Chapter 4

Local stability

It does not say in the Bible that all laws of nature are ex-
pressible linearly.

— Enrico Fermi

(R. Mainieri and P. Cvitanovic)

point. Our next task is to define and determine the sizerdighborhood

of x(t). We shall do this by assuming that the flow is locally smoatti By
describing the local geometry of the neighborhood by stugiyfe flow linearized
aroundx(t). Nearby points aligned along the stable (contractingalions remain
in the neighborhood of the trajectort) = f!(x); the ones to keep an eye on are
the points which leave the neighborhood along the unstatgetibns. As we shall
demonstrate in chapter 18, the expanding directions miattemperbolic systems.
The repercussions are far-reaching. As long as the numherstéble directions
is finite, the same theory applies to finite-dimensional OBi#ate space volume
preserving Hamiltonian flows, and dissipative, volume raeting infinite-dim-
ensional PDEs.

SFAR we have concentrated on describing the trajectory of a esiimgtial

In order to streamline the exposition, in this chapter adireples are collected
in sect. 4.8. We strongly recommend that you work througbehexamples: you
can get to them and back to the text by clicking on the [exajtiplles, such as

example 4.8

4.1 Flows transport neighborhoods S

As a swarm of representative points moves along, it carfiesgaand distorts ’ :

neighborhoods. The deformation of an infinitesimal neighbod is best un-
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derstood by considering a trajectory originating ngar= x(0), with an initial
infinitesimal displacemenix(0). The flow then transports the displaceméx(t)
along the trajectory(xo, t) = f{(xo).

4.1.1 Instantaneous rate of shear

The system of lineaequations of variationor the displacement of the infinites-
imally close neighborx + ¢x follows from the flow equations (2.7) by Taylor
expanding to linear order

i + 6% = Vi(X+ 6X) zvi(x)+z %(WJ.
i ]

The infinitesimal displacemeii is thus transported along the trajectou(Xo, t),
with time variation given by

d ovi
G000 = Z ax M| oo, @1)

X=X(Xo,t)

As both the displacement and the trajectory depend on thalipoint xo and the
time t, we shall often abbreviate the notationX(o, t) — X(t) — X, 6%(xo,t) —
6X%(t) — oxin what follows. Taken together, the set of equations

% =vi(X), 0% = ZA“-(X)(SX,- (4.2)
i

governs the dynamics in the tangent bundlex) € T M obtained by adjoining
the d-dimensional tangent spaée € T My to every pointx € M in the d-dim-
ensional state spackl c RY. Thestability matrixor velocity gradients matrix

V(X

Aj(¥) = o (4.3)

describes the instantaneous rate of shearing of the irdimig neighborhood of
x(t) by the flow. A swarm of neighboring points &ft) is instantaneously sheared
by the action of the stability matrixgx(t + 6t) = ox(t) + st A(X,)ox(t). Ais a
tensorial rate of deformation, so it is a bit hard (if not irspible) to draw.

example 4.1
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Figure 4.1: For finite times a local frame is trans- rgb]0,9L0n(t) rg
ported along the orbit and deformed by Jacobian ma*
trix J'. As J'is not self-adjoint, an initial orthogonal
frame is mapped into a non-orthogonal one.

rgb]0,0,0/(0)

rgb]0,0,0«(t)
rgb]0,0,0x(0)

4.1.2 Finite time linearized flow
By Taylor expanding dinite timeflow to linear order,

af!(xo)
(9)(01'

(0 +6%) = () + ) SXj 4, (4.9
i

one finds that the linearized neighborhood is transportetthéyacobian matrix remark 4.1

OX(L)i
x0);’

ox(t) = (xo) %0, Jj(x0) = Px0) = 1. (4.5)

For example, in 2 dimensions the Jacobian matrix for charga fnitial to final
coordinates is

Jtza(x,w:[g—g %7)
0.0 | 7% 7

The Jacobian matrix is evaluated on a trajectory segmentthets at point
Xo = X(tp) and ends at point; = x(t1), t1 > to. As the trajectoryx(t) is determin-
istic, the initial pointxy and the elapsed tinten (4.5) sufice to determineJ, but
occasionally we find it helpful to be explicit about the ialtand final times and
state space positions, and write

IX(to)i
Ax(to)j

Jitjlito = Jij(tl;to) = Jij(Xl, t1; Xo, to) = (4.6)

The mapf! is assumed invertible and ftirentiable so thaf' exists. For
sufficiently short timesJt remains close td, so detd' > 0. By continuity det)
remains positive for all times However, for discrete time maps, d€tcan have
either sign.

4.1.3 Co-moving frames

J describes the deformation of an infinitesimal neighborhabd finite timet in
the co-moving frame ok(t). This deformation of an initial frame a& into a
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non-orthogonal frame a{(t) is described by the eigenvectors and eigenvalues of
the Jacobian matrix of the linearized flow (see figure 4.1),

I = A, j=12---.d. @7

Throughout this text the symbalx will always denote théth eigenvalue(the
stability multiplie of the finite time Jacobian matrid!. Symbol A& will be
reserved for théth stability exponentwith real pariu® and phase)®:

a0

Ac=¢ A0 = 40 4,0 (4.8)

As J'is a real matrix, its eigenvalues are either real or come fingtex conjugate
pairs,

(Al Aky1) = (00410 =i

with magnitudgAy| = |Ak.1| = exptu®). The phases® describes the rotation
velocity in the plane spanned by the pair of real eigenvscttee®, Im e},
with one period of rotation given by = 2r/w® .

example 4.4

J{(x0) depends on the initial pointy and the elapsed time For notational
brevity we omitted this dependence, but in general both ifpenealues and the
eigenvectorspj = Aj(xo,t), -+, € = é(xo,1), also depend on the trajectory
traversed.

Nearby trajectories separate exponentially with time glitreunstable direc-
tions approach each other along thi@ble directionsand change their distance
along themarginal directionsat rates slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude tatfggn, smaller than,
or equal to 1. In the literature, the adjectivesutral indifferent centerare often
used instead of ‘marginal’. Attracting, or stable direnscare sometimes called
‘asymptotically stable,” and so on.

One of the preferred directions is what one might expectdirection of the
flow itself. To see that, consider two initial points alongrajectory separated

by infinitesimal flight timest: 6xp = f%(xp) — Xo = V(Xo)dt. By the semigroup
property of the flow,ft*t = fot where

Fo(x0) = f t+:1TV(X(T))+f‘(><o)=5tV(X(t))+f‘(Xo)-
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Expanding both sides of'(f(xg)) = f%(f'(xo)), keeping the leading term in
6t, and using the definition of the Jacobian matrix (4.5), weeolss thatJ'(xo)
transports the velocity vector & to the velocity vector ax(t) (see figure 4.1):

V(X(1)) = J'(%0) V(o) - (4.9)

4.2 Computing the Jacobian matrix

As we started by assuming that we know the equations of mdiiom (4.3) we
also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodx;(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stabilitaitrix A to Jacobian
matrix J'. On the level of dferential equations the relation follows by taking the
time derivative of (4.5) and replacinix by (4.2)

d dut )

Hence the matrix elements of theé{d] Jacobian matrix satisfy the ‘tangent linear
equations’

dEtJ‘(xo) = A(¥) J(x0), x=fl(x), initial conditionJ°(xo) = 1.(4.10)

For autonomous flows, the matrix of velocity gradieA(x) depends only orx,

not time, whileJ' depends on both the state space position and time. Given a nu-
merical routine for integrating the equations of motioraleation of the Jacobian

matrix requires minimal additional programmingagt; one simply extends the
d-dimensional integration routine and integratesdhelements of(xp) concur-

rently with f(xo). The qualifier ‘simply’ is perhaps too glib. Integrationlwiork

for short finite times, but for exponentially unstable flowseauickly runs into
numerical over- an@dr underflow problems. For high-dimensional flows the ana-
lytical expressions for elements Afmight be so large tha fits on no computer.

Further thought will have to go into implementation thisocgétion. chapter 26

So now we know how to compute Jacobian maffigiven the stability matrix
A, at least when the? extra equations are not too expensive to compute. Mission
accomplished.

fast track:
E chapter 7, p. 134
And yet... there are mopping up operations left to do. Weigteusitil we de-

rive the integral formula (4.19) for the Jacobian matrixaaalogue of the finite-
time ‘Green’s function’ or ‘path integral’ solutions of @hlinear problems.
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We are interested in smooth fidirentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hertioe next section, which
might seem an embarrassment (what is a sectiolinear flows doing in a book
onnoninear dynamics?), féers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool dfeliential geometry, general
relativity, etc., so we are in good company. If you know yoigeavalues and
eigenvectors, you may prefer to fast forward here.

fast track:
@ sect. 4.4, p. 82
4.3 A linear diversion

Linear is good, nonlinear is bad.
—Jean Bellissard

Linear fields are the simplest vector fields, described bgalirdiferential equa-
tions which can be solved explicitly, with solutions thaé good for all times.
The state space for linearfiiirential equations i34 = RY, and the equations of
motion (2.7) are written in terms of a vectoand a constant stability matri as

X =V(X) = AX. (4.11)
Solving this equation means finding the state space trajecto
X(t) = (xa(®), %), .- .. Xa())

passing through a given initial poimg. If x(t) is a solution withx(0) = xp and

y(t) another solution witly(0) = yp, then the linear combinaticax(t) + by(t) with

a, b € R is also a solution, but now starting at the pang + byp. At any instant

in time, the space of solutions igdedimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear fierential equation (4.11)? If instead of a matrix
equation we have a scalar one,=" Ax, the solution isx(t) = €'x. In order
to solve thed-dimensional matrix case, it is helpful to rederive thisusioin by
studying what happens for a short time st&p If time t = 0 coincides with
positionx(0), then

x(6t) — x(0)

= = X(0). 4.12)

which we iteratemtimes to obtain Euler’s formula for compounding interest

X0 ~ 1+ %A)m x(0) ~ éX(0). (4.13)
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The term in parentheses acts on the initial conditi(®) and evolves it to(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equation (4.12):

M = AX0). (4.14)

A representative poinx is now a vector inR? acted on by the matris, as in
(4.11). Denoting byl the identity matrix, and repeating the steps (4.12) an8§4.1
we obtain Euler’s formula for the exponential of a matrix:

X0 = Ix0),  I=e*= lim (1 + %A)m . (4.15)

We will find this definition for the exponential of a matrix pé&ll in the general
case, where the matrik = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavioeigénvectors and
eigenvalues of linear flows, we are ready to return to theineaf case. How do
we compute the exponential (4.15)?

W example 4.2 W fast track: section 5.2.1
p. 89 sect. 4.4, p. 82

Henriette Roux: So, computing eigenvalues and eigenves®ems like a good

thing. But how do you really do it?

A: Any text on numerics of matrices discusses how this is dtreekeywords are
‘Gram-Schmidt’, and for high-dimensional flows ‘Krylov ssgace’ and ‘Arnoldi
iteration’. Conceptually (but not for numerical purposes) like the economical
description of neighborhoods of equilibria and periodibitsr aforded by projec-
tion operators. The requisite linear algebra is standasthis is a bit of sidetrack
that you will find confusing at the first go, it is relegated ppandix C.

4.4  Stability of flows =

AR
How do you determine the eigenvalues of the finite time loedbanationJt for

a general nonlinear smooth flow? The Jacobian matrix is ctedpay integrating
the equations of variations (4.2)

X®) = f'(x0),  0X(X0,1) = I'(X0) 6X(Xo,0). (4.16)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive this integral step by step
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Consider the case of a general, non-stationary trajec{oyyThe exponential
of a constant matrix can be defined either by its Taylor sesigansion or in terms
of the Euler limit (4.15):

FNR

. ¢ \m
- AX = Jim (1+ —A) . (4.17)
0 k! m—oo m

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkistiappropriate for the
task at hand. For dynamical systems, the local rate of neitjolod distortion
A(X) depends on where we are along the trajectory. The linehnizegghborhood

is deformed along the flow, and time discrete time-step approximation # is
therefore given by a generalization of the Euler produc{%.

1 1
Foo) = fim [ (1 +6tAXn) = lim [ ] (4.18)
n=m n=m
= lim &tAGmtAGm-1) ... @PtAGR) HtAX) ,
m—co

whereét = (t — tp)/m, andx, = X(to + ndt). Indexing of the product indicates that
the successive infinitesimal deformation are applied bytipiying from the left.
Them — oo limit of this procedure is the formal integral

3,00 = [Tefo‘ dTA(x(T))] (4.19)

1

whereT stands for time-ordered integratiodefinedas the continuum limit of
successive multiplications (4.18).  This integral formfda J! is the main con- exercise 4.5
ceptual result of the present chapter. This formula is theeftime companion of

the diferential definition (4.10). The definition makes evident arignt proper-

ties of Jacobian matrices, such as their being multiplieasiong the flow,

JH(x) = JY(x) I(x), where X' = f'(xo), (4.20)

which is animmediate consequence of the time-ordered ptathucture of (4.18).
However, in practice is evaluated by integrating (4.10) along with the ODEs that
define a particular flow.

4.5 Stability of maps A

XX
The transformation of an infinitesimal neighborhood of gttory under the iter-
ation of a map follows from Taylor expanding the iterated piag at finite time
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n to linear order, as in (4.4). The linearized neighborhoottassported by the
Jacobian matrix evaluated at a discrete set of timesl, 2, .. .,

at"(%)
3Xj

I (%) = (4.21)

X=X )
As in the finite time case (4.8), we denote Ay the kth eigenvalueor multiplier
of the finite time Jacobian matri¥’. There is really no dierence from the con-

tinuous time case, other than that now the Jacobian matexakiated at integer
times.

example 4.9
W p. 94
The formula for the linearization afth iterate of ad-dimensional map
I(%0) = I(Xn-1) -+ I)I(x0) . X} = Fl(x0), (4.22)

in terms of single time stepd; = dfj/0x follows from the chain rule for func-
tional composition,

(%)
ox

d
k=

q . _\ ofio)
6_xif'(f(x))_z; "

y=1()

If you prefer to think of a discrete time dynamics as a seqe@idoincaré sec-
tion returns, then (4.22) follows from (4.20): Jacobian meat are multiplicative

along the flow. exercise 6.3

example 4.10 fast track:
W p. 94 W chapter 7, p. 134

4.6 Stability of Poincaré return maps

G

(R. PaSkauskas and P. Cvitanovic)

We now relate the linear stability of the Poincaré returrprfa # — ¥ defined
in sect. 3.1 to the stability of the continuous time flow in thi state space.

The hypersurfac@® can be specified implicitly through a functidih(x) that is

zero whenever a pointis on the Poincaré section. A nearby point 5x is in the
hypersurfac# if U(x+6x) = 0, and the same is true for variations around the first
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Figure 4.2: If x(t) intersects the Poincaré section
# at timer, the nearbyx(t) + ox(t) trajectory inter-
sects it timer + 6t later. As U’ - vét) = —(U’ -
J6x), the diference in arrival times is given bjt =
—(U7-36x)/(U”-V).

return pointx’ = x(r), so expandindJ (X') to linear order in variatiodx restricted
to the Poincaré section, and applying the chain rule leattset condition

& au(x) dX

=0. 4.23
0% dx (423)

P

In what followsU; = 9;U is the gradient ob) defined in (3.3), unprimed quantities
refer to the starting poirt = xg € P, v = V(Xp), and the primed quantities to the
first return: X' = x(7), V. = v(X'), U’ = U(X). For brevity we shall also denote
the full state space Jacobian matrix at the first returd byJ"(Xp). Both the first
return X’ and the time of flight to the next Poincaré sectiqx) depend on the
starting pointx, so the Jacobian matrix

- d
J(X)ij = d_))f]L, (4.24)

with both initial and the final variation constrained to tharizaré section hyper-
surfacep is related to the continuous flow Jacobian matrix by

dx
&

0% d)ﬁ dr dr
P—a—xj+ad—xj—\]”+\/id—xj.

The return time variationlr/dx, figure 4.2, is eliminated by substituting this ex-
pression into the constraint (4.23),

0=0,U" J +(\/~5U/)%,
|

yielding the projection of the full spacé-dimensional Jacobian matrix to the
Poincaré mapd-1)-dimensional Jacobian matrix:

Vo )
Kj (4-25)

Ji = 6k - ——
1] ( ik (v -8U")
Substituting (4.9) we verify that the initial velocitix) is a zero-eigenvector of
Jv=0, (4.26)

so the Poincaré section eliminates variations paralle &md J is a rank @—1)-
dimensional matrix, i.e., one less than the dimension oftimtinuous time flow.
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4.7 Neighborhood volume

Consider a small state space volué = dix centered around the poimg at

timet = 0. The volumeAV’ around the poink’ = x(t) timet later is remark :1
, AV ox _ t
AV = = AV = ‘detax AV = |det J'(xo)| AV, (4.27)

so theldetJ| is the ratio of the initial and the final volumes. The deteramin
detJ'(xo) = 1‘[;’:1 Ai(Xo, 1) is the product of the Jacobian matrix eigenvalues. We

shall refer to this determinant as tBacobianof the flow. The Jacobian is easilgxercise 4.1

evaluated. Take the time derivative, use thevolution equation (4.10) and the
matrix identity IndetJ = tr In J:

d d d 1.
d—tInAV(t)_d—tlndetJ_tr&an_ter_trA_aivi.

(Here, as elsewhere in this book, a repeated index impliesration.) Integrate
both sides to obtain the time evolution of an infinitesimaluwee (Liouville’s
formula)

detJ'(xo) = epr‘I drir A(x(r))| = exp ft d‘r[)ivi(x(‘r))J . (4.28)
o 0

As the divergencé,v; is a scalar quantity, the integral in the exponent (4.19)isee
no time ordering So all we need to do is evaluate the time average

= gy [ o D Aee)

d
[ JAito.0
i=1

1
=In
t

d
= A0, 1) (4.29)
i=1

along the trajectory. If the flow is not singular (for examptee trajectory does
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywheri;j| < M, and so is the tracg,; Aj. The time integral
in (4.29) thus grows at most linearly with d;v; is bounded for all times, and
numerical estimates of thte— oo limit in (4.29) are not marred by any blowups.
In numerical evaluations of stability exponents, the sula (4.29) can serve as a
helpful check on the accuracy of the computation.

example 4.8
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The divergencdv; characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. dfv; < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. di\;(x) < O, for
all x e M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state spécelf div; = 0, the flow
preserves state space volume anddet 1. A flow with this property is called
incompressible  An important class of such flows are the Hamiltonian flows
considered in sect. 7.3.

But before we can get to that, Henriette Roux, the perfedestuand always
alert, pipes up. She does not like our definition of the Jazobhatrix in terms of
the time-ordered exponential (4.19). Depending on thessigmultipliers, the
left hand side of (4.28) can be either positive or negativet tBe right hand side
is an exponential of a real number, and that can only be pesiVhat gives? As
we shall see much later on in this text, in discussion of togichl indices arising
in semiclassical quantization, this is not at all a dumb tjoes

Résum é

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matr& describes the sheariigompression
/ expansion of an infinitesimal neighborhood in an infiniteditime step. The
deformation after a finite timeis described by the Jacobian matrix

Foo) =T el drAK@) i

whereT stands for the time-ordered integration, defined multghely along
the trajectory. For discrete time maps this is multiplicatby time-step Jacobian
matrix J along then pointsXg, X1, X2, . . ., Xa—1 ON the trajectory oko,

I"(%0) = I*n-2)I0n-2) - - Ix2)I(%0) »

where J(X) is the single discrete time-step Jacobian matrix. In CBaok the
stability multiplier Ax denotes thé&th eigenvalueof the finite time Jacobian matrix
Ji(xo), u® the real part okth stability exponentandw® its phase,

A = ewHio)

For complex eigenvalue pairs the ‘angular velocitytlescribes rotational motion
in the plane spanned by the real and imaginary parts of thresmonding pair of
complex eigenvectors.

The eigenvalues and eigen-directions of the Jacobianxgscribe the de-
formation of an initial infinitesimal cloud of neighboringajectories into a dis-
torted cloud at a finite timé later. Nearby trajectories separate exponentially
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along unstable eigen-directions, approach each otheg al@ble directions, and step deformationJ® ~ 1 + Ast. What Jacobi had in mind in his 1841 fundamental
change slowly (algebraically) their distance along mabor center directions. paper [4.20] on determinants (today known as ‘Jacobianafpiransformations between
The Jacobian matri¥! is in general neither symmetric, nor diagonalizable by a different coordinate frames. These are dimensionless qeantithile dimensionally;

rotation, nor do its (left or right) eigenvectors define athonormal coordinate is 1/[time].

frame. Furthermore, although the Jacobian matrices arépiizdtive along the
flow, their eigenvalues are generally not multiplicativedimensions higher than
one. This lack of a multiplicative nature for eigenvalues tmportant repercus-
sions for both classical and quantum dynamics.

More unfortunate still is referring to the Jacobian maffix exp¢A) as an ‘evolution
operator,” which here (see sect. 17.2) refers to somettiiogether diferent. In this book
Jacobian matrix)t always refers to (4.5), the linearized deformation aftenéditimet,
either for a continuous time flow, or a discrete time mapping.

Commentary 4.8 Examples

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.3 we only sketch, and in appendix C riakgte a few facts that our
narrative relies on: a useful reference book is Meyer [4The basic facts are presented
at length in many textbooks. Frequently cited linear algebferences are Golub and Van
Loan [4.2], Coleman and Van Loan [4.3], and Watkins [4.4] 4The standard references The reader is urged to study the examples collected hereulfant to return
that exhaustively enumerate and explain all possible casesiirsch and Smale [4.6] back to the main text, click on [click to return] pointer oretmargin.
and Arnol'd [4.7]. A quick overview is given by Izhikevich [&]; for different notions of
orbit stability see Holmes and Shea-Brown [4.9]. For ChamdBpurposes, we enjoyed
the discussion in chapter 2 Meiss [4.10], chapter 1 of Pe#kbl] and chapters 3 and
5 of Glendinning [4.12]; we also liked the discussion of nerdeast square problems,
and diferences between singular value and eigenvalue decongmssiti Trefethen and 0 -1 -1 - o 0
Bau [4.13]. Truesdell [2.2] and Gurtin [2.3] are excelleaterences for the continuum Aross=| 1 a 0 Ao =| p-z -1 x (4.30)
. . . . . 0ss ’ or . .
mechanics perspective on state space dynamics; for a getntduction to parallels be- 0 X-c y X  -b
tween dynamical systems and continuum mechanics see @heisal.[2.1] .

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

Example 4.1 Rdssler and Lorenz flows, linearized: (continued from example 3.5) For
the Rdéssler (2.23) and Lorenz (2.18) flows, the stability matrices are respectively

(continued in example 4.5) click to return: p. ??
The nomenclature tends to be a bit confusing. A Jacobianx{dtb) is sometimes
referred to as theundamental solution matrigr simply fundamental matrixa name in-
?? rited ftrr? m;he thetol_r y of linear ODtEst,)or tﬁmch?:]dgrlvatlvmftthg nLo nllnea:‘rr;ippl_?ﬁ Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
(9, orthe ‘tangent linear propagatorbr even as the ‘error matrix’ (Lorenz [4.14]). The so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A0, 2@, ..., @),

formula (4.22) for the linearization otth iterate of ad-dimensional map is calledlimear

AT s R . the exponential is simply
cocyle amultiplicative cocyleaderivative cocyl®r simply acocyleby some. Since ma-

trix J describes the deformation of an infinitesimal neighborhatoat finite timet in the ™ o

co-moving frame ok(t), in continuum mechanics it is calledda@formation gradienor a Jt= o = . 4 (4.31)
transplacement gradientt is often denoted f, but for our needs (we shall have to sort ) "

through a plethora of related Jacobian matrices) matriatiwt J is more economical. 0 - &

Single discrete time-step Jacobidpn = df;/dx in (4.22) is referred to as the ‘tangent

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
map’ by Skokos [4.16, 4.17]. For a discussion of ‘fundamlemttrix’ see appendix C.2. PP g 9 9

to a diagonal form Ap = U~*AU. Then J can also be brought to a diagonal form (insert

factors 1 = UU~! between the terms of the product (4.15)): exercise 4.2

We follow Tabor [4.15] in referring tA in (4.3) as the ‘stability matrix’; it is also Jt= A - ydhoyt, (4.32)
referred to as the ‘velocity gradients matrix’ or ‘velocgyadient tensor’. It is the natural
object for study of stability of equilibria, time-invariapoint in state space; stability of The action of both A and J is very simple; the axes of orthogonal coordinate system
trajectories is described by Jacobian matrices. GoldhjiSalem, and Orszag [4.18] call where A is diagonal are also the eigen-directions of 3!, and under the flow the neigh-
it the ‘Hessenberg matrix’, and to the equations of variaipt. 1) as ‘stability equations.’ borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
Manoset al.[4.19] refer to (4.1) as the ‘variational equations’. axis.

Sometimed\, which describes the instantaneous shear of the neighbddfe(xo, t),
is referred to as the ‘Jacobian matrix,’ a particularly uhfoate usage when one considers We recapitulate the basic facts of linear algebra in appe@diThe following
linearized stability of an equilibrium point (5.1)A is not a Jacobian matrix, just as a 2-dimensional example serves well to highlight the mostdrtamt types of linear
generator of SO(2) rotation is not a rotatiof;is a generator of an infinitesimal time flows:
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Figure 4.5: Two trajectories of the Rossler flow initi-
ated in the neighborhood of the™or ‘outer’ equilib-
rium point (2.24). (R. PaSkauskas)

Figure 4.3: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral. consists of the identity and the generator of SQ(2) rotations in the {Reel, Im b} plane.

Trajectories x(t) = J'x(0), where (omitting €, €4, . . . eigen-directions)

saddle outnode innode It = At = gt (cpsm —sin wt) ’ (4.33)
sinwt  coswt
Figure 4.4: Qualitatively distinct types of expo-
nents{A®, 1@} of a [2x2] Jacobian matrix. spiral infout around (x,y) = (0,0), see figure 4.3, with the rotation period T. The tra-
. . . Jjectories contract/expand radially by the multiplier Aragiai @nd also by the multiplier A j,
center out spiral in spiral along the & eigen-direction per turn of the spiral: exercise C.1
X X T, T
% % T=21/w, Aradial = €1, Ai =er. (4-34)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,y) = (0,0) is of the order ~ T (and not, let us say, 1000T, or 10°2T). A j multipliers
Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the give us estimates of strange-set thickness in eigen-directions transverse to the rotation
eigenvalues A1), A®) of A are either real, leading to a linear motion along their eigen- plane.
vectors, X;(t) = x;(0) exp¢A), or form a complex conjugate pair AV = p + iw,A® =
u—iw, leading to a circular or spiral motion in the [xy, Xz] plane.

These two possibilities are refined further into sub-cases depending on the Example 4.5 Stability of equilibria of the R dssler flow. (continued from ex-
signs of the real part. In the case of real A% > 0, 1@ < 0, x, grows exponentially ample 4.1)  The Résler system (2.23) has two equilibrium points (2.24), theexmeise 4.4
with time, and X, contracts exponentially. This behavior, called a saddle, is sketched equilibrium (x_.y-.z), and the outer equilibrium point (x*,y*,z"). Together witletheise 2.8
in figure 4.3, as are the remaining possibilities: in/out nodes, inward/outward spirals, exponents (eigenvalues of the stability matrix), the two equilibria yield quite detailed
and the center. The magnitude of out-spiral |X(t)] diverges exponentially when . > O, information about the flow. Figure 4.5 shows two trajectories which start in the neigh-
and in-spiral contracts into (0, 0) when u < O; whereas, the phase velocity w controls its borhood of the outer ‘+' equilibrium. Trajectories to the right of the equilibrium point ‘+’
oscillations. escape, and those to the left spiral toward the inner equilibrium point ‘—', where they

If eigenvalues AV = 1@ = ) are degenerate, the matrix might have two linearly seem to wander chaotically for all times. The stable manifold of the outer equilibrium
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A point thus serves as the attraction basin boundary. Consider now the numerical values
can be brought to diagonal form and (b) A can be brought to Jordan form, which (in for eigenvalues of the two equilibria:
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal and some 1's directly above it. For every such Jordan [d,xd,] block there @4+ i0®) = (-5.686 0.0970+ {0.9951) 4,95
is only one eigenvector per block. @O P xiwP)= (01929 -4596x 106 +i5.428). (4.35)

We sketch the full set of possibilities in figures 4.3 and 4.4, and we work out in
detail the most important cases in appendix C, example C.3. click to return: p. ?? Outer equilibrium:  The 1@ + i w® complex eigenvalue pair implies that the neighbor-

hood of the outer equilibrium point rotates with angular period T, ~ |27r/w(+2)| = 11575
The multiplier by which a trajectory that starts near the +’ equilibrium point contracts
in the stable manifold plane is the excruciatingly slow multiplier A3 ~ exp(uiz)R) =

Example(l)4.4(z)ln-out spirals. Consider an equilibrium whose stability expo- 0.9999947per rotation. For each period the point of the stable manifold moves away
nents {2, A9} = {u + iw, u — iw} form a complex conjugate pair. The corresponding along the unstable eigen-direction by factor A} ~ exp(u(f)l) = 1.2497. Hence the
complex eigenvectors can be replaced by their real and imaginary parts, {e9, e?)} — slow spiraling on both sides of the “+” equilibrium point.

{Ree), Im e}, The 2-dimensional real representation, 7 ®. @ ) ) )
Inner equilibrium:  The 1 + i W~ complex eigenvalue pair tells us that the neighbor-

) 10 0 -1 hood of the ‘-’ equilibrium point rotates with angular period T_ ~ |27r/w(,2)| = 6.313
( ) “H (0 1) * w(l 0 ) slightly faster than the harmonic oscillator estimate in (2.20). The multiplier by which

w
a trajectory that starts near the -’ equilibrium point spirals away per one rotation is
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Aradial * expl®T_) = 1.84. The ™) eigenvalue is essentially the z expansion cor-
recting parameter c introduced in (2.22). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of A1 ~ exp(u(,l)T,) =
107156 (1),

Suppose you start with a 1 mm interval pointing in the A, eigen-direction. Af-
ter one Poincaré return the interval is of the order of 10 fermi, the furthest we will
get into subnuclear structure in this book. Of course, from the mathematical point of
view, the flow is reversible, and the Poincaré return map is invertible.  (continued in
example 11.3)

(R. Paskauskas)

Example 4.6 Stability of Lorenz flow equilibria: (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so let us have
a closer look at their stable/unstable manifolds.

The EQy equilibrium stability matrix (4.30) evaluated at Xeq, = (0,0, 0) is block-

diagonal. The z-axis is an eigenvector with a contracting eigenvalue A? = —b. rEnoark 9A.13

(4.41) it follows that all [x,y] areas shrink at the rate —(o-+ 1). Indeed, the [x,y] subma-
trix
- -0 (on
A =( y —1) (4.36)
has a real expanding/contracting eigenvalue pair A% = —(o+1)/2+ /(o — 1)2/4 + por,

with the right eigenvectors eV, &3 in the [x,y] plane, given by (either) column of the
projection operator

A - 201 1 —g - A0 o _—
‘ZWZM( o _1_/1(1-)), i#jef{l,3. (437
EQu.2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det(A — A1) = 0:

B+ 2% +b+ 1)+ Ab(o + p) + 20b(p — 1) = 0. (4.38)

For p > 24.74, EQy 2> have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

All numerical plots of the Lorenz flow are carried out here with the Lorenz pa-
rameters set to o = 10, b = 8/3, p = 28. We note the corresponding stability expo-
nents for future reference,

EQ: (19,12, 10) = (1183, -2666 -2283)

EQ: (uW = iw®, @) (0.094+i1019, -1385). (4.39)

We also note the rotation period Teq, :_2n/w(1) about EQ, and the associated expan-
sion/contraction multipliers A© = expuDTeq,) per spiral-out turn:

Teq = 06163, (AW, A®) = (1.060,1.957x 107%). (4.40)

We learn that the typical turnover time scale in this problem is of the order T ~ Tgg, ~ 1
(and not, let us say, 1000, or 10-2). Combined with the contraction rate (4.41), this tells
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Figure 4.6: (a) A perspective view of the lin-
earized Lorenz flow nedt Q, equilibrium, see fig-

ure 3.4(a). The unstable eigenplane B, is
spanned byRee®, Ime)}; the stable subspace
by the stable eigenvect@®. (b) Lorenz flow
near theEQ, equilibrium: unstable eigenvector
e, stable eigenvectors?, €. Trajectories ini-
tiated at distances 19®--- 107*2, 10°*% away from
the z-axis exit finite distance fronkEQ, along the
(M, €?) eigenvectors plane. Due to the strorty
expansion, th&Q, equilibrium is, for all practical
purposes, unreachable, and @, —» EQ, hete-
roclinic connection never observed in simulations
such as figure 2.5. (E. Siminos; continued in fig-

ure 11.8.)

stability - 25may2014
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@ (b)

us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 10~* per
mean turnover time.

In the EQy neighborhood, the unstable manifold trajectories slowly spiral out,
with a very small radial per-turn expansion multiplier A® ~ 1.06 and a very strong
contraction multiplier A® =~ 104 onto the unstable manifold, figure 4.6 (a). This con-
traction confines, for all practical purposes, the Lorenz attractor to a 2-dimensional
surface, which is evident in figure 3.4.

In the xgq, = (0,0,0) equilibrium neighborhood, the extremely strong 10 ~
—23 contraction along the € direction confines the hyperbolic dynamics near EQy to
the plane spanned by the unstable eigenvector €, with A0) ~ 12, and the slowest
contraction rate eigenvector €2 along the z-axis, with A® ~ -3. In this plane, the
strong expansion along éY overwhelms the slow A?) ~ —3 contraction down the z-axis,
making it extremely unlikely for a random trajectory to approach EQy, figure 4.6 (b).
Thus, linearization describes analytically both the singular dip in the Poincaré sections
of figure 3.4 and the empirical scarcity of trajectories close to EQy.  (continued in
example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait. (continued from example 4.6) As the
EQu unstable manifold spirals out, the strip that starts out in the section above EQ in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQy.

How? Since the dynamics is linear (see figure 4.6 (a)) in the neighborhood of
EQu, there is no need to integrate numerically the final segment of the heteroclinic con-
nection. It is sufficient to bring a trajectory a small distance away from EQp, continue
analytically to a small distance beyond EQy and then resume the numerical integration.

What happens next? Trajectories to the left of the z-axis shoot off along the &)
direction, and those to the right along V). Given that xy > 0 along the b direction,
the nonlinear term in the z equation (2.18) bends both branches of the EQy unstable
manifold WY(EQy) upwards. Then ... - never mind. We postpone completion of this
narrative to example 9A.13, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9A.13)
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10

Figure 4.7: A unimodal map, together with fixed

points 0, 1, 2-cycle 01 and 3-cycle 011. 101

Xn

(E. Siminos and J. Halcrow)

Example 4.8 Lorenz flow state space contraction: (continued from exam-
ple 4.6) It follows from (4.30) and (4.29) that Lorenz flow is volume contracting,

3
avi=» A0 =-c-b-1, (4.41)
i=1

at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —13.66 .
For periodic orbits and long time averages, there is no contraction/expansion along the
flow, A = 0, and the sum of A9 is constant by (4.41). Thus, we compute only one
independent exponent A9, (continued in example 9A.13) click to return: p. ??

Example 4.9 Stability of a 1-dimensional map: Consider the orbit{. . ., X_1, Xo, X1, X2, . . .}
of a 1-dimensional map %n.1 = f(X,). When studying linear stability (and higher deriva-
tives) of the map, it is often convenient to use a local coordinate system z, centered on

the orbit point Xa, together with a notation for the map, its derivative, and, by the chain
rule, the derivative of the kth iterate f* evaluated at the point Xa,

X = XatZa, fa(Za)=f(Xa+2)
fa f'(Xa)
Ao, k) = =1, .6, k=2 (4.42)

Here a is the label of point Xa, and the label a+1 is shorthand for the next pointb on the
orbit of Xa, Xo = Xa+1 = f(Xa). For example, a period-3 periodic point in figure 4.7 might
have label a = 011, and by X110 = f(Xo11) the next point label isb = 110. click to return: p. ??

Example 4.10 Hénon map Jacobian matrix: For the Hénon map (3.17) the Jaco-
bian matrix for the nth iterate of the map is

1
woo=[[( 75 §). x= o). (4.43)

m=n

The determinant of the Hénon one time-step Jacobian matrix (4.43) is constant,
detM = A1A, = —h. (444)

In this case only one eigenvalue A1 = —b/A; needs to be determined. This is not an
accident; a constant Jacobian was one of desiderata that led Hénon to construct a map
of this particular form. click to return: p. ??
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Exercises
4.1. Trace-log of a matrix. Prove that

detM = elf M

for an arbitrary nonsingular finite dimensional matvix
detM # 0.

4.2. Stability, diagonal case. Verify the relation (4.32)
F=et=Utdu, Ap=UAUT.

4.3. State space volume contraction.

(a) Compute the Rossler flow volume contraction rate

at the equilibria. 4.5,

(b) Study numerically the instantaneodjs; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions
of local expansion, explain them.

(c) (optional) Color-code the points on the trajec-
tory by the sign (and perhaps the magnitude) of
Vi — 0jV;.

(d) Compute numerically the average contraction rate
(4.29) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spdce 3.

(f) (optional) Start some trajectories on the escapé'
side of the outer equilibrium, and color-code the
points on the trajectory. Is the flow volume con-
tracting?

(continued in exercise 20.10)

4.4. Topology of the Rossler flow. (continuation of exer-
cise 3.1)

(a) Show that equatiojdet (A — A1)| = O for Rdssler
flow in the notation of exercise 2.8 can be written
as

(b) Solve (4.45) for eigenvaluek for each equilil
rium as an expansion in powersofDerive
A7 = —C+ec/(c? + 1)+ 0(e)
A, = ec3/[2(c% + 1)] + o(€)

0, = 1+ €/[2(c? + 1)] + 0(e)
L= ce(1- &) + o) (4.46
A = —€°c2/2 + 0(e)

05 = V1+1/e(1+0(e))

Compare with exact eigenvalues. What are
namical implications of the extravagant valu
4;? (continued as exercise 13.7)

(R. Paskauskze

Time-ordered exponentials. Given a time depend:
matrix A(t) check that the time-ordered exponential

J(t) = Teh drA®

may be written as

o t ty fm-1
J(t):Zfdtlf dtsz dtpAty) -+ A
oo 0 0

and verify, by using this representation, tiét) satisfie
the equation

) = A®IQ).

with the initial conditionJ(0) = 1.

6. A contracting baker’s map.  Consider a contracti

(or ‘dissipative’) baker’'s map, acting on a unit sq
[0,1]% = [0, 1] x [0, 1], defined by

()52 e

Xowt | _ [ %0/3+1/2
(ynfl)‘( -1 ) Vo> 172

This map shrinks strips by a factor of3Lin the x:
direction, and then it stretches (and folds) them by :
tor of 2 in they-direction.

By how much does the state space volume contra

224420 (P -€)+A(p*/e+1-cPep”)Fc VD = 0(4.45)0ne iteration of the map?
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