Chapter 36

Chaotic multiscattering

(A. Wirzba and P. Cvitanovic)

number of non-overlapping finite scattering regions. Whthis inter-

esting at all? The semiclassics of scattering systems haadivantages
compared to the bound-state problems such as the heliuntizatéon discussed
in chapter 37.

WE piscuss HERE the semiclassics of scattering in open systems with a finite

For bound-state problem the semiclassical approximata®s ehot respect
guantum-mechanical unitarity, and the semi-classicareigergies are not
real. Here we construetmanifestly unitargemiclassical scattering matrix.

The Weyl-term contributions decouple from the multi-seditg system.

The close relation to the classical escape processes skstirschapter 1.

For scattering systems the derivation of cycle expans®n®ie direct and
controlled than in the bound-state case: the semiclassycé expansion
is the saddle point approximation to the cumulant expansiohe determi-
nant of the exact quantum-mechanical multi-scatteringimat

The region of convergence of the semiclassical spectraitifomis larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a ppanticle from finite
collection of non-overlapping scattering regions in teohthe standard textbook
scattering theory, and then develop the semiclassicaksiteg trace formulas and
spectral determinants for scatteringj N disks in a plane.
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36.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point garfrom finite collection
of N non-overlapping reflecting disks in a 2-dimensional plakethe point par-
ticle moves freely between the static scatterers, the imdependent Schrodinger
equation outside the scattering regions is the Helmholz&on:

(?,2 + |22) w(F) =0, F outside the scattering regions. (36.1)

Herey (F) is the wave function of the point particle at spatial pasitf andE =
72k2/2miis its energy written in terms of its massand the wave vectdt of the
incident wave. For reflecting wall billiards the scatterjpgblem is a boundary
value problem with Dirichlet boundary conditions:

w() =0, P on the billiard perimeter (36.2)

As usual for scattering problems, we expand the wave fumati@) in the
(2-dimensional) angular momentum eigenfunctions basis

Uy = ) uk(r)e ™, (36.3)
M=—co
wherek and®y are the length and angle of the wave vector, respectivelyiaAep
wave in two dimensions expaned in the angular momentum [sasis
gk _ gkrcosr-ay) _ Z Jn(kr)em(@=20) (36.4)

m=—co

wherer and®; denote the distance and angle of the spatial vetas measured
in the global 2-dimensional coordinate system.

Themth angular componenly,(kr)é™® of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional sphenigaVes by decompos-
ing the ordinary Bessel functiody(2) into the sum

@ = 3 (D@ + HO ) (36.5)

of the Hankel functions-lr(é)(z) andH,(ﬁ)(z) of the firstand second kind. Faf > 1
the Hankel functions behave asymptotically as:

2 iprmry .
HOG) ~ /n_ze—l(Z-am-z) incoming,

2 .
HY@ ~ /=e'@i™D outgoing. (36.6)
7z
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CHAPTER 36. CHAOTIC MULTISCATTERING 705

Thus forr — o« andk fixed, themth angular componeniy,(kr)é™® of the plane
wave can be written as superposition of incoming and outg@itimensional
spherical waves:

1

Jm(kr)em®r ~ o [erie=5m=a) . dlr=5m-5)] gmor (36.7)
r

In terms of the asymptotic (angular momentum) compongfitsf the wave
functiony(F), the scattering matrix (35.3) is defined as

1 (kY1 Skr—E =TV iy
k —i(kr—Zm—Z) (kr=Zm—Z)7] Jm'®;
Ym~ — E Omn € 20 A+ Smmé 2M-a)| ¢ . (36.8)
m m 24 [ ]

The matrix elemenS,,y describes the scattering of an incoming wave with an-
gular momentunm into an outgoing wave with angular momentum If there
are no scatterers, thé@e= 1 and the asymptotic expression of the plane wele

in two dimensions is recovered frog(r).

36.1.1 1-disk scattering matrix

In general,Sis nondiagonal and nonseparable. An exception is the 1sdigk
terer. If the origin of the coordinate system is placed atcégter of the disk, by
(36.5) themth angular component of the time-independent scattering iianc-
tion is a superposition of incoming and outgoing 2-dimenalcspherical waves

exercise 35.2

1 .
Ui = 5 (HR00) + SmoH (k) €™

(3t - iETmmH,ﬁ})(kr))e‘m“" .

The vanishing (36.2) of the wave function on the disk perenet
0= Jm(ka) - iETmer(nl)(ka)

yields the 1-disk scattering matrix in analytic form:

@
2Jm(kas)] Sy = T (K3 ¢ (36.9)

SS (K) = [1 - m
m H (kas) H (kas)

wherea = as is radius of the disk and the ix S indicates that we are dealing
with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 36.3.
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36.1.2 Multi-scattering matrix

Consider next a scattering region consisting\Nofion-overlapping disks labeled
se{l,2,---,N}, following the notational conventions of sect. 11.6. Thatsgy

is to construct the fulllT-matrix (35.3) from the exact 1-disk scattering matrix
(36.9) by a succession of coordinate rotations and traosksuch that at each
step the coordinate system is centered at the origin of a diskn theT-matrix

iN Smnt = dmm — i Tmm €an be split into a product over three kinds of matrices,

N )

Tom®= Y. > Cr(OM Ky DY (K.

lly
5,8=1ls,lg=—c0

The outgoing spherical wave scattered by the disk obtained by shifting the
global coordinates origin distané® to the center of the disk, and measuring
the angle®ds with respect to directiork of the outgoing spherical wave. As in
(36.9), the matri>xC*® takes form

s 2i JWIS(kRS)ém‘I’s.

=— 36.10
me = 7ag 1O (kag) (36.10)

If we now describe the ingoing spherical wave in the diSkoordinate frame by
the matrixDs’

Dfs’,m = —ag J-1, (kRe)Jy,, (kag )& ™ s | (36.11)

and apply the Bessel function addition theorem

Iy +2 = D) Inc)A@.

{=—00

we recover th& -matrix (36.9) for the single disk = s’, M = 1 scattering. The
Bessel function sum is a statement of the completness optrerisal wave basis;
as we shift the origin from the diskto the disks’ by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsmandn refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systerdls, |s refer to the
(angular momentum) basis fixed at tst ands'th scatterer, respectively. Thus,
Cs andD® depend on the origin and orientation of the global cooreirsystem
of the 2-dimensional plane as well as on the internal coatdsof the scatterers.
As they can be made separable in the scatterer Ightibley describe the single
scatterer aspects of what, in general, is a multi-scaggrioblem.
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Figure 36.1: Global and local coordinates for a gen-
eral 3-disk problem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatterdy) is simply the unit matrifoi, = 6S§6|S|S/.
For scattering from more than one scatterer we separate ‘Single traversal”
matrix A which transports the scattered wave from a scattering mefylg to the
scattering regiotMs,

MPS =561, - AT - (36.12)

ey Iy

The matrixASS reads:

as Jokas)

ss ss
=-(1-6>°) 7
ay H|(:;)(kas') ls=lgr

sly ™

(KRsg) glsass7ls(@ss=m) - (36,13)

Here, as is the radius of thesth disk. R and®g are the distance and angle,
respectively, of the ray from the origin in the 2-dimensioplane to the center of
disk s as measured in the global coordinate system. Furtherrfgee= Ry is
the separation between the centers ofdiieands’th disk andvg s of the ray from
the center of disls to the center of disls’ as measured in the local (body-fixed)
coordinate system of disk(see figure 36.1).

Expanded as a geometrical series about the unit mattixe inverse matrix
M -1 generates a multi-scattering series in powers of the singlkersal matrixA.
All genuine multi-scattering dynamics is contained in thatrix A; by construc-
tion A vanishes for a single-scatterer system.

36.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the specpadperties of thes-
matrix: resonances, time delays and phase shifts. Thearses are given by the
poles of thesS-matrix in the lower complex wave numbdq) plane; more precisely,

by the poles of th& on the second Riemann sheet of the complex energy plane.

As the S-matrix is unitary, it is also natural to focus on its totalagl shifty(k)
defined by de§ = exp?®. The time-delay is proportional to the derivative of
the phase shift with respect to the wave nurmber
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As we are only interested in spectral properties of the edag problem, it
sufices to study des. This determinant is basis and coordinate-system indepen-
dent, whereas th&-matrix itself depends on the global coordinate system and o
the choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, itriet clear
whether the corresponding determinant exists at all-fiatrix is trace-class, the
determinant does exist. What does this mean?

36.2.1 Trace-classoperators

An operator (an infinite-dimensional matrix) is callgdce-classif and only if,

for any choice of orthonormal basis, the sum of the diagonairisn elements
converges absolutely; it is called “Hilbert-Schmidt,” ifet sum of the absolute
squared diagonal matrix elements converges. Once an opé&aliagnosed as
trace-class, we are allowed to manipulate it as we manipfiliaite-dimensional
matrices. We review the theory of trace-class operatorpjrerdix K; here we
will assume that th& -matrix (35.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{ zA), as defined by the cumulant
expansion, exists and is an entire functiorzofurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation g4dF expansion in
the book-keeping variablg of the determinant

det(L - zA) = exp[tr In(L - zA)] = exp[— i ;tr (AM] .
n=1
That means
det( - zA) := i 2"Qm(A) (36.14)
m=0

where the cumulani®y,(A) satisfy the Plemelj-Smithies recursion formula (K.19),
a generalization of Newton’s formula to determinants ofiitéi-dimensional ma-
trices,

1

—%ZQ,H(A)U(A]) form>1, (36.15)
=1

Qo(A)
Qm(A)

in terms of cumulants of order < mand traces of order < m. Because of the
trace-class property @&, all cumulants and traces exist separately.
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For the general case bf < oo non-overlapping scatterers, thiematrix can be
shown to be trace-class, so the determinant ofStneatrix is well defined. What
does trace-class property mean for the corresponding aea@?, DS and ASS ?
Manipulating the operators as though they were finite medrigve can perform
the following transformations:

detS = det(1-iCM~'D)
Det (1-iM~'DC) = Det(M~}(M -iDC))
Det(M — iDC)

Det(M)

(36.16)

In the first line of (36.16) the determinant is taken over $migihe angular mo-
mentum with respect to the global system). In the remainfié3616) the deter-
minant is evaluated over the multiple indices = (s,1s). In order to signal this
difference we use the following notation: det and tr. .. refer to thel¢) space,
Det...and Tr... refer to the multiple index space. The matrices in the mieltip
index space are expanded in the complete Hésis} = {|s, £s)} which refers for
fixed indexs to the origin of thesth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinantstte subsystems
from the determinant of the total system (36.16):

Det(M — iDC)
Det(M)

Det(M —iDC) [Ta dets®
DetM 1Y, detss

N Det(M —iDC)/ [TV, detS®
| | dets® il JALS .
ol DetM

detS

(36.17)

The final step in the reformulation of the determinant of Samatrix of the N-
scatterer problem follows from the unitarity of ti®matrix. The unitarity of
Sf(k*) implies for the determinant

det (k)" = 1/detS(K) (36.18)

where this manipulation is allowed because Thmatrix is trace-class. The uni-
tarity condition should apply for th&matrix of the total system$, as for the
each of the single subsystenss, s = 1,---, N. In terms of the result of (36.17),
this implies

Det (M (K) — iD(K)C(K))

[13., dets® = DetM(K))
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since all determinants in (36.17) exist separately ancedine determinants dgt
respect unitarity by themselves. Thus, we finally have

N DetM (k*)’
dets(k) = { [ | (detss)} —=——L | (36.19)
{Dl } DetM (k)

where all determinants exist separately.

In summary: We assumed a scattering system &hiee number ofnon-
overlappingscatterers which can be offtiirent shape and size, but are all of
finite extent. We assumed the trace-class character of #fmatrix belonging to
the total system and of the single-traversal magiand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromigefnumber of
scatterers of arbitrary shape and size? As long as eash<ofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite die total system
has a finite spatial extent as well. Therefore, it too can hensided a circular
domain of finite radiu®, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thikd larger than the disk
size (actually larger thare(2) x b), then theT matrix elements of th&l-scatterer
problem become very small. If the wave numlaés kept fixed, the modulus of
the diagonal matrix elements|T i with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

36.2.2 Quantum cycle expansions

In formula (36.19) the genuine multi-scattering terms apasated from the single-
scattering ones. We focus on the multi-scattering terres, @n the ratio of the
determinants of the multi-scattering mathk = 1 — A in (36.19), since they are
the origin of the periodic orbit sums in the semiclassicaluetion. The reso-
nances of the multi-scattering system are given by the zefr@etM (k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical redogtice express the
determinant of the multi-scattering matrix in terms of thaces of the powers
of the matrixA, by means of the cumulant expansion (36.14). Because of the
finite numberN > 2 of scatterers tiA") receives contributions corresponding to
all periodic itinerariess; $,S3 - - - sh-1S, of total symbol lengtm with an alphabet
s €{1,2,...,N}. of N symbols,

trASIZASS . ASIS ASS (36.20)
+00 +00 +00
— Z Z Z Af’lSZ SS3 ._.Afmsa ShS1
sile " Tsls sioalen” Tanlsy
lyymwolgmmco  lgi=—co
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Remember our notation that the trace tr) refers only to thel) space. By con-
structionA describes only scatterer-to-scatterer transitions, esyimbolic dy-
namics has to respect the no-self-reflection pruning roleadmissible itineraries
the successive symbols have to b@atient. This rule is implemented by the factor
1-6% in (36.13).

The trace tA" is the sum of all itineraries of lengtin

trAD = Z tr ASI2ARS .. ASISIASS (36.21)
{81950}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.

For periodic orbits with creeping sections the symbolichalpet has to be
extended, see sect. 36.3.1. Furthermore, depending oretmeedry, there might
be nontrivial pruning rules based on the so called ghostxrbee sect. 36.4.1.

36.2.3 Symmetry reductions

The determinants over the multi-scattering matrices ruer the multiple index
of the multiple index space. This is the proper form for thesyetry reduction
(in the multiple index space), e.g., if the scatterer coméitian is characterized
by a discrete symmetry group, we have

DetM = [ | (detMo, (k)* ,

where the indexr runs over all conjugate classes of the symmetry giGuamd
D, is the ath representation of dimensia,. The symmetry reduction on the
exact quantum mechanical level is the same as for the céssiolution oper-
ators spectral determinant factorization (21.17) of s&t@.2.

36.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. lriotd be concrete, we
will consider the semiclassical reduction of the scatteaha single disk in plane.

Instead of calculating the semiclassical approximatiotheéodeterminant of
the one-disk system scattering matrix (36.9), we do so for

d(k) = %dik IndetS'(ka) = %diktr (Ins'(ka)) (36.22)
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the so calledime delay

_1d _ 1y (HRka) d HP(ka)
A0 = gt (ndets'ta) = 25 > (Hﬁﬁ)(ka) d_kH‘m“<ka)]

_a H@ (ka) ~ Hg})’(ka)] (36.23)

2r L\ HP(ka)  HY(ka)

Here the prime denotes the derivative with respect to thenaegt of the Hankel
functions. Let us introduce the abbreviation

H? (ka)  HY (ka)

= — T 36.24
T ke WOk (o024
We apply the Watson contour method to (36.23)
a a 1 e—iwr
=2 =2 = =
9 = 2 m;m Am = o 2i Sgcdv sine) " (36.25)

Here the contou€ encircles in a counter-clockwise manner a small semiifinit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginangirection. The contou€ is then
split up in the path above and below the realxis such that

a +ooti€e e vt +oo—i€e e vt
dk) = — dv ———x, — dy ——— .
® =z {LW " sinGm)* Lc_if Vsm(wr))”}

Then, we perform the substitution— —v in the second integral so as to get

a +oo+i€ e—iwr e+iwr
d(k — dy ——y, +dv ———x-,
® 4n {iwif Vsm(vn)X * Vsm(wr)X }

a +ootie e2iwr +0o

where we used the fact that, = y,. The contour in the last integral can be de-
formed to pass over the reakxis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line of (36.26}fdr by
the presence or absence of the Watson denominator, thelzavél to be handled
semiclassically in dferent ways: the first will be closed in the upper complex
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plane and evaluated at the poleypfthe second integral will be evaluated on the
realv-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles gf in the upper complex
plane are given by the zeros Hﬁl)(ka) which will be denoted by, (ka) and by
the zeros oHSZ)(ka) which we will denote by-v,(ka), ¢ = 1,2,3,---. In the Airy
approximation to the Hankel functions they are given by

vekd) = ka+ia(ka), (36.27)
ka) = —ka+i(a(ka) = - (ve(k'a)" . (36.28)

with

, ix (ka\¥® (62 & 1 q

6\ 1 (20 281
(E) 3150( &2 1806t (36.29)

i

+ d
Hereq, labels the zeros of the Airy integral
A(Q) = f dr cosfrr — %) = 3 3xAi(-37Y3q) ,
o

with Ai(2) being the standard Airy function; approximatety, ~ 63[3x(¢ —
1/4)]%3/2. In order to keep the notation simple, we will abbreviates v,(ka)
andv, = v,(ka). Thus the first term of (36.26) becomes finally

a +co+ie e2|wr © e2ivnr e—2il7[7r
ﬁ{sz = ez'v"*”} 232(1_ezw+1_e-zm)-

In the second term of (36.26) we will insert the Debye appr@tions for the
Hankel functions:

HYD (%) ~ 2z exp(ii VX2 =2 % ivarccoss ¥ iz) for || > v
VX2 =2 X 4
(36.30)
Hsl/z)(x) ~ Fi 2z exp(— V2 — X2 + vArcCoshK) for|x <v.
VY2 — X2 X

Note that fory > kathe contributions iy, cancel. Thus the second integral of
(36.26) becomes

+00 +ka _ 9
%f dvy, = if dvﬂi(\/kZaz—vz—varccosl)+
—o0 —ka

2ri a dk ka

ka 2
71f dvvkea® 24 = Sk, (36.31)
Kt Jva 2

multscat - 25jul2006 ChaosBook.org version15, Jan 18 2015

CHAPTER 36. CHAOTIC MULTISCATTERING 714

where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thmtegration.

In summary, the semiclassical approximatiordtk) reads

Gl eZI vem e—2i ver a2
d(k) = 232(1 S 71_€2im)_3k+...

Using the definition of the time delay (36.22), we get thedwihg expression for
detS!(ka):

In detSt(ka) — Iim In detSt(koa) (36.32)

o 27 —i2rv;(ka)
- 2ria dk ——+2Z g R |
1-— e|27rv,(ka) 1 — g-izmve(ka)

~ —2niN(k)+2ZfO dR@{—ln(l—éZ"Vf@a))Jr|n(1—e*i2”Vf(Ra))}+u-,
=1

where in the last expression it has been used that sem'ccaﬁ;sgd—kw(ka) ~
ﬂjg(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(K) = na?k?/(4r) + --- (the next terms come from the boundary terms in the
v-integration in (36.31)). Note that for the lower limkg — 0O, we have two
simplifications: First,

—HP (o)

koﬁo H(l)(koa)
1

- kII:TOdetS (koa)

I|m Sﬁnm(koa) — e S = 1X0mm  YmnY

|
=

Secondly, folkg — 0, the two terms in the curly bracket of (36.32) cancel.

36.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detemtS(ka) is given
by

—2i ki
o k)m 1(1 &2 a))

detSt(ka) ~ (36.33)
H[:l (1 eZIm/[ ka))
with
ve(ka) = ka+ia(ka) = ka+ e+i"/3(ka/6)1/3qf 4.
vekka) = ka—i(ac(ka)* = ka+e™3(ka/6)/3q, + -
= (ve(ka)
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Figure 36.2: Right- and left-handed dractive Hankel functionH?(ka) of complex-valued index reads
creeping paths of increasing mode numbefor
a single disk.

@ 2 1 (8Y"°,
~ — 13 —

HO(ka) ~ Ze s(ka) A)

with

1/3
g = i3 (k_Ga) (v —ka) + 0((ka)'l)'

andN(ka) = (ra?k?)/4r + --- the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues imligieinterior. From
the point of view of the scattering particle, the interiomuins of the disks are
excluded relatively to the free evolution without scatigrobstacles. Therefore
the negative sign in front of the Weyl term. For the same neat® subleading

Hence the zeros, of the Hankel function in the complex plane follow from
the zerogy, of the Airy integralA(q) (see (36.3). Thus if we set = m (with m
integer), we have the following semiclassical conditiork&#

boundary term has here a Neumann structure, although tke liéve Dirichlet m ~ K%+ ia/(k®%)
boundary conditions. . (Kresg)\ Y3 a6 \Y° P 1 o
RS REUC S
) . 6 kresa) 180  70k™®sa 30
Let us abbreviate the r.h.s. of (36.33) for a disks .
- i) L[& _ 28 } N
— . re 2 63 K
. e Z(a) Tgeay’ . kiesa) 3150( 62  180-6
detSS(kag) ~ (e7m™Nka))” L T = (36.34) withl =1,2,3,---. (36.35)
Z,(kas)  Z;(kas)
_ _ For a given index this is equivalent to
wherer(kas) andZ; (kas) are thediffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functiomsth diffractive corrections by a 0~ 1 gike-an2ra
tilde) for creeping orbits around treth disk in the left-handed sense and the right- ’
handed sense, respectively (see figure 36.2). The two atiens of the creeping
orbits are the reason for the exponents 2 in (36.33). Equ#86.33) describes the de-Broglie condition on the wave function that encsdlee disk. Thus the
the semiclassical approximation to the incoherent pathé curly bracket on the semiclassical resonances of the 1-disk problem are givahédyeros of the fol-
r.h.s.) of the exact expression (36.19) for the case thatdhagerers are disks. lowing product
In the following we will discuss the semiclassical resoremin the 1-disk 0
scattering problem with Dirichlet boundary conditiong. ithe so-called shape 1_[ (1 elkmoozra),
resonances. The quantum mechanical resonances are teeptiieS-matrix in I=1
the complexk-plane. As the 1-disk scattering problem is separableStheatrix
is already diagonalized in the angular mom‘entum elgenlamzisFakes th? sim- which is of course nothing else thﬁj.disk(k), the semiclassical firaction zeta
ple form (36.9). The exact quantummechanical poles of taéiesing matrix are function of the 1-disk scattering problem, see (36.34). eNtbat this expression

therefore given by the zerdgds, of the Hankel functionsHP(ka) in the lower

) o includes just the pure creeping contribution and no gengeemetrical parts.
complexk plane which can be labeled by two indicesandn, wherem denotes

) ) : Because of
the angular quantum number of the Hankel function arid a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot a ()
use the usual Debye approximation as semiclassical appatixin for the Hankel Hn(ka) = (-1)"Hy'(ka),
function, since this approximation only works in case thelkéh function is dom-
inated by only one saddle. However, for the vanishing of takel function, one the zeros are doubly degeneratenif: 0, corresponding to right- and left handed
has to have the interplay of two saddles, thus an Airy appration is needed as creeping turns. The case = 0 is unphysical, since all zeros of the Hankel func-
in the case of the creeping poles discussed above. The Airpzimation of the tion Hél)(ka) have negative real value.
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Figure 36.3: The shape resonances of the 1-disk
system in the complek plane in units of the disk
radiusa. The boxes label the exact quantum me-
chanical resonances (given by the zeroig(ka)
form = 0,1, 2), the crosses label thefftactional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(36.35) up to the orded([ka]*/3)).

OM (exacy: ®
Semiclass (creeping): +

Imk ()

2
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Figure 36.4: Same as in figure 36.3. However,
the subleading terms in the Airy approximation
(36.35) are taken into account up to the order
O([ka]~*/3) (upper panel) and up to ordé([ka] )
(lower panel).

o execy B
Semictass. creeping (. 15 Ary Cor): +

imkiya)
imk{ua]

From figure 36.3 one notes that the creeping terms in the Adtgro)([ka]>/3),

which are used in the Keller construction, systematicatigarestimate the magni-
tude of the imaginary parts of the exact data. However, teepging data become
better for increasing Reand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figure 36.4 one sees the change, wherektierder
in the Airy approximation (36.35) is taken into account. Tdpproximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using (36.35) up to ordé([ka] 1) is perfect up to the drawing
scale of figure 36.4 (lower panel).
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Figure 36.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.

N Itnerary:
! i iis

36.4 From quantum cycleto semiclassical cycle

The procedure for the semiclassical approximation of aiggperiodic itinerary
(36.20) of lengtm is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depetbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

S o

trASI2.. . ASnS1 — Z Z AlslsQ .. ASTSL
| sils smlsy
S —00

= lgp=—0c0

still has the structure of a “multi-trace” with respect tayatar momentum.

Each of the sumi)r;’?oc —as in the 1-disk case — is replaced byatson
contourresummation in terms of complex angular momenimThen the paths
below the reals-axes are transformed to paths above these axes, and thaiste
split into expressionwith andwithoutan explicit Watson sinf; ) denominator.

1. In the sin¢sn) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theessfon in
the saddle point approximation: either left or rigigecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the sinfs ) -dependent integrals, we close the contour in the upger
plane and evaluate the integral at the resi&lﬁ?(kas):o. Then we use

the Airy approximation fod, (kas) and H&)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometriced pafear. If
they do show up, the analysis has to be extended to the cas@oiding saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contdcthe point particle
with the disks:

1. either geometrical which in turn splits into three altgives
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(a) specular reflectiono the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turns

see figure 36.5. The specular reflection to the right is lirtkddft-handed creep-
ing paths with at least one knot. The specular reflection ¢oléft matches a
right-handed creeping paths with at least one knot, whefreashortest left- and
right-handed creeping paths in the ghost tunneling castopodogically trivial.
In fact, the topology of the creeping paths encodes the eHmétween the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positiveitdefin length: the
creeping amplitude has to decrease during the creepinggspas tangential rays
are constantly emitted. In mathematical terms, it meanisttigacreeping angle
has to be positive. Thus, the positivity of ttveo creeping angles for the shortest
left andright turn uniquely specifies the topology of the creepingtises which
in turn specifies which of the three alternatives, eithecs|ae reflection to the
right or to the left or straight “ghost” tunneling throughsKij, is realized for the
semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in théofeing to the scat-
tering fromN < oo non-overlappinglisksfixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

trASnSzAszss . ASn-lsnASnsl

becomes a standard periodic orbit labeled by the symboksegs; s, - - - s,. De-
pending on the geometry, the individual legs — s — S+1 result either from a
standard specular reflection at dilor from a ghost path passing straight through
disk s. If furthermore creeping contributions are taken into acttpthe symbolic
dynamics has to be generalized from single-letter symitsglso triple-letter sym-
bols {s, o x 6} with ¢ > 1 integer valued and = 0,+1 * By definition, the
valueo; = 0 represents the non-creeping case, such{thd@x ¢} = {s, 0} = {s}
reduces to the old single-letter symbol. The magnitude obr@zero(; corre-
sponds to creeping sections of mode nunihgmwhereas the sige; = +1 signals
whether the creeping path turns around the disi the positive or negative sense.
Additional full creeping turns around a diskcan be summed up as a geometrical
series; therefore they do not lead to the introduction ofrtnér symbol.
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Figure 36.6: (a) The ghostitinerary (2. 3,4). (b)
The parent itinerary (B, 4). °

36.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk djscan be shown to
have the same weight as the corresponding itinerary withweis th symbol.
Thus, semiclassically, they cancel each other in the fr +d) expansion, where
they are multiplied by the permutation factofr with the integer counting the
repeats. For example, let,@ 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trad¥ .trBy convention,
an underlined disk index signals a ghost passage (as in f8fu6a), with cor-
responding semiclassical ghost traversal matrices alderlined, A'+LA*LI+2.
Then its semiclassical, geometrical contribution to tdlr(A) cancels exactly
against the one of its “parent” itinerary,@ 4) (see figure 36.6b) resulting from
the 3rd-order trace:

1 12723534541 1 13534741
—Z(4A—A—A A )—5(3A A34ALL)
= (+1-1)AMA3AM =0,

The prefactors-1/3 and-1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic peatiart of the periodic
itineraries, and the cancellation stems from the rule

"'Ai’ﬂéﬂ'Hz“' — ---(*ALHZ)--- ) (3636)

The reader might study more complicated examples and cuewiarself that the
rule (36.36).is sflicient to cancel any primary or repeated periodic orbit witke o
or more ghost sections completely out of the expansion of(fr+ A) and there-
fore also out of the cumulant expansion in the semiclas$iwét: Any periodic
orbit of lengthm with n(< m) ghost sections is cancelled by the sum of all ‘par-
ent’ periodic orbits of lengtm — i (with 1 < i < nandi ghost sections removed)
weighted by their cyclic permutation factor and by the pecda resulting from
the trace-log expansion. This is the way in which the nontrivial pruning floe
N-disk billiards can be derived from the exact quantum meicaamexpressions
in the semiclassical limit. Note that there must exist asieme index in any
given periodic itinerary which corresponds to a non-ghost section, sirtbere
wise the itinerary in the semiclassical limit could only leaight and therefore
nonperiodic. Furthermore, the series in the ghost canceléias to stop at the
2nd-order trace, #2, as trA itself vanishes identically in the full domain which
is considered here.

LActually, these are double-letter symbolsoasandl; are only counted as a product.
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36.5 Heisenberg uncertainty

Where is the boundarya ~ 2™1L/a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicatapy of the 3-disk
repeller. When the wave numbkis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicaleyn.The quantum wave
packet which explores the repelling set has to disentanyldifierent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ord&yr
between any two successive disk collisions. SuccessiVisioak are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxireakible truncation in
the cycle expansion order by the highest quantum resolattamable for a given
wavenumbek.

Commentary

Remark 36.1 Sources.  This chapter is based in its entirety on ref. [K.1]; the reade
is referred to the full exposition for the proofs and disiisf details omitted here.
sect. 36.3 is based on appendix E of ref. [K.1]. We follow Erf85.19] in applying the
Watson contour method [35.20] to (36.23). The Airy and Deagproximations to the
Hankel functions are given in ref. [35.21], the Airy expamsdf the 1-disk zeros can be
found in ref. [35.22].For details see refs. [35.19, 35.223, K.1]. That the interior do-
mains of the disks are excluded relatively to the free eumiuwithout scattering obstacles
was noted in refs. [35.24, 35.15].

The procedure for the semiclassical approximation of a igéneeriodic itinerary
(36.20) of lengthn can be found in ref. [K.1] for the case of tiedisk systems. The
reader interested in the details of the semiclassical téxtucs advised to consult this
reference.

The ghost orbits were introduced in refs. [35.12, 35.24].

Remark 36.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [35.14,
35.15] based on ref. [35.11] or ref. [35.1]) the transitioanh the quantum mechan-
ics to the semiclassics of scattering problems has beeprpeet via the semiclassical
limit of the left hand sides of the Krein-Friedel-Lloyd sumr fthe (integrated) spectral

density [K.6, K.7, 35.8, 35.9]. See also ref. [35.13] for adem discussion of the Krein-

Friedel-Lloyd formula and refs. [35.1, 35.17] for the cootien of (35.17) to the Wigner

time delay.

The order of the two limits in (35.18) and (35.17) is essénsiee e.g. Balian and
Bloch [35.11] who stress that smoothed level densitiesIshmeiinserted into the Friedel
sums.

The necessity of theie in the semiclassical calculation can be understood by purel
phenomenological considerations: Without taéerm there is no reason why one should
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be able to neglect spurious periodic orbits which solelytleee because of the introduc-

tion of the confining boundary. The subtraction of the sec@mdpty) reference system

helps just in the removal of those spurious periodic orbhgtvnever encounter the scat-

tering region. The ones that do would still survive the finsiit b — oo, if they were not

damped out by theie term. exercise 35.1

Remark 36.3 T, CS, DS and ASS matrices are trace-class  In refs. [K.1] it has
explicitly been shown that th€-matrix as well as th€s, DS and ASS-matrices of the
scattering problem fronN < oo non-overlapping finite disks are all trace-class. The
corresponding properties for the single-disk systemsiigsquéary easy to prove.
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