
Chapter 20

Averaging

Why think when you can compute?

—Maciej Zworski

W
e discuss first the necessity of studying the averages of observables in

chaotic dynamics. A time average of an observable is computed by in-

tegrating its value along a trajectory. The integral along trajectory can

be split into a sum of over integrals evaluated on trajectory segments; if the ob-

servable is exponentiated, this yields a multiplicative weight for successive trajec-

tory segments. This elementary observation will enable us to recast the formulas

for averages in a multiplicative form that motivates the introduction of evolution

operators and further formal developments to come. The main result is that any

dynamical average measurable in a chaotic system can be extracted from the spec-

trum of an appropriately constructed evolution operator. In order to keep our toes

closer to the ground, in sect. 20.5 we try out the formalism on the first quantitative

diagnosis whether a system is chaotic, the Lyapunov exponent.

20.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-

tial condition, no matter how precise, will fill out the entire accessible state space

after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow

individual trajectories for a long time; what is attainable, however, is a description

of the geometry of the set of possible outcomes, and the evaluation of long-time

averages. Examples of such averages are transport coefficients for chaotic dynam-

ical flows, such as escape rates, mean drifts and diffusion rates; power spectra; and

a host of mathematical constructs such as generalized dimensions, entropies, and

Lyapunov exponents. Here we outline how such averages are evaluated within the

evolution operator framework. The key idea is to replace the expectation values of

observables by the expectation values of exponential generating functionals. This
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CHAPTER 20. AVERAGING 366

associates an evolution operator with a given observable, and relates the expecta-

tion value of the observable to the leading eigenvalue of the evolution operator.

20.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in state

space a number, a vector, or a tensor. The observable reports on a property of

the dynamical system. The observable is a device, such as a thermometer or laser

Doppler velocitometer. The device itself does not change during the measure-

ment. The velocity field ai(x) = vi(x) is an example of a vector observable; the

speed |v(x)| (the length of this vector), or perhaps a temperature measured in an

experiment at instant τ are examples of scalar observable. We define the inte-

grated observable A as the time integral of the observable a evaluated along the

trajectory of the initial point x0,

A(x0, t) =

∫ t

0

dτ a(x(τ)) , x(t) = f t(x0) . (20.1)

If the dynamics are given by an iterated mapping and the time is discrete, the

integrated observable after n iterations is given by

A(x0, n) =

n−1
∑

k=0

a(xk) , xk = f k(x0)) (20.2)

(we suppress vectorial indices for the time being).

example 20.1

p. 379

The time average of the observable along an orbit is defined by

a(x0) = lim
t→∞

1

t
A(x0, t) . (20.3)

If a does not behave too wildly as a function of time –for example, if a(x) is the

Chicago temperature, bounded between −80oF and +130oF for all times– A(x0, t)

is expected to grow no faster than t, and the limit (20.3) exists. For an example of

a time average –the Lyapunov exponent– see sect. 20.5.

The time average is a property of the orbit, independent of the initial point on

that orbit: if we start at a later state space point f T (x0) we get a couple of extra

finite contributions that vanish in the t → ∞ limit:

a( f T (x0)) = lim
t→∞

1

t

∫ t+T

T

dτ a( f τ(x0))

= a(x0) − lim
t→∞

1

t

(∫ T

0

dτ a( f τ(x0)) −

∫ t+T

t

dτ a( f τ(x0))

)

= a(x0) .
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CHAPTER 20. AVERAGING 367

Figure 20.1: (a) A typical chaotic trajectory ex-

plores the state space with the long time visitation

frequency building up the natural measure ρ0(x).

(b) time average evaluated along an atypical tra-

jectory such as a periodic orbit fails to explore the

entire accessible state space. (A. Johansen)

(a)

x

M (b)

The integrated observable A(x0, t) and the time average a(x0) take a particu-

larly simple form when evaluated on a periodic orbit. Define exercise 4.6

Ap =















apTp =
∫ Tp

0
dτ a(x(τ)) for a flow

apnp =
∑np

i=1
a(xi) for a map

, x ∈ Mp , (20.4)

where p is a prime cycle, Tp is its period, and np is its discrete time period in the

case of iterated map dynamics. The quantity Ap is a loop integral of the observable

along a single traversal of a prime cycle p, so it is an intrinsic property of the cycle,

independent of the starting point x0 ∈ Mp. If the trajectory retraces itself r times,

we just obtain Ap repeated r times. Evaluation of the asymptotic time average

(20.3) therefore requires only a single traversal of the cycle:

ap = Ap/Tp . (20.5)

Innocent as this seems, it implies that a(x0) is in general a wild function of x0;

for a hyperbolic system it takes the same value 〈a〉 for almost all initial x0, but a

different value (20.5) on (almost) every periodic orbit (figure 20.1 (b)).

example 20.2

p. 379

section 24.1

20.1.2 Spatial averages

The space average of a quantity a evaluated over all state space trajectories x(t) at

time t is given by the d-dimensional integral over all initial points x0 at time t = 0:

〈a〉(t) =
1

|M|

∫

M

dx0 a(x(t)) , x(t) = f t(x0)

|M| =

∫

M

dx = volume ofM . (20.6)

The spaceM is assumed to have finite volume - open systems like the 3-disk game

of pinball are discussed in sect. 20.4.
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CHAPTER 20. AVERAGING 368

example 20.6

p. 381

What is it we really do in experiments? We cannot measure the time average

(20.3), as there is no way to prepare a single initial condition with infinite preci-

sion. The best we can do is prepare an initial density ρ(x), perhaps concentrated on

some small (but always finite) neighborhood. Then we can abandon the uniform

space average (20.6) and consider instead the weighted spatial average

〈a〉ρ(t) =
1

|Mρ|

∫

M

dx0 ρ(x0) a(x(t)) , |Mρ| =

∫

M

dx ρ(x) . (20.7)

For ergodic mixing systems, any smooth initial density will tend to the asymptotic

natural measure in the t → ∞ limit ρ(x, t) → ρ0(x). This allows us to take any

smooth initial ρ(x) and define the expectation value 〈a〉 of an observable a as the

asymptotic time and space average over the state spaceM

〈a〉 =
1

|M|

∫

M

dx a(x) = lim
t→∞

1

|M|

∫

M

dx0

1

t

∫ t

0

dτ a(x(t)) . (20.8)

We use the same 〈· · ·〉 notation as for the space average (20.6) and distinguish the

two by the presence of the time variable in the argument: if the quantity 〈a〉(t)

being averaged depends on time, then it is a space average; if it is the infinite time

limit, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every x ∈ M

used as a starting point of a time average. The advantage of averaging over space

is that it smears the starting points which were problematic for the time average

(such as periodic points). While easy to define, the expectation value 〈a〉 turns out

not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follows: Such averages

are more conveniently studied by investigating instead of 〈a〉 the space averages

of form

〈eβ·A〉 =
1

|M|

∫

M

dx eβ·A(x,t) . (20.9)

In the present context β is an auxiliary variable of no physical significance whose

role is to enable us to recover the desired space average by differentiation,

〈Ai〉 =
∂

∂βi

〈eβ·A〉

∣

∣

∣

∣

∣

β=0

.

We write ‘β · A′ to indicate that if the observable is a d-dimensional vector a(x) ∈

R
d, then β ∈ Rd; if the observable is a [d × d] tensor, β is also a rank-2 tensor, and

so on. Here we will mostly limit the considerations to scalar β and drop the dot in

‘β · A′.

If the time average limit a(x0) (20.3) exists for ‘almost all’ initial x0’s and the

system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the time av-

erage along almost all trajectories to tend to the same value a, and the integrated
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CHAPTER 20. AVERAGING 369

observable A to tend to t a. The space average (20.9) is an integral over exponen-

tials and hence also grows (or shrinks) exponentially with time. So as t → ∞ we

would expect the space average of exp(βA(x, t)) to grow exponentially with time

〈eβA〉 → (const) ets(β) ,

and its rate of growth (or contraction) to be given by the limit

s(β) = lim
t→∞

1

t
ln〈eβA〉 . (20.10)

Now we understand one reason for why it is smarter to compute 〈exp(βA)〉

rather than 〈a〉: the expectation value of the observable (20.8), the (generalized)

diffusion tensor, and higher moments of the integrated observable (20.1) can be

computed by evaluating the derivatives of s(β)

∂s

∂β j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1

t
〈A j〉 = 〈a j〉 ,

∂2s

∂βiβ j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1

t

(

〈AiA j〉 − 〈Ai〉〈A j〉
)

= lim
t→∞

1

t
〈(Ai − t 〈ai〉)(A j − t 〈a j〉)〉 = ∆i j ,

(20.11)

and so forth. We have explicitly written out the formulas for a scalar observable; exercise 20.1

the vector case is worked out in exercise 20.1 (we could have used full derivative

notation ds/dβ in (20.11), but for vector observable we do need partial derivatives

∂s/∂βi). If we can compute the function s(β), we have the desired expectation

value without having to estimate any infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such formulas

good for? A typical application arises in the problem of determining transport

coefficients from underlying deterministic dynamics.

example 20.3

p. 380

We turn to the problem of evaluating 〈eβA〉 in sect. 20.3, but first we review

some elementary notions of statistics that will be useful later on.

fast track:

sect. 20.3, p. 371

20.2 Moments, cumulants

Given a set of N data points, the unbiased empirical estimates for the

empirical mean and the unbiased sample variance of observable a are

â =
1

N

N
∑

i=1

ai , σ̂
2 =

1

N − 1

N
∑

i=1

(ai − â)2 . (20.12)
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CHAPTER 20. AVERAGING 370

(The N − 1 divisor in sample variance formula has to do with ensuring that â

minimizes σ̂2.)

The exact mean (or expectation or expected value) is the integral of the random

variable with respect to its probability measure ρ, commonly denoted 〈· · ·〉, E[· · · ],

or · · ·,

〈a〉 = E[a] = a =

∫

M

dx ρ(x) a(x) . (20.13)

In ChaosBook we use 〈· · ·〉ρ to denote an integral over state space weighted by ρ,

and · · · to denote a time average. If the average is over a (finite or infinite) set of

states labeled by labels π, each state contributing with a weight tπ, the expectation

is given by

〈A〉 =
∑

π

Aπtπ . (20.14)

The kth moment is the expectation 〈Ak〉. The moments about the mean, 〈(A − 〈A〉)k〉,

are called central moments. For a scalar observable the second central moment is

the variance, σ2 = 〈(A − 〈A〉)2〉, and its positive square root is the standard de-

viation σ. For a multi-component observable the second central moment is the

covariance matrix Qi j = 〈(Ai − 〈Ai〉)(A j − 〈A j〉)〉 , whose singular values are its

standard deviations σ j. Standardized moment is the kth central moment divided

by σk, 〈(A − 〈A〉)k〉/σk, a dimensionless representation of the distribution, inde-

pendent of translations and linear changes of scale, but meaningful only for scalar

observables. Moments can be collected in the moment-generating function (expo-

nential generating function)

〈eβA〉 = 1 +

∞
∑

k=1

βk

k!
〈Ak〉 . (20.15)

However, we do not really care about describing deviations centered around A. If

|A| < 1, Ak gets very small very fast, and conversely If |A| > 1, Ak gets very big,

and what is so special about |A| = 1? What we care about are fluctuations around

the mean 〈A〉. With some hindsight (Helmholtz, Gibbs, (20.10) above, · · · ), the

natural to use momenta is given by the cumulant-generating function

ln〈eβA〉 =

∞
∑

k=1

βk

n!
〈Ak〉c , (20.16)

where the subscript c indicates a cumulant, or, in statistical mechanics and quan-

tum field theory contexts, the ‘connected Green’s function’. Expanding log〈e...〉 it

is easy to check that the first cumulant is the mean, the second is the variance,

〈A2〉c = σ
2 = 〈(A − 〈A〉)2〉 = 〈A2〉 − 〈A〉2 , (20.17)

and 〈A3〉c is the third central moment, or the skewness,

〈A3〉c = 〈(A − 〈A〉)
3〉 = 〈A3〉 − 3〈A2〉〈A〉 + 2〈A〉3 . (20.18)
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The higher cumulants are neither moments nor central moments. The fourth cu-

mulant,

〈A4〉c = 〈(A − 〈A〉)4〉 − 3〈(A − 〈A〉)2〉2

= 〈A4〉 − 4〈A3〉〈A〉 − 3〈A2〉2 + 12〈A2〉〈A〉2 − 6〈A〉4 . (20.19)

rewritten in terms of standardized moments, is known as the kurtosis:

1

σ4
〈A4〉c =

1

σ4
〈(A − 〈A〉)4〉 − 3 . (20.20)

One of the reasons why cumulants are preferable to moments is that for a normal-

ized Gaussian distribution all cumulants beyond the second one vanish, so they

are a measure of deviation of statistics from the Gaussian one (see example 24.3).

A scholarly aside, safely ignored: In statistical mechanics and field theory, the

partition function and the Helmholtz free energy have form

Z(β) = exp(−βF) , F(β) = −
1

β
ln Z(E) , (20.21)

so in that sense 〈eβA〉 is a ‘partition function’, and s(β) in (20.10) is the ‘free

energy’. For a ‘free’ or ‘Gaussian’ field theory the only non-vanishing cumulant

is the second one; for field theories with interactions the derivatives of s(β) with

respect to β then yield cumulants, or the Burnett coefficients (24.22), or ‘effective’

n-point Green functions or correlations.

20.3 Evolution operators

For it, the mystic evolution;

Not the right only justified

– what we call evil also justified.

—Walt Whitman,

Leaves of Grass: Song of the Universal

The above simple shift of focus, from studying 〈a〉 to studying 〈exp (βA)〉 is the

key to everything that follows. Make the dependence on the flow explicit by

rewriting this quantity as

〈eβA〉 =
1

|M|

∫

M

dx

∫

M

dy δ
(

y − f t(x)
)

eβA(x,t) . (20.22)

Here δ
(

y − f t(x)
)

is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique point y at time t. Formally, all we have done above is

to insert the identity

1 =

∫

M

dy δ
(

y − f t(x)
)

, (20.23)
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Figure 20.2: Space averaging pieces together the

time average computed along the t → ∞ orbit

of figure 20.1 by a space average over infinitely

many short t trajectory segments starting at all ini-

tial points at once. rgb]0,0,0x1

rgb]0,0,0x2 rgb]0,0,0x2

rgb]0,0,0x1

rgb]0,0,0ρ(x)
rgb]0,0,0

[

Lt ◦ ρ
]

(x)

into (20.9) to make explicit the fact that we are averaging only over the trajectories

that remain inM for all times. However, having made this substitution we have

replaced the study of individual trajectories f t(x) by studying the evolution of the

density of the totality of initial conditions. Instead of trying to extract a temporal

average from an arbitrarily long trajectory which explores the state space ergodi-

cally, we can now probe the entire state space with short (and controllable) finite

time pieces of trajectories originating from every point inM.

As a matter of fact (and that is why we went to the trouble of defining the gen-

erator (19.24) of infinitesimal transformations of densities) infinitesimally short

time evolution induced by the generator A of (19.24) suffices to determine the

spectrum and eigenvalues of Lt.

We shall refer to the kernel of the operation (20.22) as the evolution operator

Lt(y, x) = δ
(

y − f t(x)
)

eβA(x,t) . (20.24)

The simplest example is the β = 0 case, i.e., the Perron-Frobenius operator intro-

duced in sect. 19.2. Another example - designed to deliver the Lyapunov exponent

- will be the evolution operator (20.44) discussed below. The action of the evolu-

tion operator on a function φ is given by

[

Ltφ
]

(y) =

∫

M

dx δ
(

y − f t(x)
)

eβA(x,t)φ(x) . (20.25)

The evolution operator is different for different observables, as its definition

depends on the choice of the integrated observable A in the exponential. Its job is

to deliver the expectation value of a, but before showing that it accomplishes that,

we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observable a is additive along the tra-

jectory

x(t1+t2)


x(0)
 = x(0)

x(t1)


+

x(t1+t2)


x(t1)


A(x0, t1 + t2) =

∫ t1

0

dτ a( f τ(x)) +

∫ t1+t2

t1

dτ a( f τ(x))

= A(x0, t1) + A( f t1 (x0), t2) .

As A(x, t) is additive along the trajectory, the evolution operator generates a semi- exercise 19.3

group section 19.5
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Lt1+t2 (y, x) =

∫

M

dz Lt2 (y, z)Lt1 (z, x) , (20.26)

as is easily checked by substitution

[

Lt2Lt1a
]

(y) =

∫

M

dx δ(y − f t2 (x))eβA(x,t2)
[

Lt1 a
]

(x) =
[

Lt1+t2 a
]

(y) .

This semigroup property is the main reason why (20.22) is preferable to (20.8) as

a starting point for evaluation of dynamical averages: it recasts averaging in form

of operators multiplicative along the flow.

In terms of the evolution operator, the space average of the moment-generating

function (20.22) is given by

〈eβA〉 =
1

|M|

∫

M

dx

∫

M

dy φ(y)Lt(y, x)φ(x) .

where φ(x) is the constant function φ(x) = 1. If the linear operator Lt can be

thought of as a matrix, high powers of a matrix are dominated by its fastest grow-

ing matrix elements, and the limit (20.10)

s(β) = lim
t→∞

1

t
ln〈Lt〉 . (20.27)

yields the leading eigenvalue s0(β), and, through it, all desired expectation values

(20.11).

In what follows we shall learn how to extract not only the leading eigenvalue

ofLt, but much of the dominant part of its spectrum. Clearly, we are not interested

into the eigenvalues of Lt for any particular finite time t, but their behavior as

t →∞. That is achieved via a Laplace transform, see sect. 20.3.3.

20.3.1 Spectrum of an evolution operator

This operator is strange:

it is not self-adjoint, so it is nothing good

—Jean Bellissard

An exposition of a subject is of necessity sequential and one cannot explain ev-

erything at once. As we shall actually never use eigenfunctions of evolution oper-

ators, we postpone their discussion to sect. 28.6. For the time being we ask the

reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigenvalues sα and eigen-

functions ϕα(x)

[

Ltϕα
]

(x) = esαtϕα(x) , α = 0, 1, 2, . . . (20.28)

ordered so that Re sα ≥ Re sα+1. For continuous time flow eigenvalues cannot

depend on time, they are eigenvalues of the time-evolution generator (19.23) we
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always write the eigenvalues of an evolution operator in exponentiated form esα

rather than as multipliers λα We find it convenient to write them this way both for

the continuous time Lt and the discrete time L = L1 cases, and we shall assume

that spectrum of L is discrete.

Lt is a linear operator acting on a density of initial conditions ρ(x), x ∈ M, so

the t → ∞ limit will be dominated by s0 = s(β), the leading eigenvalue of Lt,

[

Ltρβ
]

(y) :=

∫

M

dx δ
(

y − f t(x)
)

eβA(x,t)ρβ(x) = ets(β)ρβ(y) , (20.29)

where ρβ(x) is the corresponding eigenfunction. For β = 0 the evolution operator

(20.24) is the Perron-Frobenius operator (19.10), with ρ0(x) the natural measure.

From now on we have to be careful to distinguish the two kinds of linear

operators. In chapter 5 we have characterized the evolution of the local linear

neighborhood of a state space trajectory by eigenvalues and eigenvalues of the

linearized flow Jacobian matrices. Evolution operators described in this chapter

are global, and they act on densities of orbits, not on individual trajectories. As

we shall see, one of the wonders of chaotic dynamics is that the more unstable

individual trajectories, the nicer are the corresponding global density functions.

20.3.2 Evolution for infinitesimal times

For infinitesimal time δt, the evolution operator (20.6) acts as

ρ(y, δt) =

∫

dx eβA(x,δt)δ(y − f δt(x)) ρ(x, 0)

=

∫

dx eβa(x)δtδ(y − x − δt v(x)) ρ(x, 0)

= (1 + δt β a(y))
ρ(y, 0) − δt v · ∂

∂x
ρ(y, 0)

1 + δt ∂v
∂x

,

(the denominator arises from the δt linearization of the jacobian) giving the conti-

nuity equation (19.22) a source term

∂ρ

∂t
+
∂

∂xi

(viρ) = β a ρ . (20.30)

The evolution generator (19.24) eigenfunctions now satisfy

(s(β) −A) ρ(x, β) = β a(x) ρ(x, β) . (20.31)

Differentiating with respect to β

s′(β) ρ(x, β) + s(β)
∂

∂β
ρ(x, β) +

∂

∂x

(

v(x)
∂

∂β
ρ(x, β)

)

= a(x) ρ(x, β) + β a(x)
∂

∂β
ρ(x, β)
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In the vanishing auxiliary parameter limit β→ 0, we have s(0) = 0, ρ(x, 0) = ρ0(x)

s′(0) ρ0(x) +
∂

∂xi

(

vi(x)
∂

∂β
ρ(x, 0)

)

= a(x) ρ0(x) .

By integrating, the second term vanishes by Gauss’ theorem

s′(0) =

∫

dx a(x) ρ0(x) = 〈a〉 ,

verifying equation (20.7): spatial average of the observable a is given by the

derivative of the leading eigenvalue s′(0).

fast track:

sect. 21, p. 384

20.3.3 Resolvent of L

Here we limit ourselves to a brief remark about the notion of the ‘spectrum’ of a

linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it is reason-

able to suppose that there exist constants M > 0, s0 ≥ 0 such that ||Lt || ≤ Mets0 for

all t ≥ 0. What does that mean? The operator norm is defined in the same spirit in

which one defines matrix norms: We are assuming that no value of Ltρ(x) grows

faster than exponentially for any choice of function ρ(x), so that the fastest pos-

sible growth can be bounded by ets0 , a reasonable expectation in the light of the

simplest example studied so far, the escape rate (1.3). If that is so, multiplying

Lt by e−ts0 we construct a new operator e−ts0Lt = et(A−s0) which decays exponen-

tially for large t, ||et(A−s0)|| ≤ M. We say that e−ts0Lt is an element of a bounded

semigroup with generator A − s0I. Given this bound, it follows by the Laplace

transform
∫ ∞

0

dt e−stLt =
1

s −A
, Re s > s0 , (20.32)

that the resolvent operator (s −A)−1 is bounded

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

s −A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ ∞

0

dt e−st Mets0 =
M

s − s0

. (20.33)

If one is interested in the spectrum of L, as we will be, the resolvent operator is

a natural object to study; it has no time dependence, and it is bounded. It is called

‘resolvent’ because it separates the spectrum ofL into individual constituents, one

for each spectral ’line’. From (20.27), it is clear that the leading eigenvalue s0(β)

corresponds to the pole in (20.33); as we shall see in chapter 21, the rest of the

spectrum is similarly resolved into further poles of the Laplace transform.

The main lesson of this brief aside is that for continuous time flows, the

Laplace transform is the tool that brings down the generator in (19.26) into the

resolvent form (20.32) and enables us to study its spectrum.
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Figure 20.3: A piecewise-linear repeller (19.37): All

trajectories that land in the gap between the f0 and f1

branches escape (Λ0 = 4, Λ1 = −2). See example 20.4.
0 0.5 1

x

0

0.5

1

f(x)

20.4 Averaging in open systems

IfM is a compact region or set of regions to which the dynamics is con-

fined for all times, (20.8) is a sensible definition of the expectation value. How-

ever, if the trajectories can exitM without ever returning,

∫

M

dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, a repeller is a dynamical system for which

the trajectory f t(x0) eventually leaves the regionM, unless the initial point x0 is

on the repeller, so the identity

∫

M

dy δ(y − f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (20.34)

might apply only to a fractal subset of initial points of zero Lebesgue measure

(non–wandering set is defined in sect. 2.1.1). Clearly, for open systems we need

to modify the definition of the expectation value to restrict it to the dynamics on

the non–wandering set, the set of trajectories which are confined for all times.

Denote by M a state space region that encloses all interesting initial points,

say the 3-disk Poincaré section constructed from the disk boundaries and all pos-

sible incidence angles, and denote by |M| the volume ofM. The volume of state

space containing all trajectories, which start out within the state space regionM

and recur within that region at time t, is given by

|M(t)| =

∫

M

dxdy δ
(

y − f t(x)
)

∼ |M|e−γt. (20.35)

As we have already seen in sect. 1.4.3, this volume is expected to decrease ex-

ponentially, with the escape rate γ. The integral over x takes care of all possible

initial points; the integral over y checks whether their trajectories are still within

M by the time t. For example, any trajectory that falls off the pinball table in section 27.1

figure 1.1 is gone for good.

If we expand an initial distribution ρ(x) in (20.28), the eigenfunction basis

ρ(x) =
∑

α aαϕα(x) , we can also understand the rate of convergence of finite-time
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estimates to the asymptotic escape rate. For an open system the fraction of trapped

trajectories decays as section 20.4

ΓM(t) =

∫

M
dx

[

Ltρ
]

(x)
∫

M
dx ρ(x)

=
∑

α

esαtaα

∫

M
dx ϕα(x)

∫

M
dx ρ(x)

= es0t
(

(const.) + O(e(s1−s0)t)
)

. (20.36)

The constant depends on the initial density ρ(x) and the geometry of state space

cutoff region M, but the escape rate γ = −s0 is an intrinsic property of the re-

pelling set. We see, at least heuristically, that the leading eigenvalue of Lt domi-

nates ΓM(t) and yields the escape rate, a measurable property of a given repeller.

The non–wandering set can be very difficult to describe; but for any finite

time we can construct a normalized measure from the finite-time covering volume

(20.35), by redefining the space average (20.9) as

〈eβA〉 =

∫

M

dx
1

|M(t)|
eβA(x,t) ∼

1

|M|

∫

M

dx eβA(x,t)+γt . (20.37)

in order to compensate for the exponential decrease of the number of surviving

trajectories in an open system with the exponentially growing factor eγt. What

does this mean? Once we have computed γ we can replenish the density lost to

escaping trajectories, by pumping in eγt of new trajectories in such a way that the

overall measure is correctly normalized at all times, 〈1〉 = 1.

example 20.4

p. 380

20.5 Evolution operator evaluation of Lyapunov exponents

A solution to these problems was offered in sect. 20.3: replace time averaging

along a single orbit by action of a multiplicative evolution operator on the entire

state space, and extract the state space average of the Lyapunov exponent from its

leading eigenvalue, computed from finite length cycles. The main idea - what is

the Lyapunov ‘observable’ - can be illustrated by the dynamics of a 1-dimensional

map.

example 20.5

p. 380

Here we have restricted our considerations to 1-d maps, as for higher-dimensional

flows only the Jacobian matrices are multiplicative, not the individual eigenvalues.

Construction of the evolution operator for evaluation of the Lyapunov spectra for

a d-dimensional flow requires more skill than warranted at this stage in the narra-

tive: an extension of the evolution equations to a flow in the tangent space.
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If the chaotic motion fills the whole state space, we are indeed computing the

asymptotic Lyapunov exponent. If the chaotic motion is transient, leading even-

tually to some long attractive cycle, our Lyapunov exponent, computed on a non–

wandering set, will characterize the chaotic transient; this is actually what any

experiment would measure, as even a very small amount of external noise suffices

to destabilize a long stable cycle with a minute immediate basin of attraction.

All that remains is to determine the value of the Lyapunov exponent

λ = 〈ln | f ′(x)|〉 =
∂s(β)

∂β

∣

∣

∣

∣

∣

β=0

= s′(0) (20.38)

from (20.11), the derivative of the leading eigenvalue s0(β) of the evolution oper-

ator (20.44). example 23.1

The only question is: How? (By chapter 23 you will know.)

Résumé

The expectation value 〈a〉 of an observable a(x) integrated, At(x) =
∫ t

0
dτ a(x(τ)),

and time averaged, At/t, over the trajectory x→ x(t) is given by the derivative

〈a〉 =
∂s

∂β

∣

∣

∣

∣

∣

β=0

of the leading eigenvalue ets(β) of the evolution operator Lt.

By computing the leading eigenfunction of the Perron-Frobenius operator

(19.10), one obtains the expectation value (19.17) of any observable a(x). Thus

we can construct a specific, hand-tailored evolution operator L for each and every

observable. The good news is that, by the time we arrive at chapter 23, the scaf- chapter 23

folding will be removed, both L’s and their eigenfunctions will be gone, and only

the explicit and exact periodic orbit formulas for expectation values of observables

will remain.

The next question is: How do we evaluate the eigenvalues of L? In exam-

ple 20.4, we saw a piecewise-linear example where these operators reduce to fi-

nite matrices L, but for generic smooth flows, they are infinite-dimensional linear

operators, and finding smart ways of computing their eigenvalues requires some

thought. In chapter 14 we undertook the first step, and replaced the ad hoc parti-

tioning (19.11) by the intrinsic, topologically invariant partitioning. In chapter 18

we applied this information to our first application of the evolution operator for-

malism, evaluation of the topological entropy, and the growth rate of the number

of topologically distinct orbits. In chapters 21 and 22, this small victory will

be refashioned into a systematic method for computing eigenvalues of evolution

operators in terms of periodic orbits.
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Commentary

Remark 20.1 ‘Pressure’. The quantity 〈exp(βA)〉 is called a ‘partition function’ by

Ruelle [A39.14]. Some authors decorate it with considerably more Greek and Gothic

letters than is done in this treatise. Ruelle [20.1] and Bowen [A1.70] had given name

‘pressure’ or ’topological pressure’ P(a) to s(β) (where a is the observable introduced in

sect. 20.1.1), defined by the ‘large system’ limit (20.10). As we shall also apply the theory

to computating the physical gas pressure exerted on the walls of a container by a bouncing

particle , we refer to s(β) as simply the leading eigenvalue of the evolution operator intro-

duced in sect. 19.5. The ‘convexity’ properties such as P(a) ≤ P(|a|) will be pretty obvious

consequences of the definition (20.10). In the case that L is the Perron-Frobenius oper-

ator (19.10), the eigenvalues {s0(β), s1(β), · · · } are called the Ruelle-Pollicott resonances

[A1.61, A1.62, A1.63], with the leading one, s(β) = s0(β) being the one of main physical

interest. In order to aid the reader in digesting the mathematics literature, we shall try to

point out the notational correspondences whenever appropriate. The rigorous formalism

is replete with lims, sups, infs, Ω-sets which are not really essential to understanding of

the theory, and are avoided in this book.

Remark 20.2 State space discretization. Ref. [20.10] discusses numerical dis-

cretizatons of state space, and construction of Perron-Frobenius operators as stochastic

matrices, or directed weighted graphs, as coarse-grained models of the global dynamics,

with transport rates between state space partitions computed using this matrix of tran-

sition probabilities; a rigorous discussion of some of the former features is included in

ref. [28.21].

20.6 Examples

Example 20.1 Integrated observables. (a) If the observable is the velocity, ai(x) =

vi(x), its time integral A(x0, ti) is the trajectory A(x0, ti) = xi(t).

(b) For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]

passing through a phase-space point x0 = [q(0), p(0)] is:

A(x0, t) =

∫ t

0

dτ q̇(τ) · p(τ) . (20.39)

click to return: p. ??

Example 20.2 Deterministic diffusion. The phase space of an open system such as

the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 24.1)

is dense with initial points that correspond to periodic runaway trajectories. The mean

distance squared traversed by any such trajectory grows as x(t)2 ∼ t2, and its contri-

bution to the diffusion rate D ∝ x(t)2/t, (20.3) evaluated with a(x) = x(t)2, diverges.

Seemingly there is a paradox; even though intuition says the typical motion should be

diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by also averaging over

the initial x and worrying about the measure of the ‘pathological’ trajectories. (contin-

ued in example 20.3) click to return: p. ??
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Example 20.3 Deterministic diffusion. (continued from example 20.2) Con-

sider a point particle scattering elastically off a d-dimensional array of scatterers. If

the scatterers are sufficiently large to block any infinite length free flights, the particle

will diffuse chaotically, and the transport coefficient of interest is the diffusion constant

〈x(t)2〉 ≈ 2dDt. In contrast to D estimated numerically from trajectories x(t) for finite

but large t, the above formulas yield the asymptotic D without any extrapolations to the

t → ∞ limit. For example, for ai = vi and zero mean drift 〈vi〉 = 0, in d dimensions the

diffusion constant is given by the curvature of s(β) at β = 0, section 24.1

D = lim
t→∞

1

2dt
〈x(t)2〉 =

1

2d

d
∑

i=1

∂2s

∂β2
i

∣

∣

∣

∣

∣

∣

β=0

, (20.40)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that

characterize deterministic diffusion. As we shall see in chapter 24, periodic orbit theory

yields an exact and explicit closed form expression for D. click to return: p. ??

Example 20.4 Escape rate for a piecewise-linear repeller: (continuation of exam-

ple 19.1) What is gained by reformulating the dynamics in terms of ‘operators’? We

start by considering a simple example in which the operator is a [2×2] matrix. Assume

the expanding 1-dimensional map f (x) of figure 20.3, a piecewise-linear 2–branch re-

peller (19.37). Assume a piecewise constant density (19.38). There is no need to

define ρ(x) in the gap betweenM0 andM1, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f

is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two

strips of survivors.

As can be easily checked using (19.9), the Perron-Frobenius operator acts on

this piecewise constant function as a [2×2] ‘transfer’ matrix (19.39) exercise 19.1

exercise 19.5
(

ρ0

ρ1

)

→ Lρ =

[ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

] (

ρ0

ρ1

)

,

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at

every iteration. In this example the density is constant after one iteration, so L has only

one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1| ≤ 1, with constant density eigenvector

ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|

intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each

iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (20.41)

Voila! Here is the rationale for introducing operators – in one time step we have solved

the problem of evaluating escape rates at infinite time. (continued in example 28.5)click to return: p. ??

Example 20.5 Lyapunov exponent, discrete time 1-dimensional dynamics. Due

to the chain rule (4.22) for the derivative of an iterated map, the stability of a 1-dimensional

mapping is multiplicative along the flow, so the integral (20.1) of the observable a(x) =

ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory of x0, is

additive:

A(x0, n) = ln
∣

∣

∣ f n′(x0)
∣

∣

∣ =

n−1
∑

k=0

ln
∣

∣

∣ f ′(xk)
∣

∣

∣ . (20.42)
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For a 1-dimensional iterative mapping, the Lyapunov exponent is then the expectation

value (20.8) given by a spatial integral (20.7) weighted by the natural measure

λ = 〈ln | f ′(x)|〉 =

∫

M

dx ρ0(x) ln | f ′(x)| . (20.43)

The associated one time step evolution operator (20.24) is

L(y, x) = δ(y − f (x)) eβ ln | f ′(x)| . (20.44)

click to return: p. ??

Example 20.6 Microcanonical ensemble. In statistical mechanics the space aver-

age (20.6) performed over the Hamiltonian system constant energy surface invariant

measure ρ(x)dx = dqdp δ(H(q, p)− E) of volume ω(E) =
∫

M
dqdp δ(H(q, p)− E)

〈a(t)〉 =
1

ω(E)

∫

M

dqdp δ(H(q, p) − E)a(q, p, t) (20.45)

is called the microcanonical ensemble average. click to return: p. ??

Exercises

20.1. Expectation value of a vector observable.

Check and extend the expectation value formulas

(20.11) by evaluating the derivatives of s(β) up to 4-th

order for the space average 〈exp(β · A)〉 with ai a vector

quantity:

(a)

∂s

∂βi

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1

t
〈Ai〉 = 〈ai〉 , (20.46)

(b)

∂2s

∂βk∂β j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1

t

(

〈AkA j〉 − 〈Ak〉〈A j〉
)

= lim
t→∞

1

t
〈(Ak − t〈ak〉)(A j − t〈a j〉)〉 .

Note that the formalism is smart: it automatically

yields the variance from the mean, rather than

simply the 2nd moment 〈a2〉.

(c) compute the third derivative of s(β).

(d) compute the fourth derivative assuming that the

mean in (20.46) vanishes, 〈ai〉 = 0. The 4-th order

moment formula

K(t) =
〈x4(t)〉

〈x2(t)〉2
− 3 (20.47)

that you have derived is known as kurtosis (20.20):

it measures a deviation from what the 4-th order

moment would be were the distribution a pure

Gaussian (see (24.22) for a concrete example).

If the observable is a vector, the kurtosis K(t) is

given by

∑

k j

[

〈AkAkA jA j〉 + 2
(

〈AkA j〉〈A jAk〉 − 〈AkAk〉〈A jA j〉
)]

(∑

k〈AkAk〉
)2

20.2. Escape rate for a 1-dimensional repeller, numerically.

Consider the quadratic map

f (x) = Ax(1 − x) (20.48)

on the unit interval. The trajectory of a point starting

in the unit interval either stays in the interval forever or

after some iterate leaves the interval and diverges to mi-

nus infinity. Estimate numerically the escape rate (27.8),

the rate of exponential decay of the measure of points

exerAver - 24mar2013 ChaosBook.org version15.9, Jun 24 2017



REFERENCES 382

remaining in the unit interval, for either A = 9/2 or

A = 6. Remember to compare your numerical estimate

with the solution of the continuation of this exercise, ex-

ercise 23.2.

20.3. Pinball escape rate from numerical simulation∗.

Estimate the escape rate for R : a = 6 3-disk pinball

by shooting 100,000 randomly initiated pinballs into the

3-disk system and plotting the logarithm of the num-

ber of trapped orbits as function of time. For com-

parison, a numerical simulation of ref. [A1.40] yields

γ = .410 . . . .
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