
Chapter 7

Fixed points

S
o far we have learned that periodic orbits offer invariant characterization of

dynamics in two ways: (a) their existence and inter-relations are a topologi-

cal, coordinate-independent property of the dynamics, and (b) their Floquet

multipliers form an infinite set of metric invariants. Typically they are unstable

and hard to find. But do we really need them? By chapter 21 you will understand

that the answer is a resounding yes.

Sadly, searching for periodic orbits will never become as popular as a week

on Côte d’Azur, or publishing yet another log-log plot in Phys. Rev. Letters. This

chapter is one of four hands-on chapters on extraction of periodic orbits, and can

be skipped on first reading - you can return to it whenever the need for finding

actual cycles arises.

fast track:

chapter 8, p. 135

A serious cyclist will ask “Where are the cycles? And what if they are long?”

and read chapter 16. She will want to also learn about the variational methods chapter 16

which will enable her to find arbitrarily long, arbitrarily unstable cycles, and read

chapter 33. So here is the key and unavoidable numerical task we must face up chapter 33

to: find “all(?)” solutions (x, T), x ∈ Rd, T ∈ R+ satisfying the periodic orbit

condition

f T (x) = x , T > 0 , (flow)

f n(x) = x , n ≥ 1 , (map) (7.1)

for a given flow or map.

A prime cycle p of period Tp is a single traversal of the periodic orbit, so our

task will be to find a periodic point x ∈ Mp and the shortest time Tp for which
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Figure 7.1: The inverse time path to the 01-cycle of

the logistic map f (x) = 4x(1 − x) from an initial guess

of x = 0.2. At each inverse iteration we chose the 0

(respectively 1) branch.
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(7.1) has a solution. A periodic point of a flow f t crossing a Poincaré section

n times is a fixed point of Pn , the nth iterate of P, the return map (3.1); hence,

we shall refer to all cycles as “fixed points” in this chapter. By cyclic invariance, section 5.3

Floquet multipliers and the period of the cycle are independent of the choice of

the initial point, so it will suffice to solve (7.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basin of attraction, it

can be found by integrating the flow for a sufficiently long time. If the cycle is

unstable, simple integration forward in time will not reveal it, and the methods

to be described here need to be deployed. In essence, any method for finding

a cycle is based on devising a new dynamical system which possesses the same

cycle, but for which this cycle is attractive. Beyond that, there is a great freedom

in constructing such systems, and many different methods are used in practice.

7.1 One-dimensional maps

(F. Christiansen)

So far we have given some qualitative hints for how to set out on a periodic

orbit hunt. In what follows, we teach you how to nail down periodic orbits numer-

ically.

7.1.1 Inverse iteration

Let us first consider a very simple method to find the unstable cycles of a 1-

dimensional map such as the logistic map. Unstable cycles of 1-dimensional maps

are attracting cycles of the inverse map. The inverse map is not single-valued, so

at each backward iteration we have a choice of branch to make. By choosing the

branch according to the symbolic dynamics of the cycle we are trying to find, we

will automatically converge to the desired cycle. The rate of convergence is given

by the stability of the cycle, i.e., the convergence is exponentially fast. Figure 7.1

shows such a path to the 01-cycle of the logistic map. exercise 16.11

The method of inverse iteration is fine for finding cycles for 1-d maps and

some 2-dimensional systems such as the repeller of exercise 16.11. It is not par-

ticularly fast, however, especially if the inverse map is not known analytically. It

fixed - 19jan2015 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 7. FIXED POINTS 128

Figure 7.2: Convergence of Newton method (♦) vs.

inverse iteration (+). The error after n iterations

searching for the 01-cycle of the logistic map f (x) =

4x(1− x) with an initial starting guess of x1 = 0.2, x2 =

0.8. The y-axis is log10 of the error. The difference

between the exponential convergence of the inverse it-

eration method and the super-exponential convergence

of Newton method is dramatic.
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also completely fails for higher dimensional systems where we have both stable

and unstable directions. Inverse iteration will exchange these, but we will still be

left with both stable and unstable directions. The best strategy is to directly attack

the problem of finding solutions of f T (x) = x.

7.1.2 Newton method

Newton method for determining a zero x∗ of a function F(x) of one variable is

based on a linearization around a starting guess x0:

F(x) ≈ F(x(0)) + F′(x(0))(x − x(0)). (7.2)

An approximate solution x(1) of F(x) = 0 is

x(1) = x(0) − F(x(0))/F′(x(0)). (7.3)

The approximate solution can then be used as a new starting guess in an iterative

process. A fixed point of a map f is a solution to F(x) = x − f (x) = 0. We

determine x by iterating

x(m) = g(x(m−1)) = x(m−1) − F(x(m−1))/F′(x(m−1))

= x(m−1) −
1

1 − f ′(x(m−1))
(x(m−1) − f (x(m−1))) . (7.4)

Provided that the fixed point is not marginally stable, f ′(x) , 1 at the fixed point

x, a fixed point of f is a super-stable fixed point of the Newton-Raphson map g,

g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration

will converge super-exponentially fast.

To illustrate the efficiency of Newton method we compare it to the inverse

iteration method in figure 7.2. Newton method wins hands down: the number

of significant digits of the accuracy of the x estimate typically doubles with each

iteration.

In order to avoid jumping too far from the desired x∗ (see figure 7.3), one often

initiates the search by the damped Newton method,

∆x(m) = x(m+1) − x(m) = −
F(x(m))

F′(x(m))
∆τ , 0 < ∆τ ≤ 1 ,
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Figure 7.3: Newton method: bad initial guess x(b)

leads to the Newton estimate x(b+1) far away from the

desired zero of F(x). Sequence · · · , x(m), x(m+1), · · · ,

starting with a good guess converges super-

exponentially to x∗. The method diverges if it iterates

into the basin of attraction of a local minimum xc. x(b)
x

F(x)
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takes small ∆τ steps at the beginning, reinstating to the full ∆τ = 1 jumps only

when sufficiently close to the desired x∗.

example 7.1

p. 131

7.2 Flows

(R. Paškauskas and P. Cvitanović)

For a continuous time flow the periodic orbit the Floquet multiplier (5.12) along

the flow direction always equals unity; the separation of any two points along

a cycle remains unchanged after a completion of the cycle. More unit Floquet section 5.3.1

multipliers arise if the flow satisfies conservation laws, such as the symplectic in-

variance for Hamiltonian flows, or the dynamics is equivariant under a continuous

symmetry transformation. section 12.3

Let us apply the Newton method of (7.3) to search for periodic orbits with

unit Floquet multipliers, starting with the case of a continuous time flow. Assume

that the periodic orbit condition (7.1) holds for x + ∆x and T + ∆t, with the initial

guesses x and T close to the desired solution, i.e., with |∆x|, ∆t small. The Newton

setup (7.3)

0 = x + ∆x − f T+∆t(x + ∆x)

≈ x − f T (x) + (1 − J(x)) · ∆x − v( f T (x))∆t (7.5)

suffers from two shortcomings. First, we now need to solve not only for the pe-

riodic point x, but for the period T as well. Second, the marginal, unit Floquet

multiplier (5.12) along the flow direction (arising from the time-translation invari-

ance of a periodic orbit) renders the factor (1 − J) in (7.4) non-invertible: if x is

close to the solution, f T (x) ≈ x, then J(x) ·v(x) = v( f T (x)) ≈ v(x). If ∆x is parallel

to the velocity vector, the derivative term (1 − J) · ∆x ≈ 0, and it becomes harder

to invert (1 − J) as the iterations approach the solution.

As a periodic orbit p is a 1-dimensional set of points invariant under dynamics,

Newton guess is not improved by picking ∆x such that the new point lies on the
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orbit of the initial one, so we need to constrain the variation ∆x to directions

transverse to the flow, by requiring, for example, that

v(x) · ∆x = 0 . (7.6)

Combining this constraint with the variational condition (7.5) we obtain a Newton

setup for flows, best displayed in the matrix form:
[

1 − J(x) −v(x)
v(x) 0

] (

∆x

∆t

)

= −

(

x − f (x)
0

)

(7.7)

This illustrates the general strategy for determining periodic orbits in presence of

continuous symmetries - for each symmetry, pick a point on the orbit by imposing

a constraint, and compute the value of the corresponding continuous parameter

(here the period T) by iterating the enlarged set of Newton equations. Constraining

the variations to transverse ones thus fixes both of Newton’s shortcomings: it

breaks the time-translation invariance, and the period T can be read off once the

fixed point has been found (hence we omit the superscript in f T for the remainder

of this discussion).

More generally, the Poincaré surface of section technique of sect. 3.1 turns

the periodic orbit search into a fixed point search on a suitably defined surface of

section, with a neighboring point variation ∆x with respect to a reference point x

constrained to stay on the surface manifold (3.2),

U(x + ∆x) = U(x) = 0 . (7.8)

The price to pay are constraints imposed by the section: in order to stay on the

surface, arbitrary variation ∆x is not allowed.

example 7.2

p. 132

Résumé

There is no general computational algorithm that is guaranteed to find all solutions

(up to a given period Tmax) to the periodic orbit condition

f t+T (x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby trajec-

tories in chaotic dynamical systems, direct solution of the periodic orbit condition

can be numerically very unstable. With a sufficiently good initial guess for a point

x on the cycle, however, the Newton-Raphson formula
(

1 − J −v(x)
a 0

) (

δx

δT

)

=

(

f (x) − x

0

)

yields improved estimate x′ = x + δx, T ′ = T + δT . Newton-Raphson iteration

then yields the period T and the location of a periodic point xp in the Poincaré

section (xp − x0) · a = 0, where a is a vector normal to the Poincaré section at x0.
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Figure 7.4: (a) The y → P1(y, z) return map for

the x = 0, y > 0 Poincaré section of the Rössler

flow figure 2.6. (b) The 1-cycle found by taking

the fixed point yk+n = yk together with the fixed

point of the z → z return map (not shown) as an

initial guess (0, y(0), z(0)) for the Newton-Raphson

search. (c) The third iterate, yk+3 = P3
1
(yk , zk),

of the Poincaré return map (3.1) together with the

corresponding plot for zk+3 = P3
2
(yk, zk), is used

to pick initial guesses for the Newton-Raphson

searches for the two 3-cycles: (d) the 001 cycle,

and (e) the 011 cycle. (G. Simon)
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Commentary

Remark 7.1 Piecewise linear maps. The Lozi map (3.19) is linear, and hundred of

thousands of cycles can easily be computed by [2×2] matrix multiplication and inversion.

Remark 7.2 Newton gone wild. Skowronek and Gora [7.1] offer an interesting

discussion of Newton iterations gone wild while searching for roots of polynomials as

simple as x2 + 1 = 0.

7.3 Examples

Example 7.1 Rössler attractor. We run a long simulation of the Rössler flow

f t, plot a Poincaré section, as in figure 3.2, and extract the corresponding Poincaré

return map P, as in figure 3.3. Luck is with us, since figure 7.4 (a) return map

y → P1(y, z) is quite reminiscent of a parabola, we take the unimodal map symbolic

dynamics, sect. 14.3, as our guess for the covering dynamics. Strictly speaking, the

attractor is “fractal,” but for all practical purposes the return map is 1-dimensional; your

printer will need a resolution better than 1014 dots per inch to even begin resolving its

structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré

section of the Rössler flow figure 2.6 are fixed points (y, z) = Pn(y, z) of the nth Poincaré

return map.

Using the fixed point yk+1 = yk in figure 7.4 (a) together with the simultaneous

fixed point of the z → P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0))

for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find

the cycle figure 7.4 (b) with the Poincaré section point (0, yp, zp), period Tp, expand-

ing, marginal, contracting Floquet multipliers (Λp,e,Λp,m,Λp,c), and the corresponding

Lyapunov exponents (λp,e, λp,m, λp,c): exercise 7.1

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1+ 10−14
,−1.29 × 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (7.9)
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The Newton-Raphson method that we used is described in sect. 7.2.

As an example of a search for longer cycles, we use yk+3 = P3
1
(yk, zk), the third

iterate of the Poincaré return map (3.1) plotted in figure 7.4 (c), together with a corre-

sponding plot for zk+3 = P3
2
(yk, zk), to pick starting guesses for the Newton-Raphson

searches for the two 3-cycles plotted in figure 7.4 (d), (e). For a listing of the short

cycles of the Rössler flow, consult exercise 7.1.

The numerical evidence suggests (though a proof is lacking) that all cycles

that comprise the strange attractor of the Rössler flow are hyperbolic, each with an

expanding eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal

eigenvalue |Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely con-

tracting, a factor of e−32 per one par-course of the attractor, so their numerical deter-

mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes

the strange attractor of the Rössler flow is 1-dimensional, a very good realization of a

horseshoe template. (G. Simon and P. Cvitanović)click to return: p. ??

Example 7.2 A hyperplane Poincaré section. Let us for the sake of simplicity

assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the

linear condition (3.14)

(x − x0) · n̂ = 0, (7.10)

where n̂ is a vector normal to the Poincaré section and x0 is any point in the Poincaré

section. The Newton setup is then (derived as (7.7))

(

1 − J −v(x)
n̂ 0

) (

x′ − x
∆t

)

=

(

−F(x)
0

)

. (7.11)

The last row in this equation ensures that x will be in the surface of section, and the

addition of v(x)∆t, a small vector along the direction of the flow, ensures that such an

x can be found, at least if x is sufficiently close to a fixed point of f . Alternatively, this

can be solved a least squares problem.

To illustrate that the addition of the extra constraint resolves the problem of

(1 − J) non-invertability, we consider the particularly simple example of a 3-d flow with

the (x, y, 0)-plane as the Poincaré section, a = (0, 0, 1). Let all trajectories cross the

Poincaré section perpendicularly, so that v = (0, 0, vz), which means that the marginally

stable direction is also perpendicular to the Poincaré section. Furthermore, let the

unstable direction be parallel to the x-axis and the stable direction be parallel to the

y-axis. The Newton setup is now

























1 − Λu 0 0 0
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0 0 0 −vz

0 0 1 0
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












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
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
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
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
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


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=










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











−Fx

−Fy

−Fz

0

























. (7.12)

If one considers only the upper-left [3 × 3] matrix (which we started out with, prior to

adding the constraint (7.10)) then this matrix is not invertible and the equation does

not have a unique solution. However, the full [4×4] matrix is invertible, as det (·) =

−vzdet (1 − M⊥), where M⊥ is the [2×2] monodromy matrix for a surface of section

transverse to the orbit (see sect. 5.5). (F. Christiansen)click to return: p. ??
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Exercises

7.1. Rössler flow cycles. (continuation of exer-

cise 4.4) Determine all cycles for the Rössler flow

(2.27), as well as their stabilities, up to 3 Poincaré sec-

tion returns.

Table: The Rössler flow (2.27): The itinerary p, a peri-

odic point xp = (0, yp, zp) and the expanding eigenvalue

Λp for cycles up to topological length 3.

(J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe

1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908

7.2. Inverse iteration method for a Hénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-

tonian Hénon map (7.13) with a = 6. Listed are the cy-

cle itinerary, its expanding eigenvalue Λp, and its “cen-

ter of mass.” The “center of mass” is listed because it

turns out that it is often a simple rational or a quadratic

irrational.

p Λp

∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.17) for the area-preserving

(“Hamiltonian”) parameter value b = −1. The coordi-

nates of a periodic orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (7.13)

with the periodic boundary condition xp,0 = xp,np
. Verify

that the itineraries and the stabilities of the short periodic

orbits for the Hénon repeller (7.13) at a = 6 are as listed

above.

Hint: you can use any cycle-searching routine you wish,

but for the complete repeller case (all binary sequences

are realized), the cycles can be evaluated simply by in-

verse iteration, using the inverse of (7.13)

x′′p,i = S p,i

√

1 − x′
p,i+1
− x′

p,i−1

a
, i = 1, ..., np .

Here S p,i are the signs of the corresponding periodic

point coordinates, S p,i = xp,i/|xp,i|. (G. Vattay)

7.3. “Center of mass” puzzle. Why is the “cen-

ter of mass,” tabulated in exercise 7.2, often a rational

number?

7.4. Cycle stability, helium. Add to the helium integrator

of exercise 2.10 a routine that evaluates the expanding

eigenvalue for a given cycle.
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