Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite fiiérent from those within

the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

Rossler flow of figure 2.6 is of concern only to chemists omieadlical

engineers or the weathermen,; physicists do Hamiltoniamamhycs, right?
Now, that’s full of chaos, too! While it is easier to visuaiaperiodic dynamics
when a flow is contracting onto a lower-dimensional attragtet, there are plenty
of examples of chaotic flows that do preserve the full syntgldavariance of
Hamiltonian dynamics. The whole story started with Poia&arestricted 3-body
problem, a realization that chaos rules also in general-ttemiltonian) flows
came much later.

Y ou MIGHT THINK that the strangeness of contracting flows, flows such as the

Here we briefly review parts of classical dynamics that wd ngled later
on; symplectic invariance, canonical transformations, stability of Hamiltonian
flows. If your eventual destination are applications suclclzsos in quantum
andor semiconductor systems, read this chapter. If you workenroscience
or fluid dynamics, skip this chapter, continue reading whi@ billiard dynamics
of chapter 8 which requires no incantations of symplecticspar loxodromic
quartets.

W fast track:
chapter 8, p. 152
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CHAPTER 7. HAMILTONIAN DYNAMICS 135

7.1 Hamiltonian flows

(P. Cvitanovi¢ and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antiltonian appendix C

H(q, p) together with the Hamilton’s equations of motion remark 2.1
. OH . oH
- , L 7.1
i oD, pi g (7.1)

with thed = 2D phase-spaceoordinatesx split into the configuration space
coordinates and the conjugate momenta of a Hamiltoniaesyatith D degrees
of freedom (dof):

x=(@.p), 9=(d,%,....00), P =(PL.P2....PD). (7.2)

The equations of motion (7.1) for a time-independéhjof Hamiltonian can be
written compactly as

% =wijHj(x),  Hj(X)= —H(X) (7.3)

wherex = (q,p) € M is a phase-space point, and the a derivative-)ofv{th
respect ta; is denoted by comma-index notatioi j(

wz(_ol Io) (7.4)

is an antisymmetricdxd] matrix, andl is the [Dx D] unit matrix.

The energy, or the value of the time-independent Hamiltofiaction at the
state space point = (g, p) is constant along the trajectort),

d
d_tH(q(t)’ pt)) = 8q. q. ) + |0| )
OoH oH (9H oH
= %, 7.5
0qi opi  0pi 9 (73)

so the trajectories lie on surfaces of constant energgved setsof the Hamilto-
nian{(q, p) : H(g, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.
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CHAPTER 7. HAMILTONIAN DYNAMICS 136

Figure 7.1: Phase plane of the unforced, undampe
Duffing oscillator. The trajectories lie on level sets o_|
the Hamiltonian (7.6).

-2

10

Figure 7.2: A typical collinear helium trajectory in 6
the [r1, r2] plane; the trajectory enters along theaxis r
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case alongrthe
axis. In this example the energy is seto= E = -1,

and the trajectory is bounded by the kinetic enesgy

line.
rl
Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.17), the system can be written in Hamiltonian
form,
I
H@.P =5 -5+ (7.6)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).
The Hamilton’s equations (7.1) are

a=p, p=9-¢. (7.7)

For 1-dof systems, the ‘surfaces’ of constant energy (7.5) are curves that foliate the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems aintegrable in the sense that the entire phase plane
is foliated by curves of constant energy, either periodg,sathe case for the
harmonic oscillator (a ‘bound state’), or open (a ‘scatigtirajectory’). Add one example B.1
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

(7.8)
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CHAPTER 7. HAMILTONIAN DYNAMICS 137

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation foliates by 3-dimensional constant energy hypersurfaces. In order to vi-
sualize it, we often project the dynamics onto the 2-dimensional configuration plane,
the (r1,r2), ri > 0 quadrant, figure 7.2. It looks messy, and, indeed, it will turn out to
be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Note an important property of Hamiltonian flows: if the Hatmil equations
(7.1) are rewritten in the @ phase-space form = vi(X), the divergence of the
velocity fieldv vanishes, namely the flow is incompressitiley = div; = wiH jj =
0. The symplectic invariance requirements are actuallyenstringent than just
the phase-space volume conservation, as we shall see .7 sct

Throughout ChaosBook we reserve the term ‘phase space’ mailtdaian
flows. A ‘state space’ is the stage on which any flow takes pldekase space’
is a special but important case, a state space with symplgteticture, preserved
by the flow. For us the distinction is necessary, as ChaosBowérs dissipative,
mechanical, stochastic and quantum systems, all as ong Fappy.

7.2 Symplectic group

Either you're used to this sfil.. or you have to get used
to it.
—Maciej Zworski

A matrix transformatiorg is calledsymplectic
g'wg=w, (7.9)

if it preserves thesymplectic bilinear form{X|x) = X" wx, whereg™ denotes the
transpose of), andw is a non-singular [P x 2D] antisymmetric matrix which
satisfies remark 7.3

w' =-w, w?=-1. (7.10)

While these are defining requirements for any symplectindslr form,w is often
conventionally taken to be of form (7.4).

Example 7.3 Symplectic form for D = 2: For two degrees of freedom the phase
space is 4-dimensional, X = (q1, 02, P1, P2) ,» and the symplectic 2-form is

0 0 10
0 0 0 1

w=l 2 0 o ol (7.11)
0 -1 00
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CHAPTER 7. HAMILTONIAN DYNAMICS 138

The symplectic bilinear form (XV|x@)y js the sum over the areas of the parallelepipeds
spanned pairwise by components of the two vectors,

<X(1)|X(2)> — (X(l))Ta) %@ — (q(ll) p(12) _ q(12) p(ll)) + (q(zl) p(22) _ q(22) p(zl)) ) (7.12)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,
Ix® — xM)) that is preserved by the symplectic transformations.

If gis symplectic, so is its inversg™t, and if g; andg, are symplectic, so
is their productg,g;. Symplectic matrices form a Lie group called thanplec-
tic group Spd). Use of the symplectic group necessitates a few remarkstabo
Lie groups in general, a topic that we study in more depth eptér 10. ALie
groupis a group whose elemengéy) depend smoothly on a finite humbsrof
parameterg,. In calculations one has to write these matrices in a spduafiis,
and for infinitesimal transformations they take form (répdandices are summed
throughout this chapter, and the dot product refers to a stanlae algebra gen-
erators):

906¢) ~1+6p-T, peRN, |6g <1, (7.13)

where{T1, T>---, Tn}, the generatorsof infinitesimal transformations, are a set
of N linearly independentdxd] matrices which act linearly on thtdimensional
phase spac@1. The infinitesimal statement of symplectic invariancedat by
substituting (7.13) into (7.9) and keeping the terms lingakp,

Ta'w+wTa=0. (7.14)

This is the defining property for infinitesimal generatorsspimplectictransfor-
mations. Matrices that satisfy (7.14) are sometimes céllachiltonian matrices
A linear combination of Hamiltonian matrices is a Hamiltamimatrix, so Hamil-
tonian matrices form a linear vector space, sggnplectic Lie algebra gd). By

the antisymmetry o,

(wTa)" = wTa. (7.15)

is a symmetric matrix. Its number of independent elemeniesgthe dimen-
sion (the number of independent continuous parametersieafytmplectic group

Sp@),
N =d(d + 1)/2 = D(2D + 1). (7.16)

The lowest-dimensional symplectic group Sp(2), of dimend = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3)setdimension is
N = 10.
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CHAPTER 7. HAMILTONIAN DYNAMICS 139
It is easily checked that the exponential of a Hamiltoniartrixna
g=¢T (7.17)

is a symplectic matrix; Ligroupelements are related to the lalebraelements
by exponentiation.

7.3 Stability of Hamiltonian flows

Hamiltonian flows der an illustration of the ways in which an invariance of equa-
tions of motion can fiect the dynamics. In the case at hand, $kmplectic in-
variancewill reduce the number of independent Floquet multipligralfactor of
2o0rd4.

7.3.1 Canonical transformations

The evolution of)! (4.5) is determined by the stability matu (4.10):

SO0 = AIM. A0 = i Hig(9), (719

where the symmetric matrix of second derivatives of the Haman, H, =
OkonH, is called theHessian matrix From (7.18) and the symmetry &fp it
follows that for Hamiltonian flows (7.3)

A'w+wA=0. (7.19)

This is the defining property (7.14) for infinitesimal gertera of symplectic(or
canonical) transformations.

Consider now a smooth nonlinear coordinate change fgrm h;(x) (see
sect. 2.3 for a discussion), and define a ‘Kamiltonian’ fioltK(x) = H(h(x)).
Under which conditions dods generate a Hamiltonian flow? In what follows we
will use the notatiord; = 9/dyj, s,j = 6hi/dx;. By employing the chain rule we
have that

Kj = Hjs; (7.20)

(Here, as elsewhere in this book, a repeated index impliesrstion.) By virtue
of (7.1),0/H = —wimym, SO that, again by employing the chain rule, we obtain

wijdiK = —wij Sj)WImSmn¥n (7.21)
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complex saddle saddle—center

@ @

degenerate saddle real saddle

@)

Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof.

@

generic center degenerate center

The right hand side simplifies tq (yielding Hamiltonian structure) only if
—WijS,jWimSmn = din (7.22)
or, in compact notation,
—w(@h)Tw(dh) = 1 (7.23)

which is equivalent to the requirement (7.9) thhtis symplectic. h is then called

a canonical transformation We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfiamationh is very example B.1
cleverly chosen, the flow in new coordinates might be comalag simpler than

the original flow. Second, Hamiltonian flows themselves apeirme example of
canonical transformations.

Dream student Henriette Roux: “I hate thessg,. Can’t you use a more sensible
notation?” A: “Be my guest.”

Example 7.4 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.19) that d% (JTwJ) = 0, and since at the initial time J°(Xo) = 1, Jacobian matrix
is a symplectic transformation (7.9). This equality is valid for all times, so a Hamilto-
nian flow f'(x) is a canonical transformation, with the linearization dyf'(x) a symplectic
transformation (7.9): For notational brevity here we have suppressed the dependence
on time and the initial point, J = J'(Xo). By elementary properties of determinants it fol-
lows from (7.9) that Hamiltonian flows are phase-space volume preserving, |[detJ| = 1.
The initial condition (4.10) for J is J° = 1, so one always has

detd = +1. (7.24)

7.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poirk.is the matrix (7.19) with
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CHAPTER 7. HAMILTONIAN DYNAMICS 141

real matrix elements, so its eigenvalues (the Floquet exqisrof (5.1)) are either
real or come in complex pairs. In the case of Hamiltonian fldnv®llows from

(7.19) that the characteristic polynomial Afor an equilibriumxg satisfies section 5.1
exercise 7.4
exercise 7.5
detA-11) = det@ Y(A-11)w) = detwAw — A1)

det AT + A1) = det(A+ 11). (7.25)

That is, the symplectic invariance implies in addition thal is an eigenvalue,
then—A1, 2* and—A* are also eigenvalues. Distinct symmetry classes of theuglog
exponents of an equilibrium point in a 2-dof system are diggdl in figure 7.3.
It is worth noting that while the linear stability of equitia in a Hamiltonian
system always respects this symmetry, the nonlinear gyabiln be completely
different.

7.4 Symplectic maps

So far we have considered only the continuous time Hamétofliows. As dis-

cussed in sect. 4.4 for finite time evolution mappings, argkict. 4.5 the iterated
discrete time mappings, the stability of maps is charamdriby eigenvalues of
their Jacobian matrices, or ‘multipliers.” A multipliéx = A(Xg,t) associated to
a trajectory is an eigenvalue of the Jacobian malriAs J is symplectic, (7.9)

implies that

Jl= -l w, (7.26)
so the characteristic polynomial is reflexive, namely iis$its

det(@ - Al)

det@™ — Al) = det(-wd w - Al)
det@ - A1) = det@ 1) det( — AJ)
= APdet@-A11). (7.27)

Hence ifA is an eigenvalue of, so are YA, A* and YA*. Real eigenvalues
always come paired as, 1/A. The Liouville conservation of phase-space vol-
umes (7.24) is an immediate consequence of this pairing @igehvalues. The
complex eigenvalues come in paiks A%, |A| = 1, or in loxodromic quartets,
1/A, A" and Y A*. These possibilities are illustrated in figure 7.4.

Example 7.5 Hamiltonian H énon map, reversibility: By (4.44) the Hénon
map (3.17) for b = —1 value is the simplest 2-dimensional orientation preserving area-
preserving map, often studied to better understand topology and symmetries of Poincaré
sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and
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Figure 7.4: Stability of a symplectic map iR*. \'\/'/ &/'é*
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absorb the a factor into x in order to bring the Hénon map for the b = —1 parameter
value into the form

X1+ Xog=a—-x, i=1..,np, (7.28)
The 2-dimensional Hénon map for b = —1 parameter value

Xoi1 = a-X2—VYn
Vel = Xn. (7.29)

is Hamiltonian (symplectic) in the sense that it preserves area in the [X,y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f"(X) — x (periodic points) are real. exercise 8.7

Example 7.6 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.5) depend only on tr Mt

Ao = % (tr M+ /(tr Mt = 2)(trM! + 2)) . (7.30)

Greene'’s residue criterion states that the orbit is (i) elliptic if the stability residue |tr MY —
2 < 0, with complex eigenvalues A1 = €”, Ap = A; = ™ If|tr M'| -2 > 0, A is real,
and the trajectory is either

(i) hyperbolic Ar=et, Ar=e or (7.31)
(iii) inverse hyperbolic AL =—e, Ap=-et, (7.32)
Example 7.7 Standard map. Given a smooth function g(X), the map
X1 = XntVYnsaa
Yner = Y+ 9(Xn) (7.33)
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full |~
lines represent quasiperiodic orbits. () 0.3, i
k = 0.85 andk = 1.4: each plot consists of 20

random initial conditions, each iterated 400 times.

(@)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.21) is

l 4
M"(%o, Yo) = ]k_l( 15%(30 1 ) (7.34)

The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder Sy x R (S stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.33) mod1 the map can be reduced on the 2-torus S,.

The standard map corresponds to the choice g(X) = k/2r sin(2rx). Whenk = 0,
Vn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle X rotates with
uniform velocity

Xn+1 = Xn+Yo =X+ (N+1)yo  mod1l.

The choice of yy determines the nature of the motion (in the sense of sect. 2.1.1): for
Yo = O we have that every point on the yo = 0 line is stationary, for yo = p/q the motion
is periodic, and for irrational yo any choice of Xy leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter K is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when Kk is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.33) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

HOGYD) = 2+ G(9ai(t) (7.35)

where 61 denotes the periodic delta function

o

s1(t) = Z S(t—m) (7.36)
and
G'(¥) =-9(x). (7.37)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
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periodic orbits. A family of periodic orbits of period Q already present in the k = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

1
Rp/o = 2 (2—1trMpyq) . (7.38)

If Rpjq € (0,1) the orbit is elliptic, for Re;q > 1 the orbit is hyperbolic orbits, and for
Re/q < 0 inverse hyperbolic.

For k = 0 all points on the yo = P/Q line are periodic with period Q, winding
number P/Q and marginal stability Rejq = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary K in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher

period are generated.

7.5 Poincalé invariants

Let C be a region in phase space aw(D) its volume. Denoting the flow of the
Hamiltonian system by!(x), the volume ofC after a timet is V(t) = f'(C), and
using (7.24) we derive thieiouville theorem

~ ~ att(x)
V() = j;(c)dx_fcdet 5| 9%
f det@)dX = f dx = V(0), (7.39)
C C

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys usimuonore than
the ‘incompressibility, or the phase-space volume coretégn. Consider the
symplectic product of two infinitesimal vectors

(OX0%y = X wdK = 6pioGi — 6GiSPi
D
= Z {oriented area in theg(, p;) plang . (7.40)

i=1
Timet later we have
OX 6% = X" ITwIoX = X" woX.

This has the following geometrical meaning. Imagine thatrehis a reference
phase-space point. Take two other points infinitesimatige] with the vectorgx
and X describing their displacements relative to the refereraiatp Under the
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dynamics, the three points are mapped to three new pointdwaing still infinites-
imally close to one another. The meaning of the above expressthat the area
of the parallelepiped spanned by the three final points isdinge as that spanned
by the initial points. The integral (Stokes theorem) vearsid this infinitesimal
area invariance states that for Hamiltonian flows the su ofiented areas/;
bounded byD loopsQV;, one per eachy, p;) plane, is conserved:

f dpA dqzsg p - dg = invariant. (7.41)
v Qv

One can show that also the 4,-6;, 2D phase-space volumes are preserved. The
phase space i2dimensional, but as there aecoordinate combinations con-
served by the flow, morally a Hamiltonian flow 3-dimensional. Hence for
Hamiltonian flows the key notion of dimensionality 5 the number of the de-
grees of freedom (dof), rather than the phase-space dioreiisy d = 2D.

Dream student Henriette Roux: “Would it kill you to draw sopietures here?”
A: “Be my guest.”

F in depth:
3 appendix C.4, p. 836
Résumé

Physicists do Lagrangians and Hamiltonians. Many know ofwaold other
than the perfect world of quantum mechanics and quantumtfielory in which
the energy and much else is conserved. From the dynamical pbiiew, a
Hamiltonian flow is just a flow, but a flow with a symmetry: thalstity matrix
Ajj = wik H;j(X) of a Hamiltonian flowx; = wijH j(x) satisfiesA"w + wA = 0. Its
integral along the trajectory, the linearization of the fldwhat we call the ‘Jaco-
bian matrix,’ is symplectic, and a Hamiltonian flow is thusaaonical transforma-
tion in the sense that the Hamiltonian time evolutiér:= f!(x) is a transformation
whose linearization (Jacobian matriX)= dx'/0x preserves the symplectic form,
J"wJ = w . This implies thatA are in the symplectic algebsg(2D), and that the
2D-dimensional Hamiltonian phase-space flow presebresiented infinitesimal
volumes, or Poincaré invariants. The Liouville phaseespalume conservation
is one consequence of this invariance.

While symplectic invariance enforcés| = 1 for complex eigenvalue pairs
and precludes existence of attracting equilibria and layies typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits| > 1, and the pairing
requirement only enforces a particular value on thi& Tontracting direction.
Hence the description of chaotic dynamics as a sequencealdfesaisitations is
the same for the Hamiltonian and dissipative systems. Yahtrfind symplec-
ticity beautiful. Once you understand that every time youeha symmetry, you chapter 10
should use it, you might curse the day [7.26] you learned yossanplectic'.
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Commentary

In theory there is no dierence between theory and prac-
tice. In practice there is.

—Yogi Berra

Remark 7.1 Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In gcacyou do not. Try this:
Put your right hand on your heart and say: “l understand whyregrefers symplectic
geometry.” Honest?

Where does the skew-symmetuccome from? Newtorf = malaw for a motion in
a potential isng = —dV . Rewrite this as a pair of first order ODEs="p/m, p = -9V,
define the total energyl(q, p) = p?/2m+ V(q), and voila, the equation of motion take on
the symplectic form (7.3). What makes this important is tiw that the evolution in time
(and more generally any canonical transformation) presetivis symplectic structure, as
shown in sect. 7.3.1. Another way to put it: a gradient flow —9V(X) contracts a state
space volume into a fixed point. When that happ#&f{g) is a 'Lyapunov function’, and
the equilibriumx = 0 is ‘Lyapunov asymptotically stable’. In contrast, the Sign in the
symplectic action ond, p) coordinatesp = —dV induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no eatantraction.

Out there there are centuries of accumulated literature amiltbn, Lagrange, Ja-
cobi etc. formulation of mechanics, some of it excellent.cémtext of what we will
need here, we make a very subjective recommendation—wgeshjeading Percival and
Richards [7.3] and Ozorio de Almeida [7.4]. Exposition ofts&€.2 follows Dragt [7.15].
There are two conventions in literature for what the integygument of Sp¢( -) stands
for: either SpD) or Sp@) (used, for example, in refs. [7.15, 7.17]), whé&e= dof, and
d = 2D. As explained in Chapter 13 of ref. [7.17], symplectic grewpe the ‘nega-
tive dimensional,d — —d sisters of the orthogonal groups, so only the second notatio
makes sense in the grander scheme of things. Mathemateaaresen make sense of the
d =odd-dimensional case, see Proctor [7.18, 7.19], by drgpibie requirement thaa is
non-degenerate, and defining a symplectic group$pg) acting on a vector spacel as
a subgroup oG1(M) which preserves a skew-symmetric bilinear faprof maximal pos-
sible rank.The odd symplectic groups Sg2+ 1) are not semisimple. If you care about
group theory for its own sake (the dynamical systems symymettuction techniques of
chapter 10 are still too primitive to be applicable to Quamttield Theory), chapter 14
of ref. [7.17] is fun, too.

Referring to the Spl) Lie algebra elements as ‘Hamiltonian matrices’ as one some
times does [7.15, 7.20] conflicts with what is meant by a ‘Heonian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched betweednnssmken from any com-
plete set of quantum states. We are not sure where this namescivom; Dragt cites
refs. [7.21, 7.22], and chapter 17 of his own book in progfésks]. Fulton and Har-
ris [7.21] use it. Certainly Van Loan [7.23] uses in 1981, dadssky in 1972. Might go
all the way back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics exjaatHamiltonian plus a
bracket. Why don’t you just say it?” A: “It is true that in therinel vision of atomic

mechanicians the world is Hamiltonian. But it is much morendimus than that. This
chapter starts with Newton 1687: force equals acceleratdod we always replace a
higher order time derivative with a set of first order equadiolf there are constraints, or
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fully relativistic Quantum Field Theory is your thing, theal of choice is to recast New-
ton equations as a Lagrangian 1788 variational princiglgou still live in material but
non-relativistic world and have not gotten beyond Heisepli®©25, you will find Hamil-
ton’s 1827 principal function handy. The question is not thieethe world is Hamiltonian
- itis not - but why it is so often profitably formulated this ywa-or Maupertuis 1744 vari-
ational principle was a proof of God’s existence; for Laggamwho made it mathematics,
it was just a trick. Our sect. 33.1.1 “Semiclassical evolatis an attempt to get inside 17
year old Hamilton’s head, but it is quite certain that he did geet to it the way we think
aboutittoday. He got to the ‘Hamiltonian’ by studying ogtievhere the symplectic struc-
ture emerges as the leading WKB approximation to wave ggtigher order corrections
destroy it again. In dynamical systems theory, the demssiti¢rajectories are transported
by Liouville evolution operators, as explained here in s@6t6. Evolution in time is a
one-parameter Lie group, and Lie groups act on functionsitaBimally by derivatives.
If the evolution preserves additional symmetries, theseval@/es have to respect them,
and so ‘brackets’ emerge as a statement of symplectic aovesiof the flow. Dynamics
with a symplectic structure are just a special case of howadyos moves densities of
trajectories around. Newton is deep, Poisson bracketeahmology and thus they ap-
pear naturally only by the time we get to chapter 16. Any naseas of necessity linear,
and putting Poisson ahead of Newton [7.1] would be a dissera you, the student. But
if you insist: Dragt and Habib [7.24, 7.15]fer a concise discussion of symplectic Lie
operators and their relation to Poisson brackets. ”

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlgcseage is church-
doctrinal: Greek ‘kanon, referring to a reed used for measient, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invariant
in (7.3), is set by the convention that the Hamilton’s pryadifunction (for energy con-
serving flows) is given bRR(q, q', t) = qu/ pidg — Et. With this sign convention the action
along a classical path is minimal, and the kinetic energyfoé@ particle is positive. Any
finite-dimensional symplectic vector space hadaboux basisuch thatw takes form
(7.9). Dragt [7.15] convention for phase-space varialdessiin (7.2). He calls the dy-
namical trajectoryy — X(Xo, t) the ‘transfer map,” something that we will avoid here, as
it conflicts with the well established use of ‘transfer megg’ in statistical mechanics.

Remark 7.4 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired ad, 1/A, and complex eigenvalues come eitheAinA* pairs,|A| = 1, or

A, 1/A, A*, 1/A* loxodromic quartets. As most maps studied in introductanylimear
dynamics are @, you have perhaps never seen a loxodromic quartet. Howy ldsel we to
run into such things in higher dimensions? According to § egtensive study of periodic
orbits of a driven billiard with a four dimensional phase apacarried in ref. [7.28], the
three kinds of eigenvalues occur with about the same likelih

Remark 7.5 Standard map.  Standard maps model free rotors under the influence of
short periodic pulses, as can be physically implementadn&tance, by pulsed optical
lattices in cold atoms physics. On the theoretical sideydsted maps illustrate a number
of important features: smak values provide an example &fAM perturbative regime
(see ref. [7.11]), while largdds illustrate deterministic chaotic transport [7.9, 7.1@hd
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the transition to global chaos presents remarkable uraligrdeatures [7.5, 7.12, 7.7].
The quantum counterpart of this model has been widely ifyeaestd, as the first example
where phenomena like quantum dynamical localization haenmbserved [7.13]. Sta-
bility residue was introduced by Greene [7.12]. For somedsamm experience of the
standard map, download Meiss simulation code [7.14].
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Exercises

7.1. Complex nonlinear Schiodinger equation. Con-
sider the complex nonlinear Schrédinger equation in one
spatial dimension [7.26]:

2
i%—‘f + % +pBplp> =0, B#0.

(a) Show that the functiop : R — C defining the
traveling wave solutiog(x, t) = y/(x—ct) forc > 0
satisfies a second-order compleffeliential equa-
tion equivalent to a Hamiltonian systemix rel-
ative to the noncanonical symplectic form whose
matrix is given by

0O 0 1 O

w 0O 0 0 1
€1 -1 0 0 -c
0O -1 c O

(b) Analyze the equilibria of the resulting Ha-
miltonian system irR* and determine their linear
stability properties.

(c) Lety(s) = €°2a(s) for a real functiona(s) and
determine a second order equationdfs). Show

7.4. Determinants of symplectic matrices.
the determinant of a symplectic matrix44, by going

(@) LetA be a i x rf invertible matrix. Show that
the mapg¢ : R — R?" given by @,p) —
(Ag, (A"1)Tp) is a canonical transformation.

(b) If Ris arotation irR3, show that the mag( p) —
(Rg,Rp) is a canonical transformation.
(Luz V. Vela-Arevalo)
Show that

through the following steps:

(a) use (7.27) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that thgoint multiplicity of A = +1 is even,

(c) show that the multiplicities of = 1 and1 = -1
cannot be both odd. Hint: write

P(1) = (1= 1™+ 1"*'Q()
and show tha@Q(1) = 0.

that the resulting equation is Hamiltonian and has’-9- Cherry’'s example. What follows refs. [7.25, 7.27] is

heteroclinic orbits fog < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schradinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic vs. Hamiltonian matrices. In the
language of group theory, symplectic matrices form the
symplectic Liegroup Spd), while the Hamiltonian ma-
trices form the symplectic Lialgebra syd), or the al-
gebra of generators of infinitesimal symplectic transfor-
mations. This exercise illustrates the relation between
the two:

(@) Show that if a constant matriA satisfy the
Hamiltonian matrix condition (7.14), the#(t) =
exptA), t € R, satisfies the symplectic condition
(7.9), i.e.,J(t) is a symplectic matrix.

(b) Show that if matriced , satisfy the Hamiltonian
matrix condition (7.14), theg(¢) = exp@ - T),
¢ € RN, satisfies the symplectic condition (7.9),
i.e.,g(¢) is a symplectic matrix.

(A few hints: (i) expand ex@), A=¢ - T, as a power
series inA. Or, (ii) use the linearized evolution equation
(7.18).)

7.3. When is a linear transformation canonical?

exerNewton - 13jun2008

mostly a reading exercise, about a Hamiltonian system
that islinearly stablebutnonlinearly unstableConsider
the Hamiltonian system aR* given by

1 1
H = 5(c + p) — (6 + P2) + 5P2(Pf — ) ~ thPa.

(&) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant

q1=—\/§COS¢_T), :c032(—r),
_ t—-71 _t—‘r

pl:\/Esm(t—r)’ p2:5|n2(t—r).
t—71 t—71

These solutions clearly blow up in a finite time;
however they start @t = 0 at a distanceV3/r
from the origin, so by choosing large, we can
find solutions starting arbitrarily close to the ori-
gin, yet going to infinity in a finite time, so the
origin isnonlinearly unstable

(Luz V. Vela-Arevalo)
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