
Part I

Geometry of chaos

We start out with a recapitulation of the basic notions of dynamics. Our aim is
narrow; we keep the exposition focused on prerequisites to the applications to
be developed in this text. We assume that the reader is familiar with dynamics

on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a broad stroke
description, since describing all possible behaviors of dynamical systems is beyond
human ken. While for a novice there is no shortcut through this lengthy detour, a
sophisticated traveler might bravely skip this well-trodden territory and embark upon the
journey at chapter 18.

The fate has handed you a law of nature. What are you to do with it?

1. Define your dynamical system (M, f ): the space M of its possible states, and the
law f t of their evolution in time.

2. Pin it down locally–is there anything about it that is stationary? Try to determine its
equilibria / fixed points (chapter 2).

3. Cut across it, represent as a return map from a section to a section (chapter 3).

4. Explore the neighborhood by linearizing the flow; check the linear stability of its
equilibria / fixed points, their stability eigen-directions (chapters 4 and 5).

5. Does your system have a symmetry? If so, you must use it (chapters 10 to 12). Slice
& dice it (chapter 13).

6. Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (chapter 14).

7. Now venture global distances across the system by continuing local tangent space
into stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (chapter 15).

8. Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (chapter 7 and chapter 16).

Along the way you might want to learn about Lyapunov exponents (chapter 6), classical
mechanics (chapter 8), and billiards (chapter 9).
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Part II

Chaos rules

Qunadry: all these cycles, but what to do with them? What you have now is a
topologically invariant road map of the state space, with the chaotic region pinned
down by a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths

and self-similar structure. In chapter 18 we shall turn this topological dynamics into a
multiplicative operation on the state space partitions by means of transition matrices of
chapter 17, the simplest examples of evolution operators. This will enable us to count the
distinct orbits, and in the process touch upon all the main themes of this book, going the
whole distance from diagnosing chaotic dynamics to computing zeta functions.

1. Partition the state space and describe all allowed ways of getting from ‘here’ to
‘there’ by means of transition graphs (transition matrices). These generate the total-
ity of admissible itineraries (chapter 17)

2. Learn to count (chapter 18)

3. Learn how to measure what’s important (chapter 19)

4. Learn how to evolve the measure, compute averages (chapter 20)

5. Learn what a ‘Fourier transform’ is for a nonlinear world (chapter 21),

6. and how the short-time / long-time duality is encoded by spectral determinant ex-
pression for its spectrum in terms of periodic orbits (chapter 22)

7. Learn how to use short period cycles to describe chaotic world at times much beyond
the Lyapunov time (chapter 23)

8. What is all this hard work good for? Deterministic diffusion and foundations of ‘far
for equilibrium’ statistical mechanics, for example (chapter 24)

9. Back to hard work: ponder how symmetries simplify spectral determinants (chap-
ter 25 and chapter 26)
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Part III

Chaos: what to do about it?

What you know now is to partition topologically and invariantly the state space,
compute a hierarchy of cycles, compute spectral determinants and their eigen-
values. What next?

1. Why cycle? (chapter 27)

2. Why does it work? (chapter 28)

3. When does it not work? (chapter 29)

4. What does it have to do with turbulence? (chapter 30)

5. How fat is the turbulent attractor? (chapter 30)

6. There is one that is experimentally relevant (chapter 35)
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Part IV

The rest is noise

Qunadry: all these cycles, but how many do I need? Any physical system suffers
background noise, any numerical prediction suffers computational roundoff noise,
and any set of equations models nature up to a given accuracy, since degrees of

freedom are always neglected. If the noise is weak, the short-time dynamics is not altered
significantly: short periodic orbits of the deterministic flow still partition coarsely the
state space.

1. What is “noise”? (chapter 37)

2. Variational principles of classical mechanics, and path integrals of quantum me-
chanics, reimagined (chapter 39)
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Part V

Quantum chaos

You have mastered part II of this book. You can play a game of pinball, and if you
are a skilled neuroscientist, you now know how to poke rat brains. You have
learned that information about chaotic dynamics can be obtained by calculating

spectra of linear operators such as the evolution operator, and that these spectra can be
expressed in terms of periodic orbits by means of cycle expansions.

But what happens if we scatter quantum mechanical waves rather than point-like
pinballs? Is there a link between quantum-mechanical spectra and the dynamics of the
underlying classical flow? The answer is yes, in a very pleasing way - essentially the same
ζ functions and cycle expansions describe the classical chaotic dynamics, the stochastic
dynamics, and the semiclassical quantum mechanics (chapter 41).

1. We start with a lightning review of quantum mechanics (chapter 42) and then discuss
the first semiclassical (or WKB) approach to quantization (chapter 43).

2. Then the semiclassical evolution operator (chapter 44) leads to the semiclassical
trace formulas and ζ functions quantization formulas (chapter 45).

3. Their simplest applications are through trace formulas for scattering (chapter 46)
and multi-scattering (chapter 47).

4. Now that we have derived the semiclassical weight associated with every unstable
periodic orbit, we are now able to put together all ingredients that make the game
of pinball unpredictable, and compute a “chaotic” part of the helium spectrum to
shocking accuracy (chapter 49).

5. A semiclassical theory in terms of classical dynamics alone cannot be exact. Waves
interfere, diffract (chapter 51), and higher ~ corrections need to be incorporated into
the periodic orbit theory.

This part is a collaborative effort of Predrag Cvitanović, Roberto Artuso, Per Dahlqvist,
Ronnie Mainieri, Gregor Tanner, Gábor Vattay, Niall Whelan, and Andreas Wirzba.
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Part VI

Web appendices

The conceit of this treatise is to teach you all of classical, stochastic and quantum
chaos (or turbulence) in one go. There is so much to say, but when? So many trees
are obscuring the grandeur of the forest. So whenever possible, we have moved

details of a particular topic into an appendix, numbered as the corresponding chapter of
the main text. Were this monograph printed and bound, this part would be left on the
ChaosBook.org website, to be consulted if a deeper dive into a particular tangent is desired.

1. A brief history of chaos (appendix A1)

2. Smooth conjugacies (appendix A2)

3. Linear algebra, Hamiltonian Jacobians (appendix A4)

4. Lyapunov exponents done right; transport of vector fields (appendix A6)

5. Discrete symmetries (appendix A25)

6. Cycles (appendix A16

7. Counting (appendix A18)

8. Implementing evolution (appendix A19)

9. Diffusion (appendix A24)

10. Converegence of spectral determinants (appendix A28)

11. Thermodynamic formalism (appendix A36)

12. Statistical mechanics (appendix A37)

13. Quantum mechanics II (appendix A45)

14. Infinite dimensional operators (appendix A46)
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Appendix A1

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

— Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, especially a history of
something that has preoccupied at one time or other any serious thinker from
ancient Sumer to today’s Hong Kong. A mathematician, to take an example, might
see it this way: “History of dynamical systems.” Nevertheless, here comes yet
another very imperfect attempt.

A1.1 Chaos is born

I’ll maybe discuss more about its history when I learn
more about it.

— Maciej Zworski

(R. Mainieri and P. Cvitanović)

Trying to predict the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for deter-
mining the longitude of ships while traversing open seas.
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APPENDIX A1. A BRIEF HISTORY OF CHAOS 1026

Kepler’s Rudolphine tables had been a great improvement over previous ta-
bles, and Kepler was justly proud of his achievements. He wrote in the introduc-
tion to the announcement of Kepler’s third law, Harmonice Mundi (Linz, 1619) in
a style that would not fly with the contemporary Physical Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’s Harmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if you are angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A1.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if solar system consisted of
two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique for
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APPENDIX A1. A BRIEF HISTORY OF CHAOS 1027

integrating problems was to find the conserved quantities, quantities that do not
change with time and allow one to relate the momenta and positions at different
times. The first sign on the impossibility of integrating the three-body problem
came from a result of Bruns that showed that there were no conserved quantities
that were polynomial in the momenta and positions. Bruns’ result did not pre-
clude the possibility of more complicated conserved quantities. This problem was
settled by Poincaré and Sundman in two very different ways [12, 53].

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler got
the permission of the King Oscar II of Sweden and Norway to establish a mathe-
matical competition. Several questions were posed (although the king would have
preferred only one), and the prize of 2500 kroner would go to the best submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend our under-
standing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of state
space flow, the role of periodic orbits and their cross sections, the homoclinic
points.

The interesting thing about Poincaré’s work was that it did not solve the prob-
lem posed. He did not find a function that would give the coordinates as a function
of time for all times. He did not show that it was impossible either, but rather that
it could not be done with the Bernoulli technique of finding a conserved quantity
and trying to integrate. Integration would seem unlikely from Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-born Swedish mathe-
matician Sundman. Sundman showed that to integrate the three-body problem
one had to confront the two-body collisions. He did that by making them go away
through a trick known as regularization of the collision manifold. The trick is not
to expand the coordinates as a function of time t, but rather as a function of 3√t.
To solve the problem for all times he used a conformal map into a strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for all
times, solving the problem that was proposed by Weirstrass in the King Oscar II’s
competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The con-
formal map and the collision regularization mean that the series are effectively in
the variable 1 − e−

3√t. Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more terms than any one has ever
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APPENDIX A1. A BRIEF HISTORY OF CHAOS 1028

wanted to compute, are needed to achieve numerical convergence. Though Sund-
man’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understand-
ing of the solar system.’ The work that followed from Poincaré did.

A1.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in order to create statistical
mechanics, deriving thermodynamics from the equations of mechanics. To eval-
uate the heat capacity of even a simple system, Boltzmann had to make a great
simplifying assumption of ergodicity: that the dynamical system would visit every
part of the phase space allowed by conservation laws equally often. This hypoth-
esis was extended to other averages used in statistical mechanics and was called
the ergodic hypothesis. It was reformulated by Poincaré to say that a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end of
twentieth century it has only been shown true for a few systems and wrong for
quite a few others. Early on, as a mathematical necessity, the proof of the hypoth-
esis was broken down into two parts. First one would show that the mechanical
system was ergodic (it would go near any point) and then one would show that it
would go near each point equally often and regularly so that the computed aver-
ages made mathematical sense. Koopman took the first step in proving the ergodic
hypothesis when he realized that it was possible to reformulate it using the recently
developed methods of Hilbert spaces [98]. This was an important step that showed
that it was possible to take a finite-dimensional nonlinear problem and reformu-
late it as a infinite-dimensional linear problem. This does not make the problem
easier, but it does allow one to use a different set of mathematical tools on the
problem. Shortly after Koopman started lecturing on his method, von Neumann
proved a version of the ergodic hypothesis, giving it the status of a theorem [118].
He proved that if the mechanical system was ergodic, then the computed averages

chapter 19
would make sense. Soon afterwards Birkhoff published a much stronger version
of the theorem.

A1.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory of
chaotic dynamical systems was the work on the nonlinear oscillators. The prob-
lem is to construct mechanical models that would aid our understanding of phys-
ical systems. Lord Rayleigh came to the problem through his interest in under-
standing how musical instruments generate sound. In the first approximation one
can construct a model of a musical instrument as a linear oscillator. But real in-
struments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
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models for the spring. By a clever use of negative friction he created two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his book The Theory of Sound Lord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes to regardless of the
initial conditions.

A1.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed in two directions. One
direction took an abstract approach and considered dynamical systems as trans-
formations of measurable spaces into themselves. Could we classify these trans-
formations in a meaningful way? This lead Kolmogorov to the introduction of the
concept of entropy for dynamical systems. With entropy as a dynamical invariant
it became possible to classify a set of abstract dynamical systems known as the
Bernoulli systems. The other line that developed from the ergodic hypothesis was
in trying to find mechanical systems that are ergodic. An ergodic system could
not have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of ‘... billiards ...,’ where he showed that
the motion of balls on surfaces of constant negative curvature is everywhere un-
stable. This dynamical system was to prove very useful and it was taken up by
Birkhoff. Morse in 1923 showed that it was possible to enumerate the orbits of
a ball on a surface of constant negative curvature. He did this by introducing a
symbolic code to each orbit and showed that the number of possible codes grew
exponentially with the length of the code. With contributions by Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a ball on a surface of con-
stant negative curvature was ergodic. The importance of this result escaped most
physicists, one exception being Krylov, who understood that a physical billiard
was a dynamical system on a surface of negative curvature, but with the curvature
concentrated along the lines of collision. Sinai, who was the first to show that a
physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing, and
Hayashi. They found other systems in which the nonlinear oscillator played a role
and classified the possible motions of these systems. This concreteness of experi-
ments, and the possibility of analysis was too much of temptation for Mary Lucy
Cartwright and J.E. Littlewood [25], who set out to prove that many of the struc-
tures conjectured by the experimentalists and theoretical physicists did indeed
follow from the equations of motion. Birkhoff had found a ‘remarkable curve’ in
a two dimensional map; it appeared to be non-differentiable and it would be nice
to see if a smooth flow could generate such a curve. The work of Cartwright and
Littlewood lead to the work of Levinson, which in turn provided the basis for the
horseshoe construction of S. Smale.

chapter 15
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APPENDIX A1. A BRIEF HISTORY OF CHAOS 1030

In Russia, Lyapunov paralleled the methods of Poincaré and initiated the
strong Russian dynamical systems school [110]. Andronov carried on with the
study of nonlinear oscillators and in 1937 introduced together with Pontryagin
the notion of coarse systems. They were formalizing the understanding garnered
from the study of nonlinear oscillators, the understanding that many of the details
on how these oscillators work do not affect the overall picture of the state space:
there will still be limit cycles if one changes the dissipation or spring force func-
tion by a little bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse systems were
the concept that caught Smale’s attention and enticed him to study dynamical sys-
tems.

A1.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems for
which all points (as opposed to a non–wandering set) admit the hyperbolic struc-
ture, and it was in honor of this result that Smale named these systems Axiom-A.
In Kiev Smale found a receptive audience that had been thinking about these prob-
lems. Smale’s result catalyzed their thoughts and initiated a chain of developments
that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems” [146]. There are

chapter 15
many great ideas in this paper: the global foliation of invariant sets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system, on
how to understand the topology of the orbits. Smale’s account takes you from a
local differential equation (in the form of vector fields) to the global topological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have spo-
ken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation. Kolmogorov went
far beyond and suggested a definition of the metric entropy of an area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken by
his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topological entropy and use it
as an invariant to classify continuous maps. In 1967 Anosov and Sinai applied
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the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statistical me-
chanics; this has been a very fruitful relationship. It adds measure notions to the
topological framework laid down in Smale’s paper. Markov partitions divide the
state space of the dynamical system into nice little boxes that map into each other.
Each box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these pa-
pers got published. Bowen also introduced the important concept of shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to everyone. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit. The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statisti-
cal mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is 1-dimensional maps. The topology of
the orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein,
and Stein [114]. The more general 1-dimensional case was worked out in 1976
by Milnor and Thurston in a widely circulated preprint, whose extended version
eventually got published in 1988 [115].

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universal-
ity in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the study of 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum intro-
duced many new ideas into the field: the use of the renormalization group which
led him to introduce functional equations in the study of dynamical systems, the
scaling function which completed the link between dynamical systems and statis-
tical mechanics, and the presentation functions which describe the dynamics of
scaling functions.

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the or-
bits in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 1975 Thurston was giv-
ing lectures “On the geometry and dynamics of diffeomorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not been applied in physics,
but much of the classification that Thurston developed can be obtained from the
notion of a ‘pruning front’ formulated independently by Cvitanović.
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Once one develops an understanding of the topology of the orbits of a dynam-
ical system, one needs to be able to compute its properties. Ruelle had already
generalized the zeta function introduced by Artin and Mazur [2], so that it could
be used to compute the average value of observables. The difficulty with Ruelle’s
zeta function is that it does not converge very well. Starting out from Smale’s
observation that a chaotic dynamical system is dense with a set of periodic orbits,
Cvitanović used these orbits as a skeleton on which to evaluate the averages of
observables, and organized such calculations in terms of rapidly converging cy-
cle expansions. This convergence is attained by using the shorter orbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get a sense of
perspective on the field. It is not a fad and it will not die anytime soon.

A1.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, asked to define applied mathematics

(P. Cvitanović)

The history of periodic orbit theory is rich and curious; recent advances are equally
inspired by more than a century of developments in three separate subjects: 1.
classical chaotic dynamics, initiated by Poincaré and put on its modern footing
by Smale [146], Ruelle [137], and many others, 2. quantum theory initiated by
Bohr, with the modern ‘chaotic’ formulation by Gutzwiller [81, 83], and 3. ana-
lytic number theory initiated by Riemann and formulated as a spectral problem by
Selberg [113, 142]. Following different lines of reasoning and driven by different
motivations, the three separate roads all arrive at trace formulas, zeta functions
and spectral determinants.

The fact that these fields are all related is far from obvious, and even today
the practitioners tend to cite papers only from their sub-speciality. In Gutzwiller’s
words [83], “The classical periodic orbits are a crucial stepping stone in the un-
derstanding of quantum mechanics, in particular when then classical system is
chaotic. This situation is very satisfying when one thinks of Poincaré who empha-
sized the importance of periodic orbits in classical mechanics, but could not have
had any idea of what they could mean for quantum mechanics. The set of energy
levels and the set of periodic orbits are complementary to each other since they are
essentially related through a Fourier transform. Such a relation had been found
earlier by the mathematicians in the study of the Laplacian operator on Rieman-
nian surfaces with constant negative curvature. This led to Selberg’s trace formula
in 1956 which has exactly the same form, but happens to be exact.” A posteriori,
one can say that zeta functions arise in both classical and quantum mechanics be-
cause the dynamical evolution can be described by the action of linear evolution
(or transfer) operators on infinite-dimensional vector spaces. The spectra of these
operators are given by the zeros of appropriate determinants. One way to evalu-

section 22.1
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ate determinants is to expand them in terms of traces, log det (L) = tr (logL). In
this way the spectrum of an evolution operator becomes related to its traces, i.e.
periodic orbits. A deeper way of restating this is to observe that the trace formu-

exercise 4.1
las perform the same role in all of the above problems; they relate the spectrum
of lengths (local dynamics) to the spectrum of eigenvalues (global eigenstates),
and for nonlinear geometries they play a role analogous to the one that Fourier
transform plays for the circle.

Distant history is easily sanitized and mythologized. As we approach the
present, our vision is inevitably more myopic; for very different accounts cov-
ering the same recent history, see V. Baladi [11] (a mathematician’s perspective),
and M. V. Berry [18] (a quantum chaologist’s perspective). We are grateful for any
comments from the reader that would help make what follows fair and balanced.

M. Gutzwiller was the first to demonstrate that chaotic dynamics is built upon
unstable periodic orbits in his 1960’s work on the quantization of classically
chaotic quantum systems, where the ‘Gutzwiller trace formula’ gives the semiclas-

chapter 45
sical quantum spectrum as a sum over classical periodic orbits [78–81]. Equally
important was D. Ruelle’s 1970’s work on hyperbolic systems, where ergodic av-

chapter 22
erages associated with natural invariant measures are expressed as weighted sums
on the infinite set of unstable periodic orbits embedded in the underlying chaotic
set [131, 132]. This idea can be traced back to the following sources: 1. the

remark 22.2
foundational 1967 review [146], where S. Smale proposed as “a wild idea in this
direction” a (technically incorrect, but prescient) zeta function over periodic or-
bits, 2. the 1965 Artin-Mazur zeta function for counting periodic orbits [2], and

chapter 18
3. the 1956 Selberg number-theoretic zeta functions for Riemann surfaces of con-
stant curvature [142]. That one could compute using these infinite sets was not
clear at all. Ruelle [137] never attempted explicit computations, and Gutzwiller
only attempted to implement summations over anisotropic Kepler periodic orbits
by treating them as Ising model configurations [82] (In retrospect, Gutzwiller was
lucky; it turns out that the more periodic orbits one includes, the worse conver-
gence one gets [26]).

For a long time the convergence of such sums bedeviled the practitioners, un-
til the mathematically rigorous spectral determinants for hyperbolic deterministic
flows, and the closely related semiclassicaly exact Gutzwiller Zeta functions were
recast in terms of highly convergent cycle expansions. Under these circumstances,
a relatively few short periodic orbits lead to highly accurate long time averages of
quantities measured in chaotic dynamics and of spectra for quantum systems. The
idea, in a nutshell, is that long orbits are shadowed by shorter orbits, and the nth
term in a cycle expansion is the difference between the shorter cycles estimate of
the period n-cycles’ contribution and the exact n-cycles sum. For unstable, hy-
perbolic flows, this difference falls off exponentially or super-exponentially [138].
Contrary to what some literature says, cycle expansions are no more ‘clever re-

chapter A46
summations’ than the Plemelj-Smithies cumulant evaluation of a determinant is a
‘resummation’, and their theory is considerably more reassuring than what prac-
titioners of quantum chaos fear: there is no ‘abscissa of absolute convergence’,
there is no ‘entropy barrier’, and the exponential proliferation of cycles is not the
problem.
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Cvitanović derived ‘cycle expansions’ in 1986-87, in an effort to prove that
chapter 23

the mode-locking dimension for critical circle maps discovered by Jensen, Bak
and Bohr [92] is universal; the same kind of periodic orbits are involved in the
Hénon map, but now in renormalization ‘time’. The symbolic dynamics of the
Hénon attractor (the pruning front conjecture [43]) is coded by transition graphs,
topological entropy is given by roots of their determinants. This observation led to

chapter 18
the study of convergence of spectral determinants for both discrete-time (iterated
maps) and continuous-time deterministic flows (both ODEs and PDEs). Cycle

chapter 28
expansions thus arose not from temporal dynamics, but from studies of scalings in
period-doubling and cycle-map renormalizations [5, 28, 44]. This work was done
in collaboration with R. Artuso (PhD 1987-1989), G. Gunaratne, and E. Aurell
(PhD 1984-1989), and it was written under the watchful eye of parrot Gaspar in
Fundaçaõ de Faca, Porto Seguro, as two long Recycling of strange sets papers [4,
5]: I. Cycle expansions and II. Applications. The main lesson was that one should
never split theory and applications into papers numbered I and II; part II, which
covers many interesting results, has barely been glanced at by anyone.

The first published paper on these developments was Auerbach et al. [7] Ex-
ploring chaotic motion through periodic orbits (submitted March 1987). Here
only a ‘level sum’ approximation (23.39),

section 27.5

1 =
∑

x j∈Fix f n

t j eβA(x j,n) , t j =
e−ns(n)

Λ j
, (A1.1)

to the trace formula is presented as an nth order estimate of the leading Perron-
Frobenius eigenvalue s(n), and applied to the Hénon attractor (Eq. (4) of the above
paper). (The exact weight of an unstable prime periodic orbit p (for level sum
(21.6)) had been conjectured by Kadanoff and Tang [94] in 1984.) Even as it
was written, the heuristics of this paper was rendered obsolete by the exact cycle
expansions, and yet, mysteriously, this might be one of the most cited periodic
orbits papers.

The first attempt to make cycle expansions accessible to every person was
condensed into Phys. Rev. Letter, Invariant measurement of strange sets in terms
of cycles (submitted March 1988) [36]. However, the two long papers by Artuso
et al. [4, 5] are a better read.

Several applications of the new methodology are worth mentioning. One was
the accurate calculation of the leading dozen eigenvalues of the period-doubling
operator [5, 28, 128]. Another breakthrough was the cycle expansion of deter-
ministic transport coefficients [3, 34, 42], such as diffusion constants without any

chapter 24
probabilistic assumptions. The classical Boltzmann equation for the evolution of
1-particle density is based on Stosszahlansatz, the assumption that velocities of
colliding particles are not correlated. In periodic orbit theory all correlations are
included in cycle averaging formulas, such as the cycle expansion for a particle
diffusing chaotically across a spatially-periodic array.

Physicists tend to obsess about matters weightier than iterating maps, so Cvi-
tanović and Eckhardt showed that cycle expansions reproduce quantum resonances

appendHist - 20Mar2013 ChaosBook.org edition16.4, Jul 7 2019

http://www.cns.gatech.edu/~predrag/papers/preprints.html#Cycling


APPENDIX A1. A BRIEF HISTORY OF CHAOS 1035

of Eckhardt’s 3-disk scatterer [54] to rather impressive accuracy [39] (submitted
February 1989). Gaspard and Rice published a lovely triptych of articles (submit-
ted September 1988) about the same 3-disk system (classical, semiclassical and
quantum scattering) [67–69]. In 1992 P. E. Rosenqvist [55, 130], in his PhD
thesis, combined the magic of spectral determinants with their symmetry factor-
izations [41, 82] to take cycle expansions to ridiculous accuracy; for example,
periodic orbits up to 10 bounces determine the classical escape rate for a 3-disk
pinball to be

γ = 0.4103384077693464893384613078192 . . . .

Try to extract this from a direct numerical simulation, or a log-log plot of level
sums (A1.1)! Prior to cycle expansions, the best accuracy that Gaspard and Rice
achieved by applying Markov approximations to the spectral determinant [68] was
1 significant digit, γ ' 0.45.

A 3-disk billiard is exceptionally nice, uniformly hyperbolic repeller. More of-
ten than not, good symbolic dynamics for a given flow is either not available, or its
grammar is not finite, or the convergence of cycle expansions is affected by non-
hyperbolic regions of state space. In those cases truncations such as the stability

chapter 29
cutoff of Dahlqvist and Russberg [47, 48] and Dettmann and Morriss [52] might be
helpful. The idea is to truncate the cycle expansion by including only the shadow-

section 23.7
ing combinations of pseudo-cycles {p1, p2 · · · , pk} such that |Λp1 · · ·Λpk | ≤ Λmax,
with the cutoff Λmax equal to or smaller than the most unstable Λp in the data set.

It is pedagogically easier to motivate sums over periodic orbits by starting with
discrete time dynamical systems, but most flows of physical interest are continu-
ous in time. The weighted averages of periodic orbits for continuous time flows
were introduced by Bowen, who treated them as Poincaré section suspensions
weighted by the ‘time ceiling’ function, and were incorporated into dynamical
zeta functions by Parry and Pollicott [125] and Ruelle [133]. For people steeped
in quantum mechanics it all looked very unfamiliar, so in 1991 Cvitanović and
Eckhardt reformulated spectral determinants for continuous time flows along the
lines of Gutzwiller’s derivation of the semi-classical trace formula [40]. As a con-

chapter 21
sequence, quantum mechanicians [18, 96, 99] tend to cite this paper as the first
paper on cycle expansions.

2D billiards are only toys, but quantization of helium is surely not just a game.
By implementing cycle expansions in 1991, the group of Dieter Wintgen obtained
a surprisingly accurate helium spectrum [58, 155] from a small set of its shortest
cycles. This happened 50 years after old quantum theory had failed to do so and
20 years after Gutzwiller first introduced his quantization of chaotic systems [81].

The Copenhagen group gave many conference and seminar talks about cycle
expansions. In December 1986, Cvitanović presented results on the periodic-orbit
description of the topology of Lozi and Hénon attractors and the periodic-orbit
computation of associated dynamical averages, at the meeting on “Chaos and

section 15.4
Related Nonlinear Phenomena: Where do we go from here?.” This meeting was
organized by Moshe Shapiro and Itamar Procaccia and held in the kibutz Kiryat
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Anavim. A great meeting, and Celso Grebogi was in the audience. After the
“Where do we go from here?” meeting, the Maryland group wrote a series of
papers on unstable periodic orbits, or ‘UPOs’. In the first paper [75], Unstable

remark 5.1
periodic orbits and the dimensions of multifractal chaotic attractor (submitted
September 1987), the focus was on fractal dimensions of chaotic attractors, as
was the fashion in the late 1980’s. They prove that the natural measure ρ0 of
a mixing hyperbolic attractor is given by the limit of a sum over the unstable
periodic points x j of long period n, embedded in a chaotic attractor. Each periodic
point is weighted by the inverse of the product of its periodic orbit’s expanding
Floquet multipliers Λ j, Eq. (14) in their paper:

ρ0(MS ) = lim
n→∞

∑
x j∈Fix f n

1
Λ j

, x j ∈ MS . (A1.2)

This is an approximate level sum formula for natural measure, a special case of
(A1.1), with leading Perron-Frobenius eigenvalue s = 0 (no escape), and β =

0 (observable =1). The first paper does cite Auerbach et al. [7], in which the
same approximate level sum seems to have been published for the first time. Ever
since then, various cyclist teams cite exclusively their own papers and some of the
mathematicians of the 1970’s.

So you have now written a paper that uses periodic orbits. What is one to cite?
Work by Sinai-Bowen-Ruelle is smarter and more profound than the vast major-
ity of ‘chaos’ publications from the 1980s on. If you are not actually computing
anything using periodic orbits and are reluctant to refer to recent contributions,
you can safely credit Ruelle [132, 137] for deriving the dynamical (or Ruelle)
zeta function, and Gutzwiller for formulating semiclassical quantization as a Zeta
function over unstable periodic orbits [81, 83]. There are no cycle expansions in
these papers or in Bowen’s work (see, for example, the description in Scholarpe-
dia.org). If you have computed something using sums weighted by periodic-orbit
weights, cite the first paper that introduced them, as well as a useful up-to-date
reference, which in this case is ChaosBook.org. Do not faint because this web-
book is available on (gasp!) the internet - it’s third millennium, and having a
continuously updated, hyperlinked and reliable reference has its virtues.

Depending on the context, one should also cite 1) Zoldi and Greenside [156]
for being the second to determine unstable periodic orbits (127 of them) for Ku-
ramoto-Sivashinsky, on a domain larger than what was studied by Christiansen et
al. [27], 2) López et al. [107] for being the first to determine relative periodic or-
bits in a spatio-temporal PDE (complex Landau-Ginzburg), and 3) Kazantsev [95]
for being the first to determine periodic orbits in a weather model, and for his vari-
ational method for finding periodic orbits. We love these authors, but not for their

remark 23.1
‘escape-time weighting’.

While derivations of (A1.1) by Kadanoff and Tang 1984 and Auerbach et al.
1987 were heuristic, Grebogi, Ott and Yorke 1987 prove (A1.2) by taking the
n → ∞ limit. In actual computations it would be madness to attempt to take such
limit, as longer and longer periodic orbits are exponentially more and more un-
stable, exponentially growing in number, and non-computable; and the natural
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measure ρ0 is everywhere singular, with support on a fractal set, with its n→ ∞
limit even more impossible to compute. And why would one take this limit? The
whole point of cycle expansions is that it is smarter to compute averages without
constructing ρ0.

Taking a limit to obtain a proof is good mathematics, but in statistical mechan-
ics a partition function is not a limit of anything; it is the full sum of all states.
Likewise, its ergodic theory cousin, the spectral determinant is not a long-time
limit; it is the exact sum over all periodic orbits. Cycle expansions were intro-
duced in a non-rigorous manner, on purpose [36]: the exposition was meant not
to frighten a novice, innocent of Borel measurable α to Ω sets. This was set right

chapter 28
in the elegant PhD thesis of H. H Rugh’s in 1992, The correlation spectrum for
hyperbolic analytic maps [138], which proves that the zeros of spectral deter-
minants are indeed the Ruelle-Pollicott resonances [127, 134, 135]. The proof
is well within mathematicians’ comfort zone, so they tend to cite Rugh’s paper
as the paper on ‘Fredholm determinants’, and, as always, throw in “a sense of
Grothendieck” for good measure [11, 65], without citing earlier papers on cycle
expansions.

If you intend to determine and use periodic orbits, here is the message: Heuris-
tic ‘level sums’ are approximations to the exact trace formulas (that are derived
here, in ChaosBook, and Gaspard monograph [66] with no more effort than the
heuristic approximations), not smart for computations; faster convergence is ob-
tained by utilizing the shadowing that is built into the exact cycle expansions of
dynamical zeta functions and spectral determinants. Cycle expansions are not
heuristic, in classical deterministic dynamics they are exact expansions in the un-
stable periodic orbits [4, 5, 36]; in quantum mechanics and stochastic mechanics
they are semi-classically exact. So why would one prefer a limit of a heuristic
sum such as (A1.2) to the exact spectral determinant, convergent exact periodic

section 27.5
orbits sums, and exact periodic orbits formulas for dynamical averages of observ-
ables? It is not even wrong. Perhaps if one is very fond of baker’s maps [122],
which, being piecewise linear, have no cycle expansion curvature terms, one does
not appreciate the shadowing cancelations built into the spectral determinants and
their cycle expansions. That might be the reason why linear thinkers stop at the
level sum (A1.2).

A1.5 Dynamicist’s vision of turbulence

The past is never dead. It’s not even past.
— William Faulkner, Requiem for a Nun

(P. Cvitanović and Lennaert van Veen)

The key theoretical concepts that form the basis of dynamical theories of tur-
bulence of chapter 30 are rooted in the work of Poincaré, Hopf, Smale, Ruelle,
Gutzwiller and Spiegel. In his 1889 analysis of the three-body problem [126],
Poincaré introduced the geometric approach to dynamical systems and methods
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that lie at the core of the theory developed here: qualitative topology of state
space flows, Poincaré sections, key roles played by equilibria, periodic orbits, het-
eroclinic connections, and their stable/unstable manifolds.

In a seminal 1948 paper [87], Ebehardt Hopf visualized the function space
of allowable Navier-Stokes velocity fields as an infinite-dimensional state space,
parameterized by viscosity, boundary conditions and external forces, with instan-
taneous state of a flow represented by a point in this state space. Laminar flows
correspond to equilibrium points, globally stable for sufficiently large viscosity.
As the viscosity decreases (as the Reynolds number increases), turbulent states
set in, represented by chaotic state space trajectories. Hopf’s observation that
viscosity causes a contraction of state space volumes under the action of dy-
namics led to his key conjecture: that long-term, typically observed solutions of
the Navier-Stokes equations lie on finite-dimensional manifolds embedded in the
infinite-dimensional state space of allowed states. Hopf’s manifold, known today
as the ‘inertial manifold,’ is well-studied in the mathematics of spatio-temporal
PDEs. Its finite dimensionality for non-vanishing ‘viscosity’ parameter has been
rigorously established in certain settings by Foias and collaborators [64]. Hopf
presciently noted that “the geometrical picture of the phase flow is, however, not
the most important problem of the theory of turbulence. Of greater importance is
the determination of the probability distributions associated with the phase flow”.
Hopf’s call for understanding probability distributions associated with the phase
flow has indeed proven to be a key challenge, one in which dynamical systems
theory has made the greatest progress in the last half century. In particular, the
Sinai-Ruelle-Bowen ergodic theory of ‘natural’ or SRB measures has played a
critical role in understanding dissipative systems with chaotic behavior [21, 137,
144, 146].

Hopf noted “[t]he great mathematical difficulties of these important problems
are well known and at present the way to a successful attack on them seems hope-
lessly barred. However, there is no doubt that many characteristic features of the
hydrodynamical phase flow occur in a much larger class of similar problems gov-
erned by non-linear space-time systems. In order to gain insight into the nature
of hydrodynamical phase flows we are, at present, forced to find and to treat sim-
plified examples within that class.” Hopf’s call for geometric state space analysis
of simplified models first came to fulfillment with the influential Lorenz’s trunca-
tion [108] of the Rayleigh-Bénard convection state space. The Proper Orthogonal

example 2.2
Decomposition (POD) models of boundary-layer turbulence brought this type of
analysis closer to physical hydrodynamics [6, 86]. Further significant progress
has proved possible for systems such as the 1-spatial dimension Kuramoto-Siva-
shinsky flow [101, 145], which is a paradigmatic model of turbulent dynamics, as
well as one of the most extensively studied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modern computation and
experimental insights, the way to a successful attack on the full Navier-Stokes
problem is no longer “hopelessly barred.” We address the challenge in a way

chapter 30
Hopf could not divine, employing methodology developed only within the past
two decades, explained in depth in this book.
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Hopf, however, to the best of our knowledge, never suggested that turbulent
flow should be analyzed in terms of ‘recurrent flows’, i.e. time-periodic solutions
of the defining PDEs. The story so far goes like this: in 1960 Ed Spiegel was
Robert Kraichnan’s research associate. Kraichnan told him, “Flow follows a reg-
ular solution for a while, then another one, then switches to another one; that’s
turbulence.” It was not too clear, but Kraichnan’s vision of turbulence moved Ed.
In 1962 Spiegel and Derek Moore investigated a set of 3rd order convection equa-
tions which seemed to follow one periodic solution, then another, and continued
going from periodic solution to periodic solution. Ed told Derek, “This is turbu-
lence!” and Derek said “This is wonderful!” He gave a lecture at Caltech in 1964
and came back very angry. They pilloried him there. “Why is this turbulence?”
they kept asking and he could not answer, so he expunged the word ‘turbulence’
from their 1966 paper [117] on periodic solutions. In 1970 Spiegel met Kraichnan
and told him, “This vision of turbulence of yours has been very useful to me.”
Kraichnan said: “That wasn’t my vision, that was Hopf’s vision.” What Hopf ac-
tually said and where he said it remains deeply obscure to this very day. There are
papers that lump him together with Landau, as the ‘Landau-Hopf’s incorrect the-
ory of turbulence,’ a proposal to deploy incommensurate frequencies as building
blocks of turbulence. This was Landau’s guess and was the only one that could be
implemented at the time.

The first paper to advocate a periodic orbit description of turbulent flows is
thus the 1966 Spiegel and Moore paper [117, 147]. Thirty years later, in 1996
Christiansen et al. [27] proposed (in what is now the gold standard for exemplary
ChaosBook.org/projects) that the periodic orbit theory be applied to infinite-dim-
ensional flows, such as the Navier-Stokes, using the Kuramoto-Sivashinsky model
as a laboratory for exploring the dynamics close to the onset of spatiotemporal
chaos. The main conceptual advance in this initial foray was the demonstration
that the high-dimensional (16-64 mode Galërkin truncations) dynamics of this
dissipative flow can be reduced to an approximately 1-dimensional return map
s → f (s), by choosing the unstable manifold of the shortest periodic orbit as
the intrinsic curvilinear coordinate from which to measure near recurrences. For
the first time for any nonlinear PDE, some 1,000 unstable periodic orbits were
determined numerically. What was novel about this work? First, dynamics on a
strange attractor embedded in a high-dimensional space was essentially reduced to
1-dimensional dynamics. Second, the solutions found provided both a qualitative
description and highly accurate quantitative predictions for the given PDE with
the given boundary conditions and system parameter values.

How is it possible that the theory originally developed for low dimensional
dynamical systems can work in the ∞-dimensional PDE state spaces? For dis-
sipative flows the number of unstable, expanding directions is often finite and
even low-dimensional; perturbations along the ∞ of contracting directions heal
themselves, and play only a minor role in cycle weights - hence the long-time dy-
namics is effectively finite dimensional. For a more precise statement, see Ginelli
et al. [71].

The 1996 project went as far as one could with methods and computation re-
sources available, until 2002, when new variational methods were introduced [45,
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103, 104]. Considerably more unstable, higher-dimensional regimes have become
accessible [38]. Of course, nobody really cares about Kuramoto-Sivashinsky. It is
only a model; it was not until the full Navier-Stokes calculations of Eckhardt, Ker-
swell and collaborators [59, 85, 152] that the fluid dynamics community started to
appreciate that the dynamical (as opposed to statistical) analysis of wall-bounded
flows is now feasible [70].

A1.6 Gruppenpest

How many Tylenols should I take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Waleffe, forced to read chapter 10.

If you are not fan of chapter 10 “Flips, slides and turns,” and its elaborations,
you are not alone. Or, at least, you were not alone in the 1930s. That is when the
articles by two young mathematical physicists, Eugene Wigner and Johann von
Neumann [119], and Wigner’s 1931 Gruppentheorie [154] started Die Gruppen-
pest that plagues us to this very day.

According to John Baez [9], the American physicist John Slater, inventor of
the ‘Slater determinant,’ is famous for having dismissed groups as unnecessary to
physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture
with their ‘Gruppenpest:’ the pest of the group theory [actually, the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppenpest’ wrote papers
which were incomprehensible to those like me who had not studied group the-
ory... The practical consequences appeared to be negligible, but everyone felt that
to be in the mainstream one had to learn about it. I had what I can only describe
as a feeling of outrage at the turn which the subject had taken ... it was obvious
that a great many other physicists were disgusted as I had been with the group-
theoretical approach to the problem. As I heard later, there were remarks made
such as ‘Slater has slain the ‘Gruppenpest”. I believe that no other piece of work
I have done was so universally popular.”

A. John Coleman writes in Groups and Physics - Dogmatic Opinions of a
Senior Citizen [29]: “The mathematical elegance and profundity of Weyl’s book
[Theory of Groups and QM] was somewhat traumatic for the English-speaking
physics community. In the preface of the second edition in 1930, after a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group pest’ is gradually being
cut out of quantum physics. This is certainly not true in so far as the rotation and
Lorentz groups are concerned; ....” In the autobiography of J. C. Slater, published
in 1975, the famous MIT physicist described the “feeling of outrage” he and other
physicists felt at the incursion of group theory into physics at the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published their highly influential
treatise on the “Theory of Atomic Spectra”, Slater was widely heralded as having
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“slain the Gruppenpest”. Pages 10 and 11 of Condon and Shortley’s treatise are
fascinating reading in this context. They devote three paragraphs to the role of
group theory in their book. First they say, “We manage to get along without
it.” This is followed by a lovely anecdote. In 1928 Dirac gave a seminar, at
the end of which Weyl protested that Dirac had said he would make no use of
group theory but that in fact most of his arguments were applications of group
theory. Dirac replied, “I said that I would obtain the results without previous
knowledge of group theory!” Mackey, in the article referred to previously, argues
that what Slater and Condon and Shortley did was to rename the generators of the
Lie algebra of SO(3) as “angular momenta” and create the feeling that what they
were doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people you were working
with in Berlin, was there much interest in group theory at this time?” WIGNER:
“No. On the opposite. Schrödinger coined the expression, ‘Gruppenpest’ must
be abolished.” “It is interesting, and representative of the relations between math-
ematics and physics, that Wigner’s paper was originally submitted to a Springer
physics journal. It was rejected, and Wigner was seeking a physics journal that
might take it when von Neumann told him not to worry, he would get it into the
Annals of Mathematics. Wigner was happy to accept his offer [141].”

You would think it was all up from there for group theory. But no. In the
early 1970’s, in the nonexistent city of Bielefeld, writes M. du Sautoy [140];
“The Maoist movement decided that group theory was a reactionary subject of
the old regime, and [...] demonstrations erupted outside of the maths department
with protesters holding placards demanding ‘No more group theory’. [...] During
one demonstration, the students scaled the outside of the building and scrawled
‘Group Theory Department’ on the wall.

A1.7 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais, Inward Bound: of Matter and Forces in
the Physical World

One afternoon in May 1991, Dieter Wintgen is sitting in his office at the Niels Bohr
Institute beaming with the unparalleled glee of a boy who has just committed a
major mischief. The starting words of the manuscript he has just penned are

The failure of the Copenhagen School to obtain a reasonable . . .
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Wintgen was 34 years old at the time, a scruffy kind of guy, always wearing san-
dals and holed out jeans, the German flavor of a 90’s left winger and mountain
climber. He worked around the clock with his students Gregor Tanner and Klaus
Richter to complete the work that Bohr himself would have loved to have seen
done back in 1916: a ‘planetary’ calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to the old quantum the-
ory, but to something else. The old quantum theory was no theory at all; it was a
set of rules bringing some order to a set of phenomena which defied logic of clas-
sical theory. The electrons were supposed to describe planetary orbits around the
nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists of
the orthohelium and parahelium lines. In 1915 Bohr suggested that the two kinds
of helium lines might be associated with two distinct shapes of orbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to work on the problem, and
he wrote to Rutherford, “I have used all my spare time in the last months to make
a serious attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he wrote that
“the theory was worked out in the fall of 1916” and of having obtained a “partial
agreement with the measurements.” Nevertheless, the Bohr-Sommerfeld theory,
while by and large successful for hydrogen, was a disaster for neutral helium.
Heroic efforts of the young generation, including Kramers and Heisenberg, were
of no avail.

For a while Heisenberg thought that he had the ionization potential for he-
lium, which he had obtained by a simple perturbative scheme. He wrote enthu-
siastic letters to Sommerfeld and was drawn into a collaboration with Max Born
to compute the spectrum of helium using Born’s systematic perturbative scheme.
To a first approximation, they reproduced the earlier calculations. The next level
of corrections turned out to be larger than the computed effect. The concluding
paragraph of Max Born’s classic “Vorlesungen über Atommechanik” from 1925
sums it up in a somber tone [20]:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanation of the helium spec-
trum. He used wave mechanics, electron spin and the Pauli exclusion principle,
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none of which belonged to the old quantum theory. As a result, planetary orbits
of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24, the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [105] added the topological in-
dices in 1980, and in 1991 Wintgen and collaborators [58, 155] understood the
role of periodic orbits. Dieter had good reasons to gloat; while the rest of us
were preparing to sharpen our pencils and supercomputers in order to approach
the dreaded 3-body problem, they just went ahead and did it. What it took–and
much else–is described in this book.

One is also free to ponder what quantum theory would look like today if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would quantum
mechanics look different if in 1917 Bohr and Kramers et al. figured out how to
use the helium classical 3-body dynamics to quantize helium?"

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do the voice over your-
self):

“It would not matter at all!”

Well, perhaps appendix A45 proves him wrong...
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Commentary

Remark A1.1. Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take the
notion of global foliations that we attribute to Smale. As far as we can trace the idea, it
goes back to René Thom; local foliations were already used by Hadamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining his notion of
transversality. One of Thom’s disciples introduced Smale to Brazilian mathematician
Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to the Andronov-Pontryagin
school. It was from Peixoto that Smale learned about structural stability, a notion that got
him enthusiastic about dynamical systems, as it blended well with his topological back-
ground. It was from discussions with Peixoto that Smale got the problems in dynamical
systems that lead him to his 1960 paper on Morse inequalities. The next year Smale pub-
lished his result on the hyperbolic structure of the non–wandering set. Smale was not the
first to consider a hyperbolic point, Poincaré had already done that; but Smale was the
first to introduce a global hyperbolic structure. By 1960 Smale was already lecturing on
the horseshoe as a structurally stable dynamical system with an infinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A1.2. A brief history of period doubling universality. Mitchell J. Feigenbaum
discovered universality in one-dimensional iterative maps in August 1975. Following
Feigenbaum’s functional formulation of the problem, in March 1976 Cvitanović derived,
in collaboration with Feigenbaum, the equation g(x) = αg(g(x/α)) for the period doubling
fixed point function (not a big step, it is the limit of Feigenbaum functional recursion
sequence), which has since played a key role in the theory of transitions to turbulence.
The first published report on Feigenbaum’s discovery is dated August 1976 (Los Alamos
Theoretical Division Annual Report 1975-1976, pp. 98-102, read it here). By that time
the work had became widely known through many seminars Feigenbaum gave in US and
Europe. His first paper, submitted to Advances in Mathematics in Nov 1976 was rejected.
The second paper was submitted to SIAM Journal of Applied Mathematics in April 1977
and rejected in October 1977. Finally, J. Lebowitz published both papers [60, 61] without
further referee pain (M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) and 21, 6 (1979)).

A very informative 1976 review by May [112] describes what was known before
Feigenbaum’s contribution. The geometric parameter convergence was first noted in 1958
by Myrberg [13, 139], and independently of Feigenbaum, by Grossmann and Thomae [76]
in 1977 (without noting the universality of δ). The theory of period-doubling universal
equations and scaling functions is developed in Kenway’s notes of Feigenbaum 1984 Ed-
inburgh lectures [63] (trifle hard to track down). The elegant unstable manifold formula-
tion of universality given in ChaosBook.org is due to Vul, Khanin, Sinai and Gol’dberg [72,
150, 151] in 1982. The most thorough exposition available is the Collet and Eckmann [30]
monograph. For a more recent introduction into renormalization theory that starts out with
period doubling before moving on to Quantum Field Theory, see Gurau, Rivasseau and
Sfondrini [77].

By 1978 Coullet and Tresser [32, 33] have proposed similar equations. Daido [49] has
introduced a different set of universal equations. Derrida, Gervois and Pomeau [51] have
extracted a great many metric universalities from the asymptotic regime. Grassberger [73]
has computed the Hausdorff dimension of the asymptotic attractor. Lorenz [109] and
Daido [50] have found a universal ratio relating bifurcations and reverse bifurcations.
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If f (x) is not quadratic around the maximum, the universal numbers will be different -
see Vilela Mendés [149] and Hu and Mao [89] for their values. According to Kuramoto
and Koga [100] such mappings can arise in chemical turbulence. Nonlinear oscillator;
quadratic potential with damping and harmonic driving force exhibit cascades of period-
doubling bifurcations [102, 116]. Refs. [22–24] compute solutions of the period-doubling
fixed point equation using methods of Schöder and Abel, yielding what are so far the most
accurate δ and α. See also Weisstein [153].

Since then we have generalized the universal equations to period n-tuplings; con-
structed universal scaling functions for all winding numbers in circle maps, and estab-
lished universality of the Hausdorff dimension of the critical staircase. A nice discussion
of circle maps and their physical applications is given in refs. [10, 91, 92]. The universal-
ity theory for golden mean scalings is developed in refs. [62, 120, 129, 143]. The scaling
functions for circle maps are discussed in ref. [46].

The theory would have remained a curiosity, were it not for the beautiful experiment
by Libchaber and Maurer [111], and many others that followed. Crucial insights came
from Collet and Eckmann [30] and Collet, Eckmann and Koch [31] who explained how
the dynamics of dissipative system (such as a viscous fluid) can become 1-dimensional.
The experimental and theoretical developments up to 1990’s are summarized in reprint
collections by P. Cvitanović [37] and B.-L. Hao [84]. We also recommend Hu [88],
Crutchfield, Farmer and Huberman [35], Eckmann [56] and Ott [121]. The period-doubling
route to turbulence that is by no means the only way to get there; see Eckmann [56] dis-
cussion of other routes to chaos.

By 1979 mathematicians also understood that the numerical methods used by Feigen-
baum and Cvitanović to solve the universal equations were in fact convergent. Mathemati-
cians did what they do; they attached various names to the equations, and they changed
letters around to make the equations unintelligible to physicists. The re-lettering did not
stick, but the renamings did. (This remark is based on a Nordita lecture 1982 in Danish
prepared together with Mogens Høgh Jensen, and Cvitanović [37]. Ulla Selmer prepared
the drawings, Oblivia Kaypro stood for the initial execution.)

Remark A1.3. Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with sin-
gularities. They studied uniformly hyperbolic systems (as strong as Anosov’s), but with
sets of singularities. Under iterations a dense set of points hits the singularities. Even
more important are the points that never hit the singularity set. In order to establish some
control over how they approach the set, one looks at trajectories that approach the set by
some given εn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust: look at the
discontinuity set, take an ε neighborhood around it. Given that the Lebesgue measure is
εα and the stability grows not faster than (distance)n. A. Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

appendHist - 20Mar2013 ChaosBook.org edition16.4, Jul 7 2019



APPENDIX A1. A BRIEF HISTORY OF CHAOS 1046

In the systems that are uniformly hyperbolic, all trouble is in differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow + singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.

3. Hénon case: The first proof was given by M. Benedicks and L. Carleson [14–16].
A more readable proof is given in M. Benedicks and L.-S. Young [17].

Remark A1.4. Is the geometry of nature fractal? By 1983 some physicists were
starting to learn that there is a thing called “chaos” [106], a thing stressful, nasty and hard
to understand (see this book), so they tried to bypass this whole bit of unpleasantness by
getting instead an easy, diagnostic number out of it [93]. They were told that Hausdorff
dimension is the way to go. Dimension of the canonical 1/3’s Cantor set can be explained
to a school child, so they tried it out for size on many low-dimensional chaotic attractors,
and some crazy high-dimenional ones as well. Our all-time favorite (beyond the ‘Untitled
5’ of figure 1.5) was the claim that the dimension of climate is 3.1 (remember, the policy
of ChaosBook is not to pump up citation numbers for silly or plainly wrong papers): In
Deterministic chaos: the science and the fiction, David Ruelle [136] comments: “[...] one
should not believe dimension estimates that are not well below 2 log10 N. [Authors of ...]
claim to find a dimension 3.1 for a ‘climatic attractor’ with N = 500 data points. [...] The
‘dimensions’ of the order 6 that are obtained are very close to the upper bound 2 log10 N
permitted by the Grassberger-Procaccia algorithm [74] (N is the length of the time series
used, of the order of 103). The ‘proof’ that one has low dimensional dynamics is therefore
inconclusive, and the suspicion is that the time evolutions under discussion do not corre-
spond to low-dimensional dynamics. [...] Readers of The Ultimate Hitchhiker’s Guide to
the Galaxy, that masterpiece of British literature by D. Adams [1], know that a huge su-
percomputer has answered ‘the great problem of life, the universe, and everything’. The
answer obtained after many years of computation is 42. Unfortunately, one does not know
to what precise question this is the answer, and what to make of it. It think that what hap-
pened is this. The supercomputer took a very long time series describing all it knew about
‘life, the universe, and everything’ and proceeded to compute the correlation dimension of
the corresponding dynamics, using the Grassberger-Procaccia algorithm. This time series
had a length N somewhat larger than 1021. And you can imagine what happened. After
many years of computation the answer came: dimension is approximately 2 log10 ≈ 42.”
In 1998 Avnir, Biham, Lidar, and Malcai [8] explored how much support for the fractal
self-similarity hypothesis was there, actually. They found that “the majority of the data
that was interpreted in terms of fractality in the surveyed Physical Review journals does
not seem to be linked (at least in an obvious way) to existing models and, in fact, does
not have theoretical backing. Most of the data represent results from nonequilibrium pro-
cesses. The common situation is this: An experimentalist performs a resolution analysis
and finds a limited-range power law with a value of D smaller than the embedding di-
mension. Without necessarily resorting to special underlying mechanistic arguments, the
experimentalist then often chooses to label the object for which she or he finds this power
law a ‘fractal’. This is the fractal geometry of nature.” Their plot says it all: the number
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of decades (factors of 10) spanned by experimentally derived scaling exponents peaks at
10 (i.e., one decade).

Remark A1.5. Einstein did it? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [57]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deemed sufficient to give him the
credit for being the pioneer of quantum chaos [83, 148]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais; neither had any recollection
of the 1917 article. However, Theo Geisel has unearthed a reference that shows that
in early 20s Born did have a study group meeting in his house that studied Poincaré’s
Méchanique Céleste [126]. In 1954 Fritz Reiche, who had previously followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland), pointed out to J.B. Keller
that Keller’s geometrical semiclassical quantization was anticipated by the long forgotten
paper by A. Einstein [57]. In this way an important paper written by the physicist who
at the time was the president of German Physical Society, and the most famous scientist
of his time, came to be referred to for the first time by Keller [97], 41 years later. But
before Ian Percival included the topological phase, and Wintgen and students recycled the
Helium atom, knowing Méchanique Céleste was not enough to complete Bohr’s original
program.

Remark A1.6. Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. Keating [19]. The idea is to im-
prove cycle expansions by imposing unitarity as a functional equation ansatz. The cycle
expansions that they use are the same as the original ones described above [4], but the
philosophy is quite different; the claim is that the optimal estimate for low eigenvalues of
classically chaotic quantum systems is obtained by taking the real part of the cycle expan-
sion of the semiclassical zeta function, cut off at the appropriate cycle length. M. Sieber,
G. Tanner and D. Wintgen, and P. Dahlqvist find that their numerical results support this
claim; F. Christiansen and P. Cvitanović do not find any evidence in their numerical re-
sults. The usual Riemann-Siegel formulas exploit the self-duality of the Riemann and
other zeta functions, but there is no evidence of such symmetry for generic Hamiltonian
flows. Also from the point of hyperbolic dynamics discussed above, proposal in its cur-
rent form belongs to the category of crude cycle expansions; the cycles are cut off by a
single external criterion, such as the maximal cycle time, with no regard for the topology
and the curvature corrections. While the functional equation conjecture is not in its final
form yet, it is very intriguing and fruitful research inspiration.

The real life challenge are generic dynamical flows, which fit neither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riemann zet function on the other.

Remark A1.7. Sources. The tale of appendix A1.7, aside from a few personal
recollections, is in large part lifted from Abraham Pais’ accounts of the demise of the old
quantum theory [123, 124], as well as Jammer’s account [90]. In August 1994 Dieter
Wintgen died in a climbing accident in the Swiss Alps. Remark A1.3 is based on Ya.B.
Pesin’s comments.
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[27] F. Christiansen, P. Cvitanović, and V. Putkaradze, “Hopf’s last hope: Spa-
tiotemporal chaos in terms of unstable recurrent patterns”, Nonlinearity
10, 55–70 (1997).

[28] F. Christiansen, P. Cvitanović, and H. H. Rugh, “The spectrum of the
period-doubling operator in terms of cycles”, J. Phys. A 23, L713S–L717S
(1990).

[29] A. J. Coleman, “Groups and physics – Dogmatic opinions of a senior citi-
zen”, Notices Amer. Math. Soc. 44, 8–17 (1997).

[30] P. Collet and J.-P. Eckman, Iterated Maps on the Interval as Dynamical
Systems (Birkhäuser, Boston, 2009).

[31] P. Collet, J.-P. Eckmann, and H. Koch, “Period doubling bifurcations for
families of maps on Rn”, J. Stat. Phys. 25, 1–14 (1981).

[32] P. Coullet and C. Tresser, “Itérations d’endomorphismes et groupe de
renormalisation”, J. Phys. Colloques C5 39, 25–28 (1978).

[33] P. Coullet and C. Tresser, “Iterations of endomorphisms and renormaliza-
tion group”, C. R. Acad. Sc. Paris A 287, 577–581 (1978).

[34] G. Cristadoro, “Fractal diffusion coefficient from dynamical zeta func-
tions”, J. Phys. A 39, L151 (2006).

[35] J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, “Fluctuations and
simple chaotic dynamics”, Phys. Rep. 92, 45–82 (1982).
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