Chapter 31

Quantum mechanics
the short short version

E START WITH @ review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula

In coordinate representation, the time evolution of a quanmechanical
wave function is governed by the Schrodinger equation

ho

.0 -
o) = Aot v, @11)

where the Hamilton operatdt(q, —ihdyg) is obtained from the classical Hamilto-
nian by substitutingp — —izdq. Most of the Hamiltonians we shall consider here
are of the separable form

H(@ p) =T(p) +V(@).,  T(p) = p?*/2m, (31.2)

describing dynamics of a particle in-dimensional potential/(q). For time-
independent Hamiltonians we are interested in findingastaty solutions of the
Schrodinger equation of the form

Un(a,t) = e B g (), (31.3)

whereE, are the eigenenergies of the time-independent Schradaugetion

He(a) = E¢(q) . (31.4)

637



CHAPTER 31. QUANTUM MECHANICSTHE SHORT SHORT VERSIO»88

For bound systems, the spectrum is discrete and the eiggitng form an
orthonormal,

| dasn(@s@ = oo (315)
and complete,

> on(@¢i(@) = 5@ ), (31.6)
n
set of functions in a Hilbert space. Here and throughoutekg t

qu:quldqz...qu. (31L.7)

For simplicity, we will assume that the system is bound, altyh most of the
results will be applicable to open systems, where one haglesnmesonanceschapter 35
instead of real energies, and the spectrum has continuongarents.

A given wave function can be expanded in the energy eigesibasi

(1) = ) ce" 5 gn(a), (31.8)

where the expansion cfigient ¢, is given by the projection of the initial wave
functiony(q, 0) onto thenth eigenstate

G = f dq (6w (. O). (3L.9)

By substituting (31.9) into (31.8), we can cast the evolutid a wave function
into a multiplicative form

w(a ) = f dor K (a, o ud. 0),
with the kernel

K@ d.t) = ) én(@) e & g1() (31.10)

called theguantum evolution operator, or thepropagator. Applied twice, first for
time t; and then for timdsy, it propagates the initial wave function froghto g,
and then frong” toq

KO0t + ) = f dq’ K(a o, t)K (G o, 1) (31.11)
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forward in time (hence the name ‘propagator’). In non-ieistic quantum me-
chanics, the range @f’ is infinite, so that the wave can propagate at any speed;
in relativistic quantum mechanics, this is rectified by niehg the propagation

to the forward light cone.

Because the propagator is a linear combination of the aigetibns of the
Schrodinger equation, it too satisfies this equation

8 s a1 )

and is thus a wave function defined for> 0; from the completeness relation
(31.6), we obtain the boundary conditiontat O:

Jim K(q,q",1) = 6@ - ). (31.13)

The propagator thus represents the time-evolution of a wagket starting out as
a configuration space delta-function localized at the pgistt initial timet = 0.

For time-independent Hamiltonians, the time dependendbeofvave func-
tions is known as soon as the eigenenergigsand eigenfunctiong,, have been
determined. With time dependence taken care of, it makesegenfocus on the
Green's function, which is the Laplace transform of the propagator

én(A)en(d)

, . 1 0 ipt_€ ,
G(q,q,E+|e)=E‘fO‘ dterF-itK (g, o, t) = EE (31.14)
n n

Here, € is a small positive number, ensuring the existence of thegial. The
eigenenergies show up as poles in the Green’s function wedldues correspond-
ing to the wave function amplitudes. If one is only interdstespectra, one may
restrict oneself to the (formal) trace of the Green’s fumtti

/ 1
trG(a.q', E) = quG(q, q.E) = § E_E (31.15)
n n

whereE is complex, with a positive imaginary part, and we have ubeceigen-
function orthonormality (31.5). This trace is formal, basa the sum in (31.15)
is often divergent. We shall return to this point in sectsl34and 34.1.2.

A useful characterization of the set of eigenvalues is giveterms of the
density of states, with a delta function peak at each eigenenergy, figure 3,1 (

d(E) = Z S(E - Ep). (31.16)
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Figure 31.1: Schematic picture of) the density ==
of statesd(E), andb) the spectral staircase func- dt‘)
tion N(E). The dashed lines denote the mean der
sity of statesl(E) and the average number of states
N(E) discussed in more detail in sect. 34.1.1.

Using the identity exercise 31.1

.1 1
6(E—-Ep) =— lim =Im

_— 31.17
e—>+0 7T E-E,+lIe ( )

we can express the density of states in terms of the traceedbthen’s function.
That is,

1 _
d(E) = > 6(E - Ey) = ~lim ~imtr G(a. o, E +ie). (31.18)
" section 34.1.1

As we shall see (after “some” work), a semiclassical fornfafethe right-hand-
side of this relation yields the quantum spectrum in termsaoiodic orbits.

The density of states can be written as the derivatie) = dN(E)/dE of the
spectral staircase function

N(E) = > O(E - Ey) (31.19)

which counts the number of eigenenergies belgigure 31.1 (b). Her® is the
Heaviside function

O(x)=1 ifx>0;, O(X)=0 ifx<O. (31.20)

The spectral staircase is a useful quantity in many contbgth experimental
and theoretical. This completes our lightning review ofrfjuan mechanics.

Exercises
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31.1. Dirac delta function, L orentzian representation.
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EXERCISES

Derive the representation (31.17)
1 1
6(E-Ey)=-Im -Im —
( ) 0 E—Ep+ie
of a delta function as imaginary part ofd.

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

31.2. Green's function.

641

Verify Green’s function Laplace
transform (31.14),

G(g,q,E +ig) %fo dte%EtfitK(q,q’,t)

n(@)en(A)
E-E,+ie

argue that positive is needed (hint: read a good quan-
tum mechanics textbook).
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