Appendix A18

Counting itineraries

A18.1 Counting curvatures

O
ne consequence of the finiteness of topological polynomials is that the contributions to curvatures at every order are even in number, half with positive and half with negative sign. For instance, for complete binary labeling (23.8),

$$
\begin{align*}
c_{4}= & -t_{0001}-t_{0011}-t_{0111}-t_{0} t_{01} t_{1} \\
& +t_{0} t_{001}+t_{0} t_{011}+t_{001} t_{1}+t_{011} t_{1} \tag{A18.1}
\end{align*}
$$

We see that 2^{3} terms contribute to c_{4}, and exactly half of them appear with a negative sign - hence if all binary strings are admissible, this term vanishes in the counting expression.

Such counting rules arise from the identity

$$
\begin{equation*}
\prod_{p}\left(1+t_{p}\right)=\prod_{p} \frac{1-t_{p}^{2}}{1-t_{p}} \tag{A18.2}
\end{equation*}
$$

Substituting $t_{p}=z^{n_{p}}$ and using (18.14) we obtain for unrestricted symbol dynamics with N letters

$$
\prod_{p}^{\infty}\left(1+z^{n_{p}}\right)=\frac{1-N z^{2}}{1-N z}=1+N z+\sum_{k=2}^{\infty} z^{k}\left(N^{k}-N^{k-1}\right)
$$

The z^{n} coefficient in the above expansion is the number of terms contributing to c_{n} curvature, so we find that for a complete symbolic dynamics of N symbols and $n>1$, the number of terms contributing to c_{n} is $(N-1) N^{k-1}$ (of which half carry a minus sign).

We find that for complete symbolic dynamics of N symbols and $n>1$, the number of terms contributing to c_{n} is $(N-1) N^{n-1}$. So, superficially, not much is gained by going from periodic orbits trace sums which get N^{n} contributions of n to the curvature expansions with $N^{n}(1-1 / N)$. However, the point is not the number of the terms, but the cancelations between them.

Exercises

A18.1. Lefschetz zeta function. Elucidate the relation betveen the topological zeta function and the Lefschetz zeta function.
A18.2. Counting the 3-disk pinball counterterms. Verify that the number of terms in the 3 -disk pinball curvature expansion (25.53) is given by
$\prod_{p}\left(1+t_{p}\right)=\frac{1-3 z^{4}-2 z^{6}}{1-3 z^{2}-2 z^{3}}=1+3 z^{2}+2 z^{3}+\frac{z^{4}\left(6+12 z+2 z^{2}\right)}{1-3 z^{2}-2 z^{3}} \prod_{p}\left(1+t_{p}\right)=\frac{1-t_{0}^{2}-t_{1}^{2}}{1-t_{0}-t_{1}}=1+t_{0}+t_{1}+\frac{2 t_{0} t_{1}}{1-t_{0}-t_{1}}$

$$
\begin{aligned}
& \begin{array}{l}
=1+3 z^{2}+2 z^{3}+6 z^{4}+12 z^{5}+20 z^{6}+48 z^{7}+84 z^{8}+184 z(\mathrm{~A} 18.3) \\
\text { hat, for example, } c_{6} \text { has a total of } 20 \text { terms, } \\
= \\
\end{array} \\
& \text { This means that, for example, } c_{6} \text { has a total of } 20 \text { terms, }
\end{aligned}
$$ in agreement with the explicit 3 -disk cycle expansion (25.54)

A18.3. Cycle expansion denominators.Prove that the denominator of c_{k} is indeed D_{k}, as asserted (A14.14).
A18.4. Counting subsets of cycles. The techniques developed above can be generalized to counting subsets of cycles. Consider the simplest example of a dynamical system with a complete binary tree, a repeller map (14.20) with two straight branches, which we label 0 and 1. Every cycle weight for such map factorizes, with a factor t_{0} for each 0 , and factor t_{1} for each 1 in its symbol string. The transition matrix traces (18.28) collapse to $\operatorname{tr}\left(T^{k}\right)=\left(t_{0}+t_{1}\right)^{k}$, and $1 / \zeta$ is simply

$$
\begin{equation*}
\prod_{p}\left(1-t_{p}\right)=1-t_{0}-t_{1} \tag{A18.4}
\end{equation*}
$$

Substituting into the identity

$$
\prod_{p}\left(1+t_{p}\right)=\prod_{p} \frac{1-t_{p}^{2}}{1-t_{p}}
$$

we obtain

Hence for $n \geq 2$ the number of terms in the expansio ?! with $k 0$'s and $n-k 1$'s in their symbol sequences is $2\binom{n-2}{k-1}$. This is the degeneracy of distinct cycle eigenval ues in fig.?!; for systems with non-uniform hyperbolicity this degeneracy is lifted (see fig. ?!).
In order to count the number of prime cycles in each uch subset we denote with $M_{n, k} \quad(n=1,2, \ldots ; k=$ $\{0,1\}$ for $n=1 ; k=1, \ldots, n-1$ for $n \geq 2$) the numbe of prime n-cycles whose labels contain k zeros, use bi nomial string counting and Möbius inversion and obtair

$$
\begin{aligned}
M_{1,0} & =M_{1,1}=1 \\
n M_{n, k} & =\sum_{\left.m\right|_{\frac{n}{k}}} \mu(m)\binom{n / m}{k / m}, \quad n \geq 2, k=1, \ldots, n-
\end{aligned}
$$

where the sum is over all m which divide both n and k.

