews of the mathematical ap-

proach to dynamical zeta functions and spectral determinants, with pointers to the original

references, such as refs. [28.1, 28.2]. An alternative approach to spectral properties of the

Perron-Frobenius operator is given in ref. [28.3].

Ergodic theory, as presented by Sinai [28.14] and others, tempts one to describe the

densities on which the evolution operator acts in terms of either integrable or square-

integrable functions. For our purposes, as we have already seen, this space is not suitable.

An introduction to ergodic theory is given by Sinai, Kornfeld and Fomin [28.15]; more

advanced old-fashioned presentations are Walters [A39.15] and Denker, Grillenberger and

Sigmund [28.16]; and a more formal one is given by Peterson [28.17].

Remark 28.2 Fredholm theory. Our brief summary of Fredholm theory is based

on the exposition of ref. [28.4]. A technical introduction of the theory from an operator

point of view is given in ref. [28.5]. The theory is presented in a more general form in

ref. [28.6].

Remark 28.3 Bernoulli shift. For a more in-depth discussion, consult chapter 3

of ref. [1.19]. The extension of Fredholm theory to the case or Bernoulli shift on Ck+α

(in which the Perron-Frobenius operator is not compact – technically it is only quasi-

compact. That is, the essential spectral radius is strictly smaller than the spectral radius)

has been given by Ruelle [28.7]: a concise and readable statement of the results is con-

tained in ref. [28.8]. We see from (28.31) that for the Bernoulli shift the exponential

decay rate of correlations coincides with the Lyapunov exponent: while such an identity

holds for a number of systems, it is by no means a general result, and there exist explicit

counterexamples.

Remark 28.4 Hyperbolic dynamics. When dealing with hyperbolic systems one

might try to reduce to the expanding case by projecting the dynamics along the unstable

directions. As mentioned in the text this can be quite involved technically, as such unstable

foliations are not characterized by strong smoothness properties. For such an approach,

see ref. [28.3].

Remark 28.5 Spectral determinants for smooth flows. The theorem on page 526 also

applies to hyperbolic analytic maps in d dimensions and smooth hyperbolic analytic flows

in (d + 1) dimensions, provided that the flow can be reduced to a piecewise analytic map
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by a suspension on a Poincaré section, complemented by an analytic “ceiling” function

(3.5) that accounts for a variation in the section return times. For example, if we take

as the ceiling function g(x) = esT (x), where T (x) is the next Poincaré section time for a

trajectory staring at x, we reproduce the flow spectral determinant (22.26). Proofs are

beyond the scope of this chapter.

Remark 28.6 Explicit diagonalization. For 1-dimensional repellers a diagonalization

of an explicit truncated Lmn matrix evaluated in a judiciously chosen basis may yield many

more eigenvalues than a cycle expansion (see refs. [A1.28, 28.11]). The reasons why one

persists in using periodic orbit theory are partially aesthetic and partially pragmatic. The

explicit calculation of Lmn demands an explicit choice of a basis and is thus non-invariant,

in contrast to cycle expansions which utilize only the invariant information of the flow. In

addition, we usually do not know how to construct Lmn for a realistic high-dimensional

flow, such as the hyperbolic 3-disk game of pinball flow of sect. 1.3, whereas periodic

orbit theory is true in higher dimensions and straightforward to apply.

Remark 28.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theorem

may be found in ref. [A39.15]. For positive transfer operators, this theorem has been

generalized by Ruelle [A39.13].

Remark 28.8 Axiom A systems. The proofs in sect. 28.5 follow the thesis work of

H.H. Rugh [A1.22, 28.18, A1.60]. For a mathematical introduction to the subject, consult

the excellent review by V. Baladi [28.1]. It would take us too far afield to give and explain

the definition of Axiom A systems (see refs. [A1.7, A1.70]). Axiom A implies, however,

the existence of a Markov partition of the state space from which the properties 2 and 3

assumed on page 515 follow.

Remark 28.9 Left eigenfunctions. We shall never use an explicit form of left eigen-

functions, corresponding to highly singular kernels like (28.33). Many details have been

elaborated in a number of papers, such as ref. [28.20], with a daring physical interpreta-

tion.

Remark 28.10 Ulam’s idea. The approximation of Perron-Frobenius operator defined

by (19.11) has been shown to reproduce the spectrum for expanding maps, once finer

and finer Markov partitions are used [28.21]. The subtle point of choosing a state space

partitioning for a “generic case” is discussed in ref. [28.22].
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Exercises

28.1. What space does L act on? Show that (28.2) is a

complete basis on the space of analytic functions on a

disk (and thus that we found the complete set of eigen-

values).

28.2. What space does L act on? What can be said about

the spectrum of (28.1) on L1[0, 1]? Compare the result

with figure 28.5.

28.3. Euler formula. Derive the Euler formula (28.5),

|u| < 1:

∞
∏

k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)

+
t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=

∞
∑

k=0

tk u
k(k−1)

2

(1 − u) · · · (1 − uk)
.

28.4. 2-dimensional product expansion. We con-

jecture that the expansion corresponding to exercise 28.3

is in the 2-dimensional case given by

∞
∏

k=0

(1 + tuk)k+1

=

∞
∑

k=0

Fk(u)

(1 − u)2(1 − u2)2 · · · (1 − uk)2
tk

= 1 +
1

(1 − u)2
t +

2u

(1 − u)2(1 − u2)2
t2

+
u2(1 + 4u + u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · ·

Fk(u) is a polynomial in u, and the coefficients fall off

asymptotically as Cn ≈ un3/2

. Verify; if you have a proof

to all orders, e-mail it to the authors. (See also solu-

tion 28.3).

28.5. Bernoulli shift on L spaces. Check that the family

(28.21) belongs to L1([0, 1]). What can be said about

the essential spectral radius on L2([0, 1])? A useful ref-

erence is ref. [28.24].

28.6. Cauchy integrals. Rework all complex analysis steps

used in the Bernoulli shift example on analytic functions

on a disk.

28.7. Escape rate. Consider the escape rate from a strange

repeller: find a choice of trial functions ξ and ϕ such

that (28.29) gives the fraction on particles surviving after

n iterations, if their initial density distribution is ρ0(x).

Discuss the behavior of such an expression in the long

time limit.
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