
Chapter 16

Fixed points, and how to get them

Cycles. Is there anything they can’t do?

— Mason Porter, channeling Homer Simpson

H
aving set up the dynamical context, we now turn to the key and unavoidable

numerical task in this subject; we must search for the solutions (x, T),

x ∈ Rd, T ∈ R+ satisfying the periodic orbit condition

f T (x) = x , T > 0 , (flow)

f n(x) = x , n ≥ 1 , (map) (16.1)

for a given flow or map.

In chapters 21 and 22 we will establish that spectra of evolution operators can

be extracted from periodic orbit sums:

∑

(spectral eigenvalues) =
∑

(periodic orbits) .

Hence, periodic orbits are the necessary ingredient for evaluation of the spectra

of evolution operators. We need to know what periodic orbits can exist, and the

symbolic dynamics developed so far is an invaluable tool toward this end.

This chapter, a continuation of chapter 7, is intended as a hands-on guide to

extracting periodic orbits, and should be skipped on first reading - you can return

to it whenever the need for finding actual cycles arises. A serious cyclist will want chapter 33

to also learn about the variational methods to find cycles, chapter 33. They are

particularly useful when little is known about the topology of a flow, such as in

high-dimensional periodic orbit searches.

fast track:

chapter 17, p. 308
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CHAPTER 16. FIXED POINTS, AND HOW TO GET THEM 294

Due to the exponential divergence of nearby trajectories in chaotic dynamical

systems, fixed point searches based on direct solutions of the fixed-point condition

(16.1) as an initial value problem can be numerically very unstable. Methods that chapter 33

start with initial guesses for a number of points along the cycle, such as the mul-

tipoint shooting method described here in sect. 16.2, and the variational methods

of chapter 33, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the

topology of the flow: a preliminary step to any serious periodic orbit calculation is

preparing a list of all distinct admissible prime periodic symbol sequences, such as

the list given in table 18.1. The relations between the temporal symbol sequences

and the spatial layout of the topologically distinct regions of the state space dis-

cussed in chapters 14 and 15 should enable us to guess the location of a series of

periodic points along a cycle. Armed with such an informed guess we proceed

to improve it by methods such as Newton-Raphson iteration; we show how this

works by applying Newton method to 1- and d-dimensional maps. But first, where

are the cycles?

16.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it

doesn’t converge? A: Well then you only have yourself to

blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessing where the cycles are is

the case of planar billiards. The Maupertuis principle of least action here dictates

that the physical trajectories minimize the length of an approximate orbit that

visits a desired sequence of boundary bounces.

example 16.1

p. 301

If we were only so lucky. Real life finds us staring at something like Yang-

Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. Some might be satisfied with any

rampaging robot that finds “the most important” cycles. The ergodic explorations

of recurrences sometimes perform admirably well, and we discuss this next.

16.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.

—Appliance guru
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Figure 16.1: An ergodic trajectory can shadow an un-

stable periodic orbit p for a finite time.

p

x(t)

x(0)

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit remark 16.1

cycles) are never seen in simulations and experiments because they are unstable.

Nevertheless, one does observe close passes to the least unstable equilibria and

periodic orbits, as in figure 16.1. Ergodic exploration by long-time trajectories (or

long-lived transients, in case of strange repellers) can uncover state space regions

with near finite time recurrences. In addition, such trajectories preferentially sam- section 19.1

ple the natural measure of the ‘turbulent’ flow, and by initiating searches within

the state space concentrations of natural measure bias the search toward the dy-

namically important invariant solutions.

The search consists of following a long trajectory in state space, and looking

for close returns of the trajectory to itself, see figure 16.1. Whenever the trajectory

almost closes in a loop (within a given tolerance), a point close to this near miss

of a cycle can be taken as an initial condition. Supplemented by a Newton routine

described below, a sequence of improved initial conditions may indeed rapidly

lead to closing a cycle. The method preferentially finds the least unstable orbits,

while missing the more unstable ones that contribute little to the cycle expansions.

This blind search is seriously flawed: in contrast to the 3-disk example 16.1,

it is not systematic, it gives no insight into organization of the ergodic sets, and

can easily miss very important cycles. Foundations to a systematic exploration

of ergodic state space are laid in chapters 14 and 15, but are a bit of work to

implement.

16.1.2 Cycles found by thinking

Thinking is extra price.

—Dicho Colombiano

A systematic charting out of state space starts out by a hunt for equilibrium points.

If the equations of motion are a finite set of ODEs, setting the velocity field v(x)

in (2.7) to zero reduces search for equilibria to a search for zeros of a set of al-

gebraic equations. We should be able, in principle, to enumerate and determine
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all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the

Rössler example 2.3. If the equations of motion and the boundary conditions are

invariant under some symmetry, some equilibria can be determined by symmetry

considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.

the Lorenz EQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,

about 50 grid points acrossM in each dimension, and compute the velocity field

vk = v(xk) at each grid point xk; a few million vk values are easily stored. Plot

xk for which |vk |2 < ǫ, ǫ << |vmax |2 but sufficiently large that a few thousand

xk are plotted. If the velocity field varies smoothly across the state space, the

regions |vk |2 < ǫ isolate the (candidate) equilibria. Start a Newton iteration with

the smallest |vk |2 point within each region. Barring exceptionally fast variations in

v(x) this should yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady

states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs

or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What

makes them dynamically important are their stable/unstable manifolds. A chaotic

trajectory can be thought of as a sequence of visitations to equilibrium neighbor-

hoods. Typically such neighborhoods have many stable, contracting directions

and a handful of unstable directions. Our strategy will be to generalize the billiard

Poincaré section maps Psn+1←sn
of example 15.9 to maps from a section of the

unstable manifold of equilibrium sn to the section of stable manifold of equilib-

rium sn+1, and thus reduce the continuous time flow to a sequence of maps. These

Poincaré section maps do double duty, providing us both with an exact represen-

tation of dynamics in terms of maps, and with a covering smbolic dynamics.

We showed in the Lorenz flow example 14.5 how to reduce the 3-dimensional

Lorenz flow to a 1-dimensional return map. In the Rössler flow example 2.3 we

sketched the attractor by running a long chaotic trajectory, and noting that the

attractor is very thin, but that otherwise the return maps that we plotted were dis-

quieting – figure 3.3 did not appear to be a 1-to-1 map. In the next example we

show how to use such information to locate cycles approximately. In the remain-

der of this chapter and in chapter 33 we shall learn how to turn such guesses into

highly accurate cycles.

16.2 Multipoint shooting method

(F. Christiansen)

Periodic orbits of length n are fixed points of f n so in principle we could use

the simple Newton method described above to find them. However, this is not an

optimal strategy. The function f n oscillates wildly, with as many as 2n or more

closely spaced fixed points, and finding a specific periodic point, such as one
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with a given symbolic sequence, requires a very good starting guess. For binary

symbolic dynamics we must expect to improve the accuracy of our initial guesses

by at least a factor of 2n to find orbits of length n. Furthermore, the Jacobian of f n

can be ill-conditioned because its matrix elements can grow like Λn, where Λ is

the leading multiplier of a single discrete time step Jacobian. A better alternative

is the multipoint or multiple shooting method, with the Jacobian matrix broken

up into a product of single-step Jacobian matrices, each with eigenvalues ≈ Λ.

While it might very hard to give a precise initial guess for a long periodic orbit,

if our guesses are informed by a good state space partition, a rough guess for

each point along the desired trajectory might suffice, as for the individual short

trajectory segments the errors have no time to explode exponentially. That is why

in chapter 14 we have developed a qualitative theory of how these cycle points are

laid out topologically.

For a 1-dimensional map a cycle of length n is a zero of the n-dimensional

vector function F:

F(x) = F


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.

The relationship between the temporal symbol sequences and the spatial layout

of the topologically distinct regions of state space discussed in chapter 14 enable

us to guess the location of a series of periodic points along a cycle. Armed with

such informed initial guesses, we can initiate a Newton-Raphson iteration. The

iteration in Newton’s method now takes the form

d

dx
F(x)(x′ − x) = −F(x), (16.2)

where d
dx

F(x) is an [n × n] matrix:

d
dx

F(x) =




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
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



1 − f ′(xn)
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· · · 1
· · · 1
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


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










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

. (16.3)

This matrix can easily be inverted numerically by first eliminating the elements

below the diagonal. This creates non-zero elements in the nth column. We elimi-

nate these and are done.

example 16.2

p. 301

When one sets up Newton iteration on a computer, it is not necessary to write

the left hand side as a matrix. All one needs is a vector containing the f ′(xi)’s and

a vector containing the n’th column, i.e., the cumulative product of the f ′(xi)’s

and a vector containing the right hand side. After iteration the vector containing

the right hand side is the correction to the initial guess.
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16.2.1 d-dimensional maps

Armed with clever initial guesses from a system’s symbolic dynamics, we can

easily extend the Newton-Raphson iteration method to d-dimensional maps. In

this case f ′(xi) is a [d × d] matrix, and d
dx

F(x) is an [nd × nd] matrix. In each

of the steps above, we are then manipulating d rows of the left-hand-side matrix.

(Remember that matrices do not commute - always multiply from the left.) In

inverting the nth element of the diagonal we are inverting a [d × d] matrix (1 −
∏

f ′(xi)) which can be done as long as none of the eigenvalues of
∏

f ′(xi) equals

1, i.e., if the cycle has no marginally stable eigen-directions.

example 16.3

p. 302

16.3 Cost function

(R. Paškauskas and P. Cvitanović)

It pays to think in terms of a cost (or error) function I(∆x) = (x + ∆x − f (x +

∆x))2/2. Periodic orbit condition (16.1) corresponds both to a zero of I(∆x), and

of its first ∆x variation. Expand I(∆x) to the second order in ∆x, Ĩ ≈ ∆̃x
2
/2+ (x−

f (x)) · ∆̃x+ (x − f (x))2/2, where ∆̃x = (1 − J(x))∆x. To find an extremum, we set

the derivative with respect to ∆̃x to zero. As the term (x − f (x))2/2 is a constant

under ∆x variation, let us define an unconstrained cost function

I0(∆̃x) =
1

2
∆̃x · ∆̃x + (x − f (x)) · ∆̃x , (16.4)

Setting the derivative of this function

∂I0(∆̃x)

∂∆̃x
= ∆̃x + x − f (x) = (1 − J(x)) · ∆x + x − f (x) (16.5)

to zero recovers the Newton setup (7.3)

Next, we need to enforce the constraint that curbs the directions in which ∆x

can point. Lagrange multipliers come to help.

A local surface of section can be constructed when f (x) is “near” the initial

point x. A natural choice is a hyperplane perpendicular to the velocity vector v(x).

The reference point x0 in (7.10) is x itself, and the surface of section condition is

U(x+∆x) = v(x) ·∆x = 0. Introduce a Lagrange multiplier λ, and assemble a cost

function with the constraint:

I1(∆̃x, λ) =
1

2
∆̃x · ∆̃x + [x − f (x)] · ∆̃x + λv(x) · ∆̃x . (16.6)

Now we differentiate I1(∆x, λ) with respect to each argument and set the deriva-

tives to zero. We recover the Newton setup (7.7), with the Lagrange multiplier
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λ = ∆t interpreted as the time increment needed to place f (x) onto the section,

f (x) → f (x) + v( f (x))∆t.

A global surface of section is a fixed surface U(x+∆x)−U(x0) ≈ ∂U(x)∆x+

U(x) −U(x0) that hopefully transects all or a significant portion of recurrent parts

of the flow. It is not as ‘natural’ as the local section (7.6), but hard to avoid in

practice, and one is interested not only in the fixed point itself, but in the global

reach of its unstable manifold as well. The simplest choice is a hyperplane (7.10).

The cost function and the variational equations are then

I2(∆x,∆t) =
1

2
∆x[1 − J(x)]∆x + (x − f (x))∆x

+ ∆t (∂U(x)∆x + U(x) − U(x0)) , (16.7)

[

1 − J(x) ∂U(x)
∂U(x) 0

] (

∆x
∆t

)

= −
(

x − f (x)
U(x) − U(x0)

)

(16.8)

Further continuous symmetries can be handled in the same fashion. Suppose,

for example, that we are searching for periodic orbits of a Hamiltonian flow.

There, periodic orbits not only have the time-translation symmetry, but energy-

translation symmetry as well. What is energy-translation symmetry? If there ex-

ists a periodic orbit at x with energy H(x) = E, and period T , it is very likely that it

belongs to a family of orbits (x+ǫ∆x(E), T+ǫ∆t(E)) continuous under variation of

E. As with the time-translation symmetry, this implies a unit Floquet multiplier:

indeed, we know from sect. 8.4 that symplectic eigenvalues come in pairs, so unit

multiplier in the time direction implies a unit multiplier in its dual, the energy di-

rection, (Λt,ΛE, · · · ) = (1, 1, · · · ). But extending the number of constraints is no

longer a problem: add more Lagrange multipliers. Consider the following system

I3(∆x, λ1, λ2) = ∆x[1 − J(x)]∆x/2 + (x − f (x))∆x

+ λ1 (U(x + ∆x) − U(x0)) + λ2 (H(x + ∆x) − E0) (16.9)


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
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



x − f (x)
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H(x) − E0



















(16.10)

This is the Newton iteration setup for how to search for a periodic orbit of a Hamil-

tonian flow with a global surface of section U(x) = U(x0) and fixed energy E0.

Note that these instructions do not put every iteration on a surface U(x) = U(x0)

and energy H(x) = E0, unless the surface is a plane U(x) = a · (x − x0), but in-

stead assure that the iterations (provided they converge) will approach the surface

super-exponentially.

For periodic orbits multi-point shooting generalizes in the same way as (16.3),

but with n additional equations – one for each point on a Poincaré section. The
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Newton setup looks like this:
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(16.11)

Solving this equation resembles the corresponding task for maps. However, we

will need to invert a [(d + 1)n × (d + 1)n] matrix rather than a [d × d] matrix.

Résumé

A prerequisite for a systematic and complete cycle search is a good (but hard

to come by) understanding of the topology of the flow. Usually one starts by -

possibly analytic - determination of the equilibria of the flow. Their locations, sta-

bilities, stability eigenvectors and invariant manifolds offer skeletal information

about the topology of the flow. The next step is numerical long-time evolution

of “typical” trajectories of the dynamical system under investigation. Such nu-

merical experiments build up the “natural measure” and reveal which regions are

most frequently visited. Periodic orbit searches can then be initialized by taking section 19.4.1

nearly recurring orbit segments and deforming them into closed orbits. With a

sufficiently good initial guess, Newton-Raphson iteration then yields the period T

and the location of a periodic point xp.

The problem one faces with high-dimensional flows is that their topology is

hard to visualize, and that even with a decent starting guess for a point on a peri-

odic orbit, methods like the Newton-Raphson method are likely to fail. Methods chapter 33

that start with initial guesses for a number of points along the cycle, such as the

multipoint shooting method of sect. 16.2, are more robust. Relaxation (or vari-

ational) methods take this strategy to its logical extreme, and start by a guess of

not a few points along a periodic orbit, but a guess of the entire orbit. Just as

these methods are intimately related to variational principles and path integrals,

we postpone their introduction until chapter 33.

Commentary

Remark 16.1 Close recurrence searches. For low-dimensional maps of flows (for

high-dimensional flows, forget about it) picking initial guesses for periodic orbits from

close recurrences of a long ergodic trajectory seems like an obvious idea. Nevertheless,

ref. [A1.31] is frequently cited. Such methods have been deployed by many, among them

cycles - 26oct2014 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 16. FIXED POINTS, AND HOW TO GET THEM 301

G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. Davidchack [24.2, A1.48,

23.16, 16.11, 16.12] (see also sect. 23.7). Sometimes one can determine most of the

admissible itineraries and their weights without working too hard, but method comes with

no guarantee.

Remark 16.2 Cycles, searches, and symmetries. A few comments about the role

of symmetries in actual extraction of cycles. In the N-disk billiard example, a fundamen-

tal domain is a sliver of the N-disk configuration space delineated by a pair of adjoining

symmetry axes. The flow may further be reduced to a return map on a Poincaré surface

of section. While in principle any Poincaré surface of section will do, a natural choice in

the present context are crossings of symmetry axes, see example 8.7. In actual numerical

integrations only the last crossing of a symmetry line needs to be determined. The cycle is

run in global coordinates and the group elements associated with the crossings of symme-

try lines are recorded; integration is terminated when the orbit closes in the fundamental

domain. Periodic orbits with non-trivial symmetry subgroups are particularly easy to find

since their points lie on crossings of symmetry lines, see example 8.7.

Remark 16.3 Symmetries of the symbol square. For a discussion of symmetry

lines see refs. [16.5, 14.10, 16.6, 8.7, 8.8]. It is an open question (see remark 25.2)

as to how time reversal symmetry can be exploited for reduction of cycle expansions

of chapter 23. For example, the fundamental domain symbolic dynamics for reflection

symmetric systems is discussed in some detail in sect. 25.5, but how does one recode from

time-reversal symmetric symbol sequences to desymmetrized 1/2 state space symbols?

16.4 Examples

Example 16.1 Periodic orbits of billiards. Consider how this works for 3-disk

pinball game of sect. 15.5. . Label the three disks by 1, 2 and 3, and associate to everysection 15.5

section 1.4trajectory an itinerary, a sequence of labels indicating the order in which the disks are

visited, as in figure 15.14. Given the itinerary, you can construct a guess trajectory by

taking a point on the boundary of each disk in the sequence, and connecting them by

straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake

the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si.

The computational problem is to find the extremum values of cycle length L(s) where

s = (s1, . . . , sn ) , a task that we postpone to sect. 33.3. As an example, the short peri-exercise 33.2

exercise 16.11ods and stabilities of 3-disk cycles computed this way are listed table 33.3, and some

examples are plotted in figure 15.14. It’s a no brainer, and millions of such cycles have

been computed. click to return: p. ??

Example 16.2 Newton inversion for a 3-cycle. Let us illustrate how this works step

by step for a 3-cycle. The initial setup for a Newton step is:

















1 0 − f ′(x3)
− f ′(x1) 1 0

0 − f ′(x2) 1

































∆x1

∆x2

∆x3

















= −
















F1

F2

F3

















,
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where ∆xi = x′
i
− xi is the correction to our initial guess xi, and Fi = xi − f (xi−1) is the

error at ith periodic point. Eliminate the sub-diagonal elements by adding f ′(x1) times

the first row to the second row, then adding f ′(x2) times the second row to the third

row:

















1 0 − f ′(x3)
0 1 − f ′(x1) f ′(x3)
0 0 1 − f ′(x2) f ′(x1) f ′(x3)

































∆x1

∆x2

∆x3

















=

−
















F1

F2 + f ′(x1)F1

F3 + f ′(x2)F2 + f ′(x2) f ′(x1)F1

















.

The next step is to invert the last element in the diagonal, i.e., divide the third row by

1 − f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot work.

As f ′(x2) f ′(x1) f ′(x3) represents the stability of the cycle (when the Newton iteration

has converged), this is not a good method to find marginally stable cycles. We now

have

















1 0 − f ′(x3)
0 1 − f ′(x1) f ′(x3)
0 0 1

































∆x1

∆x2

∆x3

















=−





















F1

F2 + f ′(x1)F1
F3+ f ′(x2)F2+ f ′(x2) f ′(x1)F1

1− f ′(x2) f ′(x1) f ′(x3)





















.

Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the third

row to the second row. The left hand side matrix is now the unit matrix, and the right

hand side is an explicit formula for the corrections to our initial guess. With this, we

have gone through one Newton iteration. click to return: p. ??

Example 16.3 Newton method for time delay maps. Some d-dimensional maps

(such as the Hénon map (3.17)) can be written as 1-dimensional time delay maps of

the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (16.12)

In this case, d
dx

F(x) is an [n × n] matrix as in the case of usual 1-dimensional maps but

with non-zero matrix elements on d off-diagonals. click to return: p. ??
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Exercises

16.1. Ulam map periodic points. (continued from exer-

cise 14.8)

(a) compute the five periodic points of cycle 10011

for the Ulam map (14.21) f (x) = 4x(1 − x) . using

your Newton or other routine.

(b) compute the five periodic points of cycle 10000

(c) plot the above two cycles on the graph of the Ulam

map, verify that their topological ordering is as in

the ‘canonical’ full tent map exercise 14.8.

(d) (optional) This works only for the Ulam map:

compute periodic points by conjugating the full

tent map periodic points of exercise 14.8 using ex-

ercise A2.4.

16.2. Cycles stabilities for the Ulam map (exact). In ex-

ercise 16.1 you should have observed that the numerical

results for the cycle Floquet multipliers (4.43) are ex-

ceptionally simple: the Floquet multiplier of the x0 = 0

fixed point is 4, while the eigenvalue of any other n-

cycle is ±2n. Prove this. (Hint: the Ulam map can be

conjugated to the tent map (14.20). This problem is per-

haps too hard, but give it a try - the answer is in many

introductory books on nonlinear dynamics.)

16.3. Newton-Raphson method. Implement the Newton-

Raphson method in 2-dimensional and apply it to the

determination of pinball cycles.

16.4. Cycle stability. Add to the pinball simulator of exer-

cise 9.1 a routine that evaluates the expanding eigen-

value for a given cycle.

16.5. Pinball cycles. Determine the stability and length of all

fundamental domain prime cycles of the binary symbol

string lengths up to 5 (or longer) for R : a = 6 3-disk

pinball.

16.6. Fundamental domain fixed points. Use the for-

mula (9.11) for billiard Jacobian matrix to compute the

periods Tp and the expanding eigenvaluesΛp of the fun-

damental domain 0 (the 2-cycle of the complete 3-disk

space) and 1 (the 3-cycle of the complete 3-disk space)

fixed points:

Tp Λp

0: R − 2 R − 1 + R
√

1 − 2/R

1: R −
√

3 − 2R√
3
+ 1 − 2R√

3

√

1 −
√

3/R

(16.13)

We have set the disk radius to a = 1.

16.7. Fundamental domain 2-cycle. Verify that for the

10-cycle the cycle length and the trace of the Jacobian

matrix are given by

L10 = 2

√

R2 −
√

3R + 1 − 2,

tr J10 = Λ10 + 1/Λ10 (16.14)

= 2L10 + 2 +
1

2

L10(L10 + 2)2

√
3R/2 − 1

.

The 10-cycle is drawn in figure 15.12. The unstable

eigenvalue Λ10 follows from (8.30).

16.8. A test of your pinball simulator: 10-cycle. Test

your exercise 9.4 pinball simulator stability evaluation

by checking numerically the exact analytic 10-cycle sta-

bility formula (16.14).

16.9. Rössler flow cycles. (continuation of exer-

cise 7.1) Determine all cycles for the Rössler flow

(2.27), as well as their stabilities, up to 5 Poincaré sec-

tion returns (Hint: implement (16.3), the multipoint

shooting methods for flows; you can cross-check your

shortest cycles against the ones listed in the table.)

Table: The Rössler flow (2.27): The itinerary p, a peri-

odic point xp = (0, yp, zp) and the expanding eigenvalue

Λp for all cycles up to topological length 7.

(J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe

1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

16.10. Colinear helium cycles. Determine the stability

and length of all fundamental domain prime cycles up

to symbol sequence length 5 or longer for collinear he-

lium of figure 8.2.

16.11. Uniqueness of unstable cycles. Prove

that there exists only one 3-disk prime cycle for a given

finite admissible prime cycle symbol string. Hints: look
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at the Poincaré maps; can you show that there is ex-

ponential contraction to a unique periodic point with a

given itinerary? Exercise 33.1 might be helpful in this

effort.

16.12. Newton setups for flows.

(a) We have formulated three Newton setups for

flows: the ‘local’ setup (7.7), the ‘hyperplane’

setup (7.11), and the ‘global’ setup (16.8). Derive

(16.8) and verify that if the surface of section is

a hyperplane, it reduces to (7.11). (Hint: it is not

inconceivable that (7.11) is wrong as it stands.)

(b) (optional) Derive (16.10), the Newton setup for

Hamiltonian flows.
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