
Chapter 31

Koopman modes

(S. Bagheri and P. Cvitanović)

So far we have mostly focused on computation of eigenvalues of evolution
operators. Here we shall discuss the role of their eigenfunctions. This is
easiest to explain for systems with stable equilibria and periodic orbits, for

which the dynamics is described by Koopman operators. We shall show how here
how the nonlinear dynamics of transient states on the way to a stable solution is
captured by the eigenfunctions of the linear Koopman operator.

31.1 Koopmania

The Koopman operator action on an observable a(x) (a bounded and smooth state
space function that associates a scalar to state x) is to replace it by its downstream
value time t later, a(x)→ a(x(t)), evaluated at the trajectory point x(t):

[
K ta

]
(x) = a( f t(x)) =

∫
M

dyK t(x, y) a(y)

K t(x, y) = δ
(
y − f t(x)

)
. (31.1)

Given an initial density of representative points ρ(x), the state space average of
a(x) evolves as

〈a〉ρ(t) =
1
|ρM|

∫
M

dx a( f t(x)) ρ(x) =
1
|ρM|

∫
M

dx
[
K ta

]
(x) ρ(x)

=
1
|ρM|

∫
M

dx dy a(y) δ
(
y − f t(x)

)
ρ(x) .
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CHAPTER 31. KOOPMAN MODES 612

The ‘propagator’ δ
(
y − f t(x)

)
can be interpreted as belonging to the Perron-Frobenius

operator (19.10), so the two operators are adjoint to each other,∫
M

dx
[
K ta

]
(x) ρ(x) =

∫
M

dy a(y)
[
Ltρ

]
(y) . (31.2)

The Koopman and Perron-Frobenius operators describe the dynamics in comple-
mentary ways. Koopman advances the trajectory by time t, Perron-Frobenius de-
pends on the trajectory point time t in the past. Perron-Frobenius propagates a
conserved quantity (a density of initial conditions) forward in time. The growth
(or decay) of the density depends on the compression (or expansion) of a volume
occupied by a set of trajectories. The dynamics of an observable depends on the
other hand on one single trajectory.

exercise 31.1

The family of Koopman operators
{
K t}

t∈R+
forms a semigroup parameterized

by time, K tK t′ = K t+t′ , K0 = 1 with the generator of infinitesimal time transla-
tions defined by

A† = lim
t→0+

1
t

(
K t − 1

)
.

If the flow is finite-dimensional and invertible, A† is a generator of a group. The
explicit form ofA† follows from expanding dynamical evolution up to first order,
as in (2.6):

A†a(x) = lim
t→0+

1
t

(
a( f t(x)) − a(x)

)
= vi(x)∂ia(x) . (31.3)

This is by definition the time derivative, so the time-evolution equation for a(x)
is (

d
dt
−A†

)
a(x) = 0 . (31.4)

We formally write the solution to (31.4) as
appendix A31.2

a(x(t)) = etA†a(x0) = K ta(x0) ,

so the finite time Koopman operator (31.1) can be recovered by exponentiating
the time-evolution generator A†. The generator A† looks very much like the

exercise A31.1
generator of translations. For example, for a constant velocity field dynamical
evolution is nothing but a translation by time× velocity:

exercise 19.10

etv ∂
∂x a(x) = a(x + tv) . (31.5)

As we will not need to implement a computational formula for general etA in what
follows, we relegate making sense of such operators to appendix A31.2.

appendix A31.2

The Koopman / Perron-Frobenius operators are non-normal, non-self-adjoint
operators, so their left and right eigenvectors differ. The right eigenvectors of
a Perron-Frobenius operator are the left eigenvectors of the Koopman, and vice
versa. That is,

Aφα(x) = sαφα(x) , A†ψα(x) = s∗αψα(x) , α = 0, 1, 2, · · ·
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CHAPTER 31. KOOPMAN MODES 613

The left and right eigenfunctions satisfy the bi-orhogonality condition with respect
to L2 norm,∫

M

dx φ∗αψβ = δαβ . (31.6)

While one might think of a Koopman operator as an ‘inverse’ of the Perron-
Frobenius operator, the notion of adjoint is the right one, especially in settings
where flow is not time-reversible, as is the case for dissipative PDEs (infinite di-
mensional flows contracting forward in time) and for stochastic flows.

Given the left and right eigenfunctions, we can express the evolution of an
observable as

a(x(t)) =
[
K ta

]
(x0) =

∑
α

cαesαtψα(x0) (31.7)

where

cα =

∫
M

dx a(x) φ∗α(x) .

This expansion suggests an alternative description of nonlinear dynamics, which is
the (linear) evolution of observables in an infinite-dimensional space. In principle,
this allows the study of full nonlinear dynamics using linear operator-theoretical
tools.

example 31.1

p. 618

example 31.2

p. 618

31.2 Koopman eigenvalues for a limit cycle

The [(d−1)×(d−1)]-dimensional monodromy matrix Mi j = ∂ jPi(x̂a) of dimension
governs the dynamics of the small perturbation δx̂ within a Poincaré section.

Even though the monodromy matrix M(x̂) depends upon x̂ (the ‘starting’ point
of the periodic orbit), its eigenvalues do not, so we may write for its eigenvectors
e( j) (sometimes referred to as ‘covariant Lyapunov vectors,’ or, for periodic orbits,
as ‘Floquet vectors’)

M(x) e( j)(x) = Λ j e( j)(x) , Λ j = eλ
( j)T . (31.8)

where Floquet exponents λ( j) = µ( j) ± iω( j) are independent of x. We order the
Floquet multipliers as

|Λ1| ≥ |Λ2| ≥ · · · ≥ |Λd−1| . (31.9)

The limit cycle is stable if |Λ1| < 1.
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CHAPTER 31. KOOPMAN MODES 614

The two most important characteristics of the limit cycle are thus the funda-
mental frequency and the leading Lyapunov exponent, defined by

ω =
2π
T
, µ =

1
T

ln |Λ1|, (31.10)

respectively.

Here we follow the derivations chapter 21, except that the analysis is restricted
to the simpler case of a stable limit cycle. The trace of the Koopman operator is,

trK t =

∫
M

K t(x, x)dx.

where K t is the kernel. Inspired by this definition, we define the trace of Koop-
man operator as

trK t =

∫
M

δ(x − f t(x))dx. (31.11)

From (31.11), one observes that the traceK t receives a contribution whenever the
trajectory returns to the starting point after r repeats of the limit cycle period T .

To proceed, we decompose the propagator ft into two parts, the (d−1)-dimen-
sional return map P and a 1-dimensional return-time function τ. The return map
captures only the transverse part of the periodic dynamics, since the flow compo-
nent tangent to the trajectory, which is not in the span of the Poincaré section, has
not been taken into account. Assuming the longitudinal state component has a
certain mean velocity v as it traverses the limit cycle, one may transform this com-
ponent to a time coordinate system using the relation vdt. Thus the full dynamics
is described by the return map P and by the first return function τ(x̂) that provides
the (non-constant) time interval between successive points x̂ on Poincaré section,
e.g. tk+1 = tk + τ(x̂k). Applying τ recursively, we may write ((k+1)th time as a
function first point and initial time,

tk+1 = t1 +

k−1∑
j=0

τ(P j x̂1). (31.12)

Now, factor the kernel of K t (31.11) into two parts

trK t =

∫
P(§̂)=0

dx̂
∫ τ(x̂)

0
dt δ

(
x̂ − Pk x̂

)
δ

t − k−1∑
j=0

τ(P j x̂)

 , (31.13)

where Pk and τ are defined above and in (31.12), respectively. We treat the two
Dirac delta functions separately, starting with Pk. First recall that the Dirac delta
function applied to a scalar-valued function g(x), is∫

δ(g(x))dx =

∫
δ(x)|g′(0)−1|dx =

∑
j

1
|g′(x j)|

,
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where x j are the roots of g(x). This property may be generalized to d−1 dimensions
and applied to the Dirac-delta in (31.13),∫

P(u)=0
dx̂ δ(x̂ − Pk(x̂)) =

1
|det (I −Mr)|

, (31.14)

where I denotes the identity matrix. The second part of the trace can be written as

∫ τ(x̂)

0
δ(t −

k−1∑
j=0

τ(P j x̂))dt = T
∞∑

r=1

δ(t − rT). (31.15)

Inserting the identities (31.14) and (31.15) in (31.13), we get the trace formula for
a single limit cycle of period T ,

trK t = T
∞∑

r=1

δ(t − rT)
|det (I −Mr)|

, (31.16)

which was first derived in ref. [1], here given in the special case of a single limit
cycle. The trace formula is a sum whose terms are nonzero only for integers of
the cycle period. The rth nonzero term describes how much after the rth return to
the Poincaré section a small neighborhood volume (i.e. a tube) of the stable limit
cycle has retracted. This relation thus connects the trace of K t to the dynamics in
the local stable manifold of the limit cycle.

The Koopman eigenvalues are the poles of the Laplace transform of trace of
K t ∫ ∞

0
e−sttrK tdt = tr

1
s −A

,

i.e., the poles of the resolvent of A. By inserting (31.16) in the left-hand side of
above equation one obtains,

tr
1

s −A
=

∂

∂s
ln(det (s −A)),

where det (s −A) is the spectral determinant,

det (s −A) = exp

− ∞∑
r=1

1
r

e−sTr

|det (I −Mr)|

 .
Now, since the determinant does not depend on the basis which M is described in,
we may write it in terms of the eigenvalues of M,

1
|det (I −Mr)|

=

d−1∏
k=1

1
1 − Λr

k
, (31.17)

where we have assumed that |Λk| < 1 for all k.

Denominators can be expanded in Taylor series such as

(1 − x)−1(1 − y)−1 = 1 + x + y + x2 + xy + y2 + . . . ,
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when |x| < 1, |y| < 1. Each term in the product (31.17) may thus be written
as an infinite sum. Define a multi-index as an array of d non-negative integers
jk = 0, 1, 2, . . . :

j = [ j1, j2, . . . , jd] ∈ Nd ,

Consider next the product of d − 1 Floquet multipliers

Λ = Λ1Λ2 · · ·Λd−1 = eT (µ(1)+µ(2)+···+µ(d−1)) ,

(the imaginary parts of complex pairs cancel in the exponent), and define

µ = [µ(1), µ(2), · · · , µ(d−1)] ∈ Rd .

Λ can now be raised to jth power as

Λ j = eTµ· j = Λ
j1
1 Λ

j2
2 · · ·Λ

jd−1
d−1 . (31.18)

Using multi-index notation (31.18) we may write (31.17) as

1
|det (I −Mr)|

=
∑

j
Λr j ,

and consequently the spectral determinant as

det (s −A) = exp

− ∞∑
r=1

1
r

(e−sT
∑

j
Λ j)r

 .
Applying the identity

∑
xr/r = − ln(1− x), we obtain the final form of the spectral

determinant for a stable limit cycle

det (s −A) =

∞∏
j

(
1 − e−sT Λ j

)
. (31.19)

The zeros of det (s − A) = 0 are given by the zeros of individual terms in the
product:

e−T (s−µ· j) = 1 .

Taking the logarithm of both sides, we obtain

s j,m = µ · j + 2πim/T = µ · j + imω (31.20)

with m = 0,±1,±2, . . . . For our particular choice of analytic observables the
spectrum of K t is reduced to its minimal components, namely any integer mul-
tiple of the stability eigenvalues. Thus, for any stable limit cycle, the Koopman
eigenvalues form a lattice on the lower half of the complex plane. The marginal
eigenvalues on the horizontal imaginary axis corresponding to j = 0 correspond
to the non-decaying time-averaged mean (m = 0) and periodic dynamics (m , 0)
on the limit cycle. The remaining eigenvalues j , 0 are decaying and describe
the transient behavior of flow in the local stable manifold of the limit cycle.

example 31.3

p. 619
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Commentary

Remark 31.1. Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [3, 5], see also ref. [4]. In-
spired by the contemporary advances in quantum mechanics, Koopman [3] observed in
1931 that K t is unitary on L2(µ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(
iĤt/~

)
– the kernel of Lt(y, x) intro-

duced in (19.13) (see also sect. 20.2) is the analogue of the Green function discussed here
in chapter 36. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [5]. We shall not use Hilbert spaces here and
the operators that we shall study will not be unitary. For a discussion of the relation be-
tween the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [4] and Gaspard [2].
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31.3 Examples

Example 31.1. Spectrum of a 1D linear system. Consider a 1D system with a single
equilibrium

ẋ = λx, (31.21)

If the observable a(x) is a smooth, real-analytical function, the Koopman operator spec-
trum can be identified from its Taylor expansion,

sk = kλ
φk = δ(k)(x)
ψk = xk

when λ < 0 (attractor) (31.22)

and 
sk = −(k + 1)λ
φk = xk

ψk = δ(k)(x)
when λ > 0 (repeller) (31.23)

for k = 0, 1, · · · . Here the superscript (k) refers to the kth derivative. We observe the
duality between the right/left eigenfunctions and the repelling/attracting points. When
λ < 0, any neighborhood of representative points shrinks to a point and asymptotically
the density becomes a singular function. On the other hand, any smooth observable has
the asymptotic limit a(0). Koopman operatorK t is thus the appropriate evolution operator
to represent the dynamics in stable manifolds, since the observable dynamics goes along
with the flow.

click to return: p. 613

Example 31.2. Spectrum of a 1D nonlinear system. As an example of how the effects
of nonlinearity are captured by expansion into eigenfunctions of the Koopman operator,
consider the stable nonlinear system:

ẋ = λx − x3, λ < 0 (31.24)

where the only equilibrium point is the attracting fixed point xq = 0. The difference
between (31.24) and the linear system in (31.21), is the presence of a cubic nonlinear
term. However, the nonlinear coordinate transformation

y = g(x) =
x

√
x2 − λ

(31.25)

transforms (31.24) into a linear system ẏ = λy, whose spectrum is already determined by
(31.22). The Koopman spectrum in terms of the coordinate x is thus

sk = kλ
φk(x) = δ(k)

(
x − g−1(y)

)
|y=0

ψk(x) =
(
x/
√

x2 − λ
)k

(31.26)

where k = 0, 1, · · · and the derivative of δ is with respect to y. Comparing to (31.22),
the Koopman eigenvalues are not modified by the cubic nonlinear term in (31.24), but the
term

√
x2 − λ appears in the Koopman eigenfunctions.

Consider the expansion (31.7) of a position x(t) at time t considered as an observable,
a(x(t)) = x(t),

x(t) =

(
−λ

x0
2 − λ

)1/2

x0 eλt +
1
√
−λ

(
x0

x0
2 − λ

)3/2

e3λt + · · · (31.27)
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Figure 31.1: (black line) The trajectory x(t) of (31.24)
plotted on logarithmic scale as a function of time, for
λ = −0.6. (red lines) Reconstructions of the trajec-
tory based on the expansion (31.27) – including up to
the φ1, φ3, φ5 or φ7 left eigenfunction of K t. (dashed
line) The trajectory of the linearized system, with x3

neglected in (31.24).
0 0.5 1 1.5 2

10
0

Figure 31.2: State trajectory starting close to xq = 0
and with µ = 1/10 for the system (31.28) in x, y-plane
(left) and the (x, z)-plane (right).
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In figure 31.1, the trajectory x(t) (black line) obtained by integrating (31.24) starts out
by a rapid decay to the stable manifold of the stable fixed point, followed by an expo-
nential decay along the manifold to xq = 0. In a purely linear analysis, the state evolves
as xlim(t) = x0eλt (dashed black line in the figure). A linear analysis provides the expo-
nential decay rate, but fails to describe the curved trajectory in its initial stages. In the
figure the first non-zero expansion terms and the superposition of gradually increasing
number of modes are shown with red lines. Whereas the Koopman eigenvalues provide
the asymptotic decay rate, the Koopman eigenfunctions provide the direction as well as
an amplitude. Including higher order terms in the expansion, eventually the full state tra-
jectory can be recovered by a number of Koopman eigenfunctions, and thus the transient
nonlinear dynamics preceding the infinitesimal linear region can be captured.
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Example 31.3. Spectrum of a stable limit cycle. Consider the three dimensional
system

ẋ = µx − y − xz
ẏ = µy − x − yz
ż = −z + x2 + y2 , .

(31.28)

for µ & 0. The system has an unstable fixed point

xq = (x, y, z) = 0,

and an attracting limit cycle

xa = (
√
µ cos t,

√
µ sin t, µ).

In figure 31.2, a typical trajectory starting near xq is shown. The trajectory grows expo-
nentially with the exponent λq > 0 and after a transient time, approaches the stable limit
cycle exponentially fast with the exponent λa < 0.

The set of discrete Koopman/Perron-Frobenius eigenvalues is simply the union of
the eigenvalues associated with the fixed point and the limit cycle. One may thus treat the
two critical elements separately using the formulas derived from the trace of the operators.
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Here we only consider the spectrum pertaining to stable limit cycle. By considering the
Poincaré section given by the plane y = 0 and its associated monodromy matrix, one
arrives at

Λ = −2µ, ω = 2π .

According to formula (31.20) the Koopman/Perron-Frobenius eigenvalues { j,m} = { j1, 0, . . . , 0,m}
corresponding to this leading Floquet exponent are,

s j,m = jΛ + imω = −2µ j + mi2π

for j = 0, 1, 2, . . . and m = 0,±1,±2, . . . . The expansion of the state observable into the
leading complex Koopman eigenfunctions ( j = 0, 1 and m = 0, 1) associated with (31.28)
is

x(t) = v0,0 + v0,1 eit + v1,0 e−2µt + c.c + . . .

with,

v0,0 = (0, 0, µ), (31.29)

v0,1 =

√
µ

2
(1, 0, 0) +

i
√
µ

2
(0, 1, 0), (31.30)

v1,0 =
c
√
µ

2
(0, 0,

r2 − µ

r2 ), (31.31)

where c is some constant and r2 = x2 + y2.

The first two modes resolve the attractor dynamics; v0,0 represents the average asymp-
totic value, and v0,1 the periodic asymptotic solution with unit frequency on the attractor.
These two Koopman modes correspond to the three first (real) empirical Karhunen-Loève
or proper orthogonal decomposition modes. A robust low-order representation of the flow
should in addition to the limit cycle also, at least in some sense, capture the dynamics of
the corresponding attracting inertial manifold, that connects the unstable fixed point with
the limit cycle. This is the role of the transient mode v1,0; the function (r2 − µ)/r2 is sin-
gular near the fixed point and zero at the limit cycle and points in the direction z, i.e. from
xq to xa.
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Exercises

31.1. Perron-Frobenius operator is the adjoint of the
Koopman operator. Check (31.2) - it might be
wrong as it stands. Pay attention to presence/absence
of a Jacobian.

31.2. Nonlinear system mapped into a linear one. (31.24)
and the linear system in (31.21), is the presence of a cu-
bic nonlinear term. Show the nonlinear coordinate trans-

formation (31.25)

y = g(x) =
x

√
x2 − λ

transforms (31.24) into a linear system ẏ = λy.

31.3. Stability of a limit cycle. Show that the
system (31.28) has an attracting limit cycle xa =

(
√
µ cos t,

√
µ sin t, µ).
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