Chapter 5

Cycle stability

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

and the ways in which the orbits intertwine— are invariandema general

continuous change of coordinates. Equilibria and periodiits areflow-
invariant sets, in the sense that the flow only shifts points along agkeriorbit,
but the periodic orbit as the set of periodic points remairshanged in time. Sur-
prisingly, there also exist quantities that depend on th@®naf metric distance
between points, but nevertheless do not change value urgtapeth change of
coordinates. Local quantities such as the eigenvalues wlilép and periodic
orbits, and global quantities such as Lyapunov exponengsrierentropy, and
fractal dimensions are examples of properties of dynansigstems independent
of coordinate choice.

TOPOLOGICAL reATURES Of @ dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, liretability of equi-
libria and periodic orbits of flows and maps. This will givemastric information
about local dynamics, as well as the key concept, the coradepheighborhood
of a pointx: its size is primarily determined by the number of expandiirgc-
tions, and the rates of expansion along them: contractirectibns play only a
secondary role (see sect. 5.6).

If you already know that the eigenvalues of periodic orbitsiavariants of a
flow, skip this chapter.

fast track:
W chapter 7, p. 134
As noted on page 41, a trajectory can be stationary, perardiperiodic. For
chaotic systems almost all trajectories are aperiodicentieeless, equilibria and
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periodic orbits turn out to be the key to unraveling chaotioamics. Here we
note a few of the properties that make them so precious tocaishe

5.1 Equilibria

At the still point, there the dance is.
—T. S. Eliot, Four Quartets - Burnt Nortonoo:1s:30)

For a start, consider the case whegés an equilibrium point (2.8). Expanding
around the equilibrium pointg, using the fact that the stability matrx = A(xq)
in (4.2) is constant, and integratinéf(x) = xq + eAl(x — Xg) + - -+, we verify that
the simple formula (4.15) applies also to the Jacobian mafrian equilibrium
point,

Iy =, Iy = 3(xq) . Ag=AlXg). (5.1)

As an equilibrium point is stationary, time plays no roleddhe eigenvalues and
the eigenvectors of stability matrik, evaluated at the equilibrium poirg,

Al = 2 el (5.2)

describe the linearized neighborhood of the equilibriurmpavith stability ex-
0 — 0 5 () ; i f
ponentsly’ = ug’ + iwg’ independent of any particular coordinate choice.
o Ifall ) <0, then the equilibrium is stable, orsink

o If someu) < 0, and othep) > 0, the equilibrium is hyperbolic, or a
saddle

e Ifall ) > 0, then the equilibrium is repelling, orsmurce

o If someyu()) = 0, think again (you have a symmetry or a bifurcation).

The eigenvectors (5.2) are also the eigenvectors of thevitataatrix, Jj el =
exp@xlg”) el

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they at@pological invariants: a
fixed point remains a fixed point for any choice of coordinatasd similarly a
periodic orbit remains periodic in any representation &f dlynamics. Any re-
parametrization of a dynamical system that preservesptdagy has to preserve
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Figure 5.1: For a prime cyclep, Floquet matrix
J, returns an infinitesimal spherical neighborhood of
X € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirectiog of J,(x) given by the
Floquet multiplier|A;|. These ratios are invariant un-
der smooth nonlinear reparametrizations of state spag
coordinates, and are intrinsic property of cyple

topological relations between periodic orbits, such as tieative inter-windings
and knots. So the mere existence of periodic orbifEcas to partially organize
the spatial layout of a non—wandering set. No less impar@sitwe shall now
show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—-wandering set.

We start by noting that due to the multiplicative structu4e2Q) of Jacobian
matrices, the Jacobian matrix for thib repeat of a prime cyclp of periodT is

IT) = ITEEITR9) - ITETIT(X) = Ip(¥)' (5.3)

where Jp(x) = JT(X) is the Jacobian matrix for a single traversal of the prime
cycle p, x € My is any point on the cycle, anflT(X) = x as f'(x) returns tox
every multiple of the period. Hence, it sffices to restrict our considerations to
the stability of prime cycles.

fast track:
@ sect. 5.3, p. 103
5.2.1 Cycle stability

The time-dependent-periodic vector fields, such as the flow linearized around

a periodic orbit, are described by Floquet theory. Hencenfrmw on we shall appendix C.2.1

refer to a Jacobian matrix evaluated on a periodic glither as adxd] Floquet
matrix J, or a [[d—1) x (d—1)] monodromy matrix M, to its eigenvalues\; as
Floquet multipliers(4.7), and to/l(p') = y(pj) + iw(pl) as Floguet exponents The
stretchingcontraction rates per unit time are given by the real partElofjuet

exponents

) 1
uy = 7, 0|l - 54

The factor ¥T, in the definition of the Floquet exponents is motivated bydts
for the linear dynamical systems, for example (4.31). (fFegically, a Floquet
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Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory (t), except those on its center &;
and stable manifolds. X (T)

exponent is not a Lyapunov exponent (6.11) evaluated on eriedothe prime

cycle p; read chapter 6). When;j is real, we do care abowt) = Aj/|Aj| €

{+1,-1}, the sign of thejth Floquet multiplier. Ifo) = —1 and|A|| # 1, the cor- section 7.3
responding eigen-direction is said to ibgerse hyperbolicKeeping track of this

by case-by-case enumeration is an unnecessary nuisamoessof our formulas

will be stated in terms of the Floquet multipliess rather than in the terms of the
multiplier signso-(, exponentg()) and phases ().

In dynamics the expanding directionfe| > 1, have to be taken care of first,
while the contracting directiond.¢| < 1 tend to take care of themselves, hence we
always order multiplierg\y in order of decreasing magnitugle;| > |Ag| > ... >
IAgl. SincelAj| = €4, this is the same as ordering pfP) > u@ > ... > 4@ . We
sort the Floquet multiplier§A 1, Ap2, ..., Apg} of the Floquet matrix evaluated
on thep-cycle into three setge, m, c}

expanding:  {Ale = {Apj:|Apj|>1)
We =0 >0
marginal:  {Alm = {Apj:|Apj|=1 (55)
Wm = 0 40 =g
contracting:  {Ale = {Apj:|Apj| <1}

We = 4 <0

In what follows, the volume of expanding manifold will play @anportant role.
We denote byA, (no jth eigenvalue index) the product ekpandingFlogquet
multipliers

Ap=] ] Ape. (5.6)

As Jp is a real matrix, complex eigenvalues always come in comptejugate
pairs,Apji1 = A;i, so the product (5.6) is always real.

A periodic orbit of a continuous-time flow, or of a map, or a fixgoint of a
map is p. 99
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stable asinkor alimit cycleif all |Aj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal expofergerturbations
tangent to the cycle, see sect. 5.3.1, are strictly negdtiveu® > ().

hyperbolicor a saddle, unstable to perturbations outside its stabiefai
if some|Ajl > 1, and otherAj| < 1 (a set ofu) > umin > 0 is strictly
positive, the rest is strictly negative).

elliptic, neutralor marginalif all |Aj| = 1 () = 0).

partially hyperbolic if u) = 0 for a subset of exponents (other than the
longitudinal one).

repelling or asource unstable to any perturbationafl |A;| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal e&p are strictly
positive, (M > u@ > 0).

The region of system parameter values for which a perioditt pris stable is
called thestability windowof p. The set of initial points that are asymptotically
attracted toM,, ast — +co (for a fixed set of system parameter values) is called
the basin of attractionof limit cycle p.  Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said taniséable see figure 5.2. section 7.4

If all Floguet exponents (other than the vanishing longitudirpbaent) ofall
periodic orbits of a flow are strictly bounded away from zehe flow is said to
behyperbolic Otherwise the flow is said to @nhyperbolic A confined smooth
flow or map is generically nonhyperbolic, with partial efigity or marginality
expected only in presence of continuous symmetries, orifardation param-
eter values. As we shall see in chapter 10, in presence ofncanis symme-
tries equilibria and periodic orbits are not likely solutsy and their role is played
by higher-dimensional tori, relative equilibria and relatperiodic orbits. For
Hamiltonian flows the symplectic Sg(symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a prolifenaof elliptic and partially
hyperbolic tori. section 7.5

Henriette Roux: In my 61,506-dimensional computation ofeailr-Stokes equi-
librium | generated about 30 eigenvectors before | wanteddee on. How many
of these eigenvectors are worth generating for a particdetion and why? chapter 26

A: Arule of the thumb is that you need all equilibrium eigelmess/ periodic orbit
Floquet exponents with positive real parts, and at leagtetinegative exponents
whose magnitude is less or comparable to the largest expgedienvalue. More
precisely; keep adding the next least contracting eigeevéd the sum of the
preceding ones as long as the sum is positive (Kaplan-Yaiterion). Then, just
to be conservative, double the number of eigenvalues yqu Réri do not need to
worry about the remaining (60 thousand!) eigen-directimnsvhich the negative
eigenvalues are of larger magnitude, as they always cdntremlinear terms
cannot mix them up in such a way that expansion in some direstoverwhelms
the strongly contracting ones.
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example 5.1

5.3 Floquet multipliers are invariant 3%&
The 1-dimensional map Floquet multiplier (5.21) is a prddafcderivatives

over all points around the cycle, and is therefore indepetndewhich periodic

point is chosen as the initial one. In higher dimensions trenfof the Floquet

matrix Jp(Xo) in (5.3) does depend on the choice of coordinates and thialini

point Xo € Mp. Nevertheless, as we shall now show, the cytEuet multipliers

are intrinsic property of a cycle in any dimension. Consitherith eigenvalue,
eigenvector pairA;, el) computed fromJ,, evaluated at a periodic point

I eV = AjeD(x), xeM,. (5.7)
Consider another point on the cycle at timéater, X = f'(x) whose Floquet

matrix is Jp(X). By the semigroup property (4.20)T*' = 3T, and the Jacobian
matrix atx’ can be written either as

IT(®) = IT(X) (%) = Ip(x) (%)

or J'(X) Jp(X). Multiplying (5.7) by J'(X), we find that the Floquet matrix evalu-
ated atx’ has the same Floquet multiplier,

Jo(x) D) = AjeD(x), D)= 3D (x), (5.8)
but with the eigenvectoel) transported along the flow — x to e(x) =
Ji(x) el (x). Hence, in the spirit of the Floquet theory (appendix Q.2re can
define time-periodic eigenvectors (in a co-moving ‘Lagtiangrame’)

() = e 3 D), et = eD(x(t)), x(t) € Mp. (5.9)
Jp evaluated anywhere along the cycle has the same set of Flogugpliers
{A1. A2, -+, 1,--- ,Ag_1}. As quantities such as dp(x), detJy(x) depend only

on the eigenvalues af,(x) and not on the starting point in expressions such as
det(1 - J5(x)) we may omit reference t,

det(l - JL) = det(l - J[,(x)) foranyxe M,. (5.10)

We postpone the proof that the cycle Floquet multiplierssam@oth conjugacy
invariants of the flow to sect. 5.4; time-forward map (5.8)he special case of
this general property of smooth manifolds and their tangpates.
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Figure 5.3: Any two points along a periodic orbit X

p are mapped into themselves after one cycle period e
T, hence a longitudinal displacemait = v(Xo)dt is
mapped into itself by the cycle Jacobian matfjx

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either anuamts symmetry of the

flow (which one should immediately exploit to simplify theoptem), or a non-

hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical

of parameter values for which bifurcations occur) one hagadeyond linear

stability, deal with Jordan type subspaces (see examp)eah8 sub-exponential

growth rates, such &8. For flow-invariant solutions such as periodic orbits, the

time evolution is itself a continuous symmetry, hence aqukci orbit of a flow

always has anarginal Floquet multiplieras we now show. chapter 24

exercise 5.1

The Jacobian matrig'(x) transports the velocity field(x) by (4.9),v(x(t)) =

JY(x0) V(%o) . In general the velocity at point(t) does not point in the same di-

rection as the velocity at poing, so this is not an eigenvalue condition fd;

the Jacobian matrix computed for an arbitrary segment offlitrary trajectory

has no invariant meaning. However, if the orbit is periodi@,p) = x(0), after a

complete period

Ip()V(X) = V(X), XeMp. (5.11)

Two successive points on the cycle initially distaee= x'(0) — x(0) apart, are
separated by the exactly same distance after a completi pa(T) = 6%, see
figure 5.3, hence for a periodic orbit offeow the velocity fieldv at any point
along cycle is an eigenvectet’(x) = v(x) of the Jacobian matrid, with the unit
Floquet multiplier, zero Floquet exponent

A=1, a0 =0, (5.12)

exercise B.3

The continuous invariance that gives rise to this margidagiiet multiplier is
the invariance of a cycle (the sétl,) under a time translation of its points along
the cycle. As we shall see in sect. 5.5, this marginal stghdlirection can be
eliminated by cutting the cycle by a Poincaré section apthoing the continuous
flow Floquet matrix by the Floquet matrix of the Poincar@&iratmap.

If the flow is governed by a time-independent Hamiltoniae, ¢nergy is con-
served, and that leads to an additional marginal Floquetiplial (we shall show
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in sect. 7.4 that due to the symplectic invariance (7.27)eignvalues come in
pairs). Further marginal eigenvalues arise in presencertdfrzious symmetries,
as discussed in chapter 10.

5.4 Floquet multipliers are metric invariants o

In sect. 5.3 we established that for a given flow, the Flogugtipliers are intrin- Qﬁ
sic to a given cycle, independent of the starting point altegcycle. Now we

prove a much stronger statement: cycle Floquet multipheesmooth conjugacy

or metric invariantsof the flow, the same iany representation of the dynamical
system. That follows by elementaryfidirential geometry considerations:

If the same dynamics is given by a mé&gpn x coordinates, and a mapin
they = h(x) coordinates, therf andg (or any other good representation) are
related by amooth conjugacya reparameterization and a coordinate transforma-
tion g = ho f oh™* which maps nearby points dfinto nearby points of. As both
f andg are arbitrary representations of the dynamical systemetipécit form
of the conjugacyh is of no interest, only the properties invariant under aangr
formationh are of general import. Furthermore, a good representationld not
mutilate the data; the mappitigmust be amooth conjugacwhich maps nearby
points of f into nearby points o§.

This smoothness guarantees that the cycles are not onliptppal invariants,
but that their linearized neighborhoods are also metriariants. For a fixed point
f(x) = x of a 1-dimensional map this follows from the chain rule foridgtives,

o) = H(F o i) (h i) —
gy = W(fohy)f'(h l(v))h,(x)
= h’(x)f’(x)WlX):f’(x). (5.13)

In d dimensions the relationship between the mapsfiiedint coordinate rep-
resentations is agaimo h = ho f. The chain rule now related, the Jacobian
matrix of the mayy, to the Jacobian matrix of majp

)i = T(F Qi IWT K (5.14)
where
I(X)ik = g—i and  T(x)l= z—)’;‘(.

If xis an equilibrium pointx = f(x), I is the matrix inverse of ~, and (5.14)
is asimilarity transformation and thus preserves eigenvalues. It is eaggrify
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that in the case of periogj, cycle Ji(y) andJy(x) are again related by a similarity
transformation. (Note, though, that this is not true 8¢x) with r # n,). As

stability of a flow can always be reduced to stability of a ai return map, a

Floguet multiplier of any cycle, for a flow or a map in arbiyradimension, is a

metric invariant of the dynamical system. exercise B.3

Theith Floquet (multiplier, eigenvector) pain(, e?) are computed frond
evaluated at a periodic poing J(X) P (x) = Aie(x), x € My. Multiplying
by I'(x) from the left, and inserting = T'(x)"1I'(x), we find that the] evaluated at
y = h(x) has the same Floquet multiplier,

Jpy) €0(yy = Ai ey, (5.15)

but with the eigenvectog®) (x) mapped t& (y) = T(x) el ().

5.5 Stability of Poincaré map cycles

O

(R. Paskauskas and P. Cvitanovic)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.25)

with all primes dropped, as the initial and the final pointscie, X' = fT(x) = x.
If the periodic orbitp pierces the Poincaré sectiartimes, the same observation
applies to thenth iterate ofP.

We have already established in (4.26) tr)at the velodiyy is a zero eigen-
vector of the Poincaré section Floquet matdy = 0. Consider nextA,, e(”)),

the full state spaceth (eigenvalue, eigenvector) pair (5.7), evaluated at gier
point on a Poincaré section,

JX) () = Ay (%), xeP. (5.17)

Multiplying (5.16) by &® and inserting (5.17), we find that the full state space
Floguet matrix and the Poincaré section Floquet matrirave the same Floquet
multiplier

JX) &N () = A, &D(x), xeP, (5.18)
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where&® is a projection of the full state space eigenvector onto thiedarée
section:

@)y, _ | <. Vi Uk o
@) = (‘5|k o U))(e‘ N (5.19)

Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multipliergA1, Az, - - - Aq} as the full state space Floquet matiix
except for the marginal unit Floquet multiplier (5.12).

As established in (4.26), due to the continuous symmetrr}e(t'nvariance)ip
is a rankd—1 matrix. We shall refer to the rankd{ 1-N)x (d—1—-N)] submatrix
with N-1 continuous symmetries quotiented out asrti@nodromy matrix
(from Greekmono-= alone, single, andlromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuousregirnes is discussed
in chapter 10 below.

5.6 There goes the neighborhood

’ °
In what follows, our task will be to determine the size afeighborhoodf x(t), Q
and that is why we care about the Floguet multipliers, ane@afly the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) tivas remain in the
neighborhood of the trajectory(t) = f!(xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstabletitires: all chaos arises
from flights along these these directions. The sub-volutig| = [T Ax; of the
set of points which get no further away froff(xo) thanL, the typical size of the
system, is fixed by the condition that;A; = O(L) in each expanding direction
i. Hence the neighborhood size scale$fs,| o« O(Lde)/lAp| o 1/|Ap| whereAp
is the product of expanding Floquet multipliers (5.6) ordgntracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, andefi5.1 illustrate
intersection of initial volume with its return, and chapté&2 and 18 illustrate the
key role that the unstable directions play in systematicpdirtitioning the state
space of a given dynamical system. The contracting dinestéaze so secondary
that even infinitely many of them (for example, the infinityaaintracting eigen-
directions of the spatiotemporally chaotic dynamics dbscrby a PDE will not
matter.

So the dynamically important information is carried by thganding sub-
volume, not the total volume computed so easily in (4.29atThalso the reason
why the dissipative and the Hamiltonian chaotic flows are mmore alike than
one would have naively expected for ‘compressihig’ ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding direct Whether the
contracting eigenvalues are inverses of the expanding @nest is of secondary
importance. As long as the number of unstable directionsitefithe same theory
applies both to the finite-dimensional ODEs and infinite-ligsional PDESs.
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Résum é

Periodic orbits play a central role in any invariant chagaeation of the dynam-
ics, because (a) their existence and inter-relations @aopaogical coordinate-
independent property of the dynamics, and (b) their Flogudtipliers form an
infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remain
invariant under any smooth nonlinear change of coordinatesho f oh™1 . Let
us summarize the linearized flow notation used throughaiCtaosBook.

Differential formulation, flows: Equations
X=v, ox = AdX

govern the dynamics in the tangent bundigik) € T M obtained by adjoining the
d-dimensional tangent spaée € T My to every pointx € M in thed-dimension-

al state spaca! c RY. Thestability matrix A= dv/dx describes the instantaneous
rate of shearing of the infinitesimal neighborhoodx(j by the flow.

Finite time formulation, maps: A discrete sets of trajectory pointgo, xq, - - -,
Xn,---} € M can be generated by composing finite-time maps, either gigen
Xni1 = f(Xn), Or obtained by integrating the dynamical equations

the1
Xnr1 = F(Xn) = Xn +f drv(x(7)), Aty = thy1 — th, (5.20)
th
for a discrete sequence of timggg t1, - - -, tn, - - -}, specified by some criterion such

as strobing or Poincaré sections. In the discrete timedtation the dynamics in
the tangent bundlex(6x) € T M is governed by

Xnr1 = F(%n),  0%ne1 = I(Xn) 6%n, I(%n) = 3*(%n)

whereJ(Xn) = 0Xn41/0%n = fdr exp (A7) is the 1-time step Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium(xg) = 0

is described by the eigenvalues and eigenvedttis )} of the stability matrix
A evaluated at the equilibrium point, and the linear stapiiif a periodic orbit
fT(x) = %, xe My,

3P = A D),  Aj=oDe”T,

by its Floquet multipliers, vectors and exponefntg, e}, whered® = 1) +jw(.

For every continuous symmetry there is a marginal eigegetion, withA;j = 1,

A0 = 0. with all 1+ N continuous symmetries quotiented out (Poincaré sections
for time, slices for continuous symmetries of dynamics,depter 10.4.3) linear
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stability of a periodic orbit (and, more generally, of a aly hyperbolic torus)
is described by the §¢1-N)x (d-1-N)] monodromy matrix, all of whose Floquet
multipliers|Aj| # 1 are generically strictly hyperbolic,

Mp() eD(x) = AjeD(x),  xe My/G.

We shall show in chapter 11 that extending the linearizebilgtahyperbolic
eigen-directions into stable and unstable manifolds giéltportant global infor-
mation about the topological organization of state spachathatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaeteby the product of
expanding Floquet multipliers d,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily higimension.

in depth: fast track:
” appendix C, p. 825 W chapter 9.4, p. 174
Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’.  Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematéee used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ iaster on the ear than ‘pseudo-
periodic-orbit.” In Soviet times obscure abbreviationgeva rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). \\¢g te unstable periodic
orbits simply as ‘periodic orbits’, and the stable ones itioycles’. Lost in the mists of
time is the excitement experienced by the first physicisttoaler that there are periodic
orbits other than the limit cycles reached by mindless cdatmn forward in time; but
once one understands that there are at most several statleyicles (SPOs?) as opposed
to the Smale horseshoe infinities of unstable cycles (UR@&3)t is gained by prefix 'U'?
A bit like calling all bicycles ‘unstable bicycles’.

Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent anic
periodic vector fields is a classical subject in the theomjifiérential equations [5.1, 5.2].
In physics literature Floquet exponents often assunfieréint names according to the
context where the theory is applied: they are called Blocasphk in the discussion of
Schrddinger equation with a periodic potential [5.3], oagi-momenta in the quantum
theory of time-periodic Hamiltonians. Here a discussiorFlufquet theory is given in
appendix C.2.1. For further reading on periodic orbits,stdnMoehlis and K. Josi¢t?7]
Scholarpedia.org article.

5.7 Examples

The reader is urged to study the examples collected hereetlionrback to the
main text, click on [click to return] pointer on the margin.
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Example 5.1 Stabily of cycles of 1-dimensional maps:  The stabiliy of a prime -

cycle p of a 1-dimensional map follows from the chain rule (4.42) for stability of the npth
iterate of the map

g np-1 Exercises
Ao = g 100 = [ | F0m). = 1M00). (5.21)
m=0 5.1. A limit cycle with analytic Floquet exponent. Ermentrout
. e o . ) o There are only two examples of nonlinear flows for
{\p is a property of th.e_c_ycle, not the initial periodic point, as taking any periodic point which the Floquet multipliers can be evaluated ana5.2. The other example of a limit cycle with analytic Flo
in the p cycle as the initial one yields the same Ap. lyticall. Both are cheats. One example is the 2- quet exponent. What is the other example o
A critical point X; is a value of x for which the mapping f(X) has vanishing dimensional flow nonlinear flow for which the Floquet multipliers car
derivative, f'(x.) = 0. A periodic orbit of a 1-dimensional map is stable if . 1 evaluated analytically? Hint: email G.B. Ermentrou
q = p+qll-0° —-p
_ |+ , g , p = —q+pl-?-pd). 5.3. Yet another example of a limit cycle with analyti
|Ap| P00 F0,-a) - PO (X1)| <1, Floquet exponent. Prove G.B. Ermentrout wro
d ble if the orbit includ itical poi hat the ab d ish Determine all periodic solutions of this flow, and deter- by solving a third example (or more) of a nonlinear:
and superstable (” 1eor ft Includes a critical point, so that the above pro uct vanishes. mine analytically their Floquet exponents. Hint: go to for which the Floquet multipliers can be evaluated
For a stable periodic orbit of period n the slope Ap of the nth iterate f"(X) evaluated polar coordinatesy p) = (r cosé, r siné) G. Bard Iytically
on a periodic point x (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1, ’ ' ' '
p-cycle is unstable.
Example 5.2 Stability of cycles for maps: No matter what method one uses to References
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by [5.1] G. Floquet, “Sur les equationsfitirentielles lineaires & cfigients peri-
picking any periodic point as a starting point, running once around a prime cycle, and odique,”Ann. Ecole Norm. Ser. 22, 47 (1883).
multiplying the individual periodic point Jacobian matrices according to (4.22). For ' '
example, the Floquet matrix My, for a prime cycle p of length ny of the Hénon map [5.2] E. L. Ince,Ordinary Differential EquationgDover, New York 1953).

(3.17) is given by (4.43),
[5.3] N. W. Ashcroft and N. D. MerminSolid State PhysicgHolt, Rinehart and
. .
) b Winston, New York 1976).
woa=[]( 5 5). wem

k=np

and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length ny

w-cor[1(5 1) 2 9)

k=n,

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(Xq,) - -+ M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
exercise 13.10. click to return: p. ??
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