
Appendix D

Discrete symmetries of dynamics

Basic group-theoretic notions are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct sums
of lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct rootλi of invariant matrixM a projection
operator (D.17):

Pi =
∏

j,i

M − λ j1
λi − λ j

.

Sects. D.3 and D.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

D.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

We definegroup, representation, symmetry of a dynamical system, andinvariance.
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Group axioms. A groupG is a set of elementsg1, g2, g3, . . . for which compo-
sition or group multiplication g2 ◦ g1 (which we often abbreviate asg2g1) of any
two elements satisfies the following conditions:

1. If g1, g2 ∈ G, theng2 ◦ g1 ∈ G.

2. The group multiplication is associative:g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The groupG containsidentityelementesuch thatg◦e= e◦g = g for every
elementg ∈ G.

4. For every elementg ∈ G, there exists a uniqueh == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where|G|, the number of elements, is theorder of the group.

Example D.1 Finite groups: Some finite groups that frequently arise in applica-
tions:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• Sn: the symmetric group of all permutations of n symbols, order n!.

Example D.2 Cyclic and dihedral groups: The cyclic group Cn ⊂ SO(2) of order n
is generated by one element. For example, this element can be rotation through 2π/n.
The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least

of which must reverse orientation. For example, take σ corresponding to reflection in
the x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n,
then Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.

Groups are defined and classified as abstract objects by theirmultiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us in
applications is theiractionas groups of transformations on a given space, usually a
vector space (see appendix C.1), but sometimes an affine space, or a more general
manifoldM.

Repeated index summation. Throughout this text, the repeated pairs of up-
per/lower indices are always summed over

Ga
bxb ≡

n
∑

b=1

Ga
bxb , (D.1)

unless explicitly stated otherwise.
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General linear transformations. Let GL(n, F) be the group of general linear
transformations,

GL(n, F) =
{

g : F n→ F n |det (g) , 0
}

. (D.2)

UnderGL(n, F) a basis set ofV is mapped into another basis set by multiplication
with a [n×n] matrix g with entries in fieldF (F is eitherR orC),

e′ a = eb(g−1)b
a .

As the vectorx is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′a = ga
bxb .

Standard rep. We shall refer to the set of [n×n] matricesg as astandard rep
of GL(n, F), and the space of alln-tuples (x1, x2, . . . , xn)⊤, xi ∈ F on which these
matrices act as thestandard representation space V.

Under a general linear transformationg ∈ GL(n, F), the row of basis vectors
transforms by right multiplication ase′ = eg−1, and the column ofxa’s trans-
forms by left multiplication asx′ = gx. Under left multiplication the column
(row transposed) of basis vectorse⊤ transforms ase′⊤ = g†e⊤, where thedual
rep g† = (g−1)⊤ is the transpose of the inverse ofg. This observation motivates
introduction of adual representation spacēV, the space on whichGL(n, F) acts
via the dual repg†.

Dual space. If V is a vector representation space, then thedual spaceV̄ is the
set of all linear forms onV over the fieldF.

If {e(1), · · · , e(d)} is a (right) basis ofV, thenV̄ is spanned by thedual basis
(left basis){e(1), · · · , e(d)}, the set ofn linear formse( j) such that

e(i) · e( j) = δ
j
i ,

whereδba is the Kronecker symbol,δba = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (D.3)

They transform underGL(n, F) as

y′a = (g†)b
ayb . (D.4)
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For GL(n, F) no complex conjugation is implied by the† notation; that interpre-
tation applies only to unitary subgroups ofGL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

gb
a→ ga

b , (g†)b
a→ gb

a . (D.5)

Defining space, dual space. In what followsV will always denote thedefining
n-dimensional complex vector representation space, that isto say the initial, “el-
ementary multiplet” space within which we commence our deliberations. Along
with the defining vector representation spaceV comes thedual n-dimensional vec-
tor representation spacēV. We shall denote the corresponding element ofV̄ by
raising the index, as in (D.3), so the components of defining space vectors, resp.
dual vectors, are distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (D.6)

Defining rep. Let G be a group of transformations acting linearly onV, with the
action of a group elementg ∈ G on a vectorx ∈ V given by an [n×n] matrix g

x′a = ga
bxb a, b = 1, 2, . . . , n . (D.7)

We shall refer toga
b as thedefining repof the groupG. The action ofg ∈ G on a

vectorq̄ ∈ V̄ is given by thedual rep[n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (D.8)

In the applications considered here, the groupG will almost always be assumed
to be a subgroup of theunitary group, in which caseg−1 = g†, and† indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (D.9)

Hermitian conjugation is effected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and lower indices; transposition
reverses their order. A matrix ishermitianif its elements satisfy

(M †)a
b = Ma

b . (D.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, asMb

a = (M †)b
a = Ma

b.
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Invariant vectors. The vectorq ∈ V is an invariant vectorif for any transfor-
mationg ∈ G

q = gq. (D.11)

If a bilinear formM (x̄, y) = xaMa
byb is invariant for allg ∈ G, the matrix

Ma
b = ga

cgb
dMc

d (D.12)

is aninvariant matrix. Multiplying with gb
e and using the unitary condition (D.9),

we find that the invariant matricescommutewith all transformationsg ∈ G:

[g,M ] = 0 . (D.13)

Invariants. We shall refer to an invariant relation betweenp vectors inV and
q vectors inV̄, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyaserdzc , (D.14)

as aninvariant in Vq ⊗ V̄p (repeated indices, as always, summed over). In this
example, the coefficientshab

cde are components of invariant tensorh ∈ V3 ⊗ V̄2.

Matrix representation of a group. Let us now map the abstract groupG homeo-
morphicallyon a group of matricesD(G) acting on the vector spaceV, i.e., in such
a way that the group properties, especially the group multiplication, are preserved:

1. Any g ∈ G is mapped to a matrixD(g) ∈ D(G).

2. The group productg2 ◦ g1 ∈ G is mapped onto the matrix productD(g2 ◦
g1) = D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication:
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(

D(g2)D(g1)
)

=
(

D(g3)
(

D(g2)
)

D(g1).

4. The identity elemente ∈ G is mapped onto the unit matrixD(e) = 11 and
the inverse elementg−1 ∈ G is mapped onto the inverse matrixD(g−1) =
[D(g)]−1 ≡ D−1(g).

We call this matrix groupD(G) a linear or matrixrepresentationof the groupG
in therepresentation space V. We emphasize here‘linear’ in order to distinguish
the matrix representations from other representations that do not have to be linear,
in general. Throughout this appendix we only consider linear representations.

If the dimensionality ofV is d, we say the representation is and-dimensional
representation. We will often abbreviate the notation by writing matricesD(g) ∈
D(G) asg, i.e., x′ = gx corresponds to the matrix operationx′i =

∑d
j=1 D(g)i j x j .
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Character of a representation. The character ofχα(g) of ad-dimensional rep-
resentationD(g) of the group elementg ∈ G is defined as trace

χα(g) = tr D(g) =
d

∑

i=1

Dii (g) .

Note thatχ(e) = d, sinceDi j (e) = δi j for 1 ≤ i, j ≤ d.

Faithful representations, factor group. If the mappingG on D(G) is an iso-
morphism, the representation is said to befaithful. In this case the order of the
group of matricesD(G) is equal to the order|G| of the group. In general, how-
ever, there will be several elementsh ∈ G that will be mapped on the unit matrix
D(h) = 11. This property can be used to define a subgroupH ⊂ G of the group
G consisting of all elementsh ∈ G that are mapped to the unit matrix of a given
representation. Then the representation is a faithful representation of thefactor
group G/H.

Equivalent representations, equivalence classes.A representation of a group
is by no means unique. If the basis in thed-dimensional vector spaceV is changed,
the matricesD(g) have to be replaced by their transformationsD′(g), with the new
matricesD′(g) and the old matricesD(g) are related by an equivalence transfor-
mation through a non-singular matrixC

D′(g) = C D(g) C−1 .

The group of matricesD′(g) form a representationD′(G) equivalent to the rep-
resentationD(G) of the groupG. The equivalent representations have the same
structure, although the matrices look different. Because of the cylic nature of the
trace the character of equivalent representations is the same

χ(g) =
n

∑

i=1

D′ii (g) = tr D′(g) = tr
(

CD(g)C−1
)

.

Regular representation of a finite group. Theregular representation of a group
is a special representation that is defined as follows: Combine the elements of a
finite group into a vector{g1, g2, . . . , g|G|}. Multiplication by any elementgν per-
mutes{g1, g2, . . . , g|G|} entries. We can represent the elementgν by the permu-
tation it induces on the components of vector{g1, g2, . . . , g|G|}. Thus for i, j =
1, . . . , |G|, we define theregular representation

Di j (gν) =

{

δ jl i if gνgi = gli with l i = 1, . . . , |G| ,
0 otherwise.
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In the regular representation the diagonal elements of all matrices are zero except
for the identity elementgν = ewith gνgi = gi . So in the regular representation the
character is given by

χ(g) =

{

|G| for g = e,
0 for g , e.

D.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every groupG; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought tounitary
form, and the same is true of all compact Lie groups. Hence, inwhat follows, we
specialize to unitary and hermitian matrices.

D.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC † =

























































































λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...
. . .

























































































. (D.15)

Hereλi , λ j are ther distinct roots of the minimalcharacteristic(or secular)
polynomial

r
∏

i=1

(M − λi1) = 0 . (D.16)
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In the matrixC(M − λ21)C† the eigenvalues corresponding toλ2 are replaced
by zeroes:











































































λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .











































































,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏

j,1

(M − λ j1)C† =
∏

j,1

(λ1 − λ j)

























































1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .

























































.

Thus we can associate with each distinct rootλi aprojection operatorPi,

Pi =
∏

j,i

M − λ j1
λi − λ j

, (D.17)

which acts as identity on theith subspace, and zero elsewhere. For example, the
projection operator onto theλ1 subspace is

P1 = C†































































1
. . .

1
0

0
. . .

0































































C . (D.18)

The diagonalization matrixC is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism isthat weneverneed
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness ofPi : The matricesPi areorthogonal

PiP j = δi j P j , (no sum onj) , (D.19)
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and satisfy thecompleteness relation

r
∑

i=1

Pi = 1 . (D.20)

As tr (CPiC†) = tr Pi, the dimension of theith subspace is given by

di = tr Pi . (D.21)

It follows from the characteristic equation (D.16) and the form of the projection
operator (D.17) thatλi is the eigenvalue ofM on Pi subspace:

MP i = λiPi , (no sum oni) . (D.22)

Hence, any matrix polynomialf (M ) takes the scalar valuef (λi) on thePi sub-
space

f (M )Pi = f (λi)Pi . (D.23)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

D.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have usedM1 to decompose thed-dimensional vector
spaceV = V1 ⊕ V2 ⊕ · · ·. CanM2,M3, . . . be used to further decomposeVi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (D.24)

or, equivalently, if projection operatorsP j constructed fromM2 commute with
projection operatorsPi constructed fromM1,

PiP j = P jPi . (D.25)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operatorsPi constructed fromM1 can be used
to project commuting pieces ofM2:

M (i)
2 = PiM2Pi , (no sum oni) .
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ThatM (i)
2 commutes withM1 follows from the orthogonality ofPi :

[M (i)
2 ,M1] =

∑

j

λ j[M
(i)
2 ,P j] = 0 . (D.26)

Now the characteristic equation forM (i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(D.15) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements.A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

According to (D.13), an invariant matrixM commutes with group transforma-
tions [G,M ] = 0. Projection operators (D.17) constructed fromM are polynomi-
als inM , so they also commute with allg ∈ G:

[G,Pi] = 0 (D.27)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di ] matrix reps:

G = 1G1 =
∑

i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (D.28)

In the diagonalized rep (D.18), the matrixg has a block diagonal form:

CgC† =





















g1 0 0
0 g2 0

0 0
. . .





















, g =
∑

i

CigiCi . (D.29)

The repgi acts only on thedi-dimensional subspaceVi consisting of vectorsPiq,
q ∈ V. In this way an invariant [d×d] hermitian matrixM with r distinct eigenval-
ues induces a decomposition of ad-dimensional vector spaceV into a direct sum
of di-dimensional vector subspacesVi:

V
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (D.30)

D.3 Lattice derivatives

In order to set up continuum field-theoretic equations whichdescribe the evolution
of spatial variations of fields, we need to definelattice derivatives.
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Consider a smooth functionφ(x) evaluated on ad-dimensional lattice

φℓ = φ(x) , x = aℓ = lattice point, ℓ ∈ Zd , (D.31)

where a is the lattice spacing. Each set of values ofφ(x) (a vectorφℓ) is a
possible lattice configuration. Assume the lattice is hyper-cubic, and let ˆnµ ∈
{n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along thed positive direc-
tions. Thelattice derivativeis then

(∂µφ)ℓ =
φ(x+ an̂µ) − φ(x)

a
=
φℓ+n̂µ − φℓ

a
. (D.32)

Anything else with the correcta → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
thestepping operatorin the directionµ

(

σµ
)

ℓ j
= δℓ+n̂µ , j . (D.33)

Asσ will play a central role in what follows, it pays to understand what it does.

In computer dicretizations, the lattice will be a finited-dimensional hyper-
cubic lattice

φℓ = φ(x) , x = aℓ = lattice point, ℓ ∈ (Z/N)d , (D.34)

wherea is the lattice spacing and there areNd points in all. For a hyper-cubic
lattice the translations in different directions commute,σµσν = σνσµ, so it is
sufficient to understand the action of (D.33) on a 1-dimensional lattice.

Let us write downσ for the 1-dimensional case in its full [N×N] matrix glory.
Writing the finite lattice stepping operator (D.33) as an ‘upper shift’ matrix,

σ =



















































0 1
0 1

0 1
. . .

0 1
0 0



















































, (D.35)

is no good, asσ so defined is nilpotent, and afterN steps the particle marches
off the lattice edge, and nothing is left,σN = 0. A sensible way to approximate
an infinite lattice by a finite one is to replace it by a lattice periodic in each ˆnµ
direction. On aperiodic latticeevery point is equally far from the ‘boundary’
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N/2 steps away, the ‘surface’ effects are equally negligible for all points, and the
stepping operator acts as a cyclic permutation matrix

σ =



















































0 1
0 1

0 1
. . .

0 1
1 0



















































, (D.36)

with ‘1’ in the lower left corner assuring periodicity.

Applied to the lattice configurationφ = (φ1, φ2, · · · , φN), the stepping operator
translates the configuration by one site,σφ = (φ2, φ3, · · · , φN, φ1). Its transpose
translates the configuration the other way, so the transposeis also the inverse,
σ−1 = σT . The partial lattice derivative (D.32) can now be written as amultipli-
cation by a matrix:

∂µφℓ =
1
a

(

σµ − 1
)

ℓ j
φ j .

In the 1-dimensional case the [N×N] matrix representation of the lattice deriva-
tive is:

∂ =
1
a



















































−1 1
−1 1

−1 1
. . .

1
1 −1



















































. (D.37)

To belabor the obvious: On a finite lattice ofN points a derivative is simply a
finite [N×N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

D.3.1 Lattice Laplacian

In the continuum, integration by parts moves∂ around,
∫

[dx]φT ·∂2φ→ −
∫

[dx]∂φT ·
∂φ; on a lattice this amounts to a matrix transposition

[(

σµ − 1
)

φ
]T
·
[(

σµ − 1
)

φ
]

= φT ·
(

σ−1
µ − 1

) (

σµ − 1
)

φ .
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If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂T =
1
a

(

σ−1 − 1
)

= −σ−11
a

(σ − 1) = −σ−1∂ .

The symmetric (self-adjoint) combination� = −∂T∂

� = − 1

a2

d
∑

µ=1

(

σ−1
µ − 1

) (

σµ − 1
)

= − 2

a2

d
∑

µ=1

(

1− 1
2

(σ−1
µ + σµ)

)

=
1

a2
(N − 2d1) (D.38)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [N×N] matrix representation of
the lattice Laplacian is:

� =
1

a2



















































−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2



















































. (D.39)

The lattice Laplacian measures the second variation of a field φℓ across three
neighboring sites: it is spatiallynon-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
lattice,φℓ = φ(aℓ), whereφ(aℓ) is defined by the value of the continuum function
φ(x) = x2 at the lattice pointxℓ = aℓ.

The Euclidean free scalar particle propagator can thus be written as

∆ =
1

1− a2h
s �
. (D.40)

D.3.2 Inverting the Laplacian

Evaluation of perturbative corrections requires that we come to grips with the
“free” or “bare” propagatorM. While the the Laplacian is a simple difference
operator (D.39), the propagator is a messier object. A way tocompute is to start
expanding the propagatorM as a power series in the Laplacian

M =
1

m2 − �
=

1

m2

∞
∑

k=0

1

m2k
�

k . (D.41)
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As � is a finite matrix, the expansion is convergent for sufficiently largem2. To
get a feeling for what is involved in evaluating such series,evaluate�2 in the
1-dimensional case:

�
2 =

1
a4



















































6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6



















































. (D.42)

What�3, �4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while theinverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral,non-local operator, connecting every lattice site to any other
lattice site. Due to the periodicity, these are all Toeplitzmatrices, meaning that
each successive row is a one-step cyclic shift of the preceding one. In statistical
mechanics,M is the (bare) 2-point correlation. In quantum field theory, it is called
a propagator.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplificationfollows from the
observation that the lattice action is translationally invariant. We will show how
this works in sect. D.4.

D.4 Periodic lattices

Our task now is to transformM into a form suitable to explicit evaluation.

Consider the effect of a lattice translationφ→ σφ on the matrix polynomial

S[σφ] = −1
2
φT

(

σT M−1σ
)

φ .

As M−1 is constructed fromσ and its inverse,M−1 andσ commute, andS[φ] is
invariant under translations,

S[σφ] = S[φ] = −1
2
φT · M−1 · φ . (D.43)

If a function defined on a vector space commutes with a linear operatorσ, then the
eigenvalues ofσ can be used to decompose theφ vector space into invariant sub-
spaces. For a hyper-cubic lattice the translations in different directions commute,
σµσν = σνσµ, so it is sufficient to understand the spectrum of the 1-dimensional
stepping operator (D.36). To develop a feeling for how this reduction to invariant
subspaces works in practice, let us continue humbly, by expanding the scope of
our deliberations to a lattice consisting of 2 points.
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D.4.1 A 2-point lattice diagonalized

The action of the stepping operatorσ (D.36) on a 2-point latticeφ = (φ0, φ1) is to
permute the two lattice sites

σ =

(0 1
1 0

)

.

As exchange repeated twice brings us back to the original configuration,σ2 = 1,
the characteristic polynomial ofσ is

(σ + 1)(σ − 1) = 0 ,

with eigenvaluesλ0 = 1, λ1 = −1. The symmetrization, antisymmetrization pro-
jection operators are

P0 =
σ − λ11
λ0 − λ1

=
1
2

(1+ σ) =
1
2

(1 1
1 1

)

(D.44)

P1 =
σ − 1
−1− 1

=
1
2

(1− σ) =
1
2

( 1 −1
−1 1

)

. (D.45)

Noting thatP0 + P1 = 1, we can project a lattice configurationφ onto the two
normalized eigenvectors ofσ:

φ = 1φ = P0 · φ + P1 · φ ,
(

φ1

φ2

)

=
(φ0 + φ1)
√

2

1
√

2

( 1
1

)

+
(φ0 − φ1)
√

2

1
√

2

( 1
−1

)

(D.46)

= φ̃0n̂0 + φ̃1n̂1 . (D.47)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform sep-
arately under any linear transformation constructed fromσ and its powers.

In this way the characteristic equationσ2 = 1 enables us to reduce the 2-
dimensional lattice configuration to two 1-dimensional ones, on which the value
of the stepping operatorσ is a number,λ ∈ {1,−1}, and the normalized eigen-
vectors are ˆn0 =

1√
2
(1, 1), n̂1 =

1√
2
(1,−1). As we shall now see, (φ̃0, φ̃1) is the

2-site periodic lattice discrete Fourier transform of the field (φ1, φ2).

D.5 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice withN sites.
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Each application ofσ translates the lattice one step; inN steps the lattice is
back in the original configuration

σN = 1

.
.

.

.
..

.
k

N−1

N−2

0

45
3

2

1h

,

so the eigenvalues ofσ are theN distinctN-th roots of unity

σN − 1 =
N−1
∏

k=0

(σ − ωk1) = 0 , ω = ei 2π
N . (D.48)

As the eigenvalues are all distinct andN in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded inappendix D.2)
associates with thek-th eigenvalue ofσ a projection operator that projects a con-
figurationφ ontok-th eigenvector ofσ,

Pk =
∏

j,k

σ − λ j1
λk − λ j

. (D.49)

A factor (σ − λ j1) kills the j-th eigenvectorϕ j component of an arbitrary vector
in expansionφ = · · · + φ̃ jϕ j + · · ·. The above product kills everything but the
eigen-directionϕk, and the factor

∏

j,k(λk − λ j) ensures thatPk is normalized as
a projection operator. The set of the projection operators is complete,

∑

k

Pk = 1 , (D.50)

and orthonormal

PkP j = δk jPk (no sum onk) . (D.51)

Constructing explicit eigenvectors is usually not a the best way to fritter one’s
youth away, as choice of basis is largely arbitrary, and all of the content of the
theory is in projection operators (see appendix D.2). However, in case at hand the
eigenvectors are so simple that we can construct the solutions of the eigenvalue
condition

σϕk = ωkϕk (D.52)

by hand:

1
√

N



















































0 1
0 1

0 1
. . .

0 1
1 0





































































































1
ωk

ω2k

ω3k

...

ω(N−1)k



















































= ωk 1
√

N



















































1
ωk

ω2k

ω3k

...

ω(N−1)k


















































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The 1/
√

N factor is chosen in order thatϕk be normalized complex unit vectors

ϕ
†
k · ϕk =

1
N

N−1
∑

k=0

1 = 1 , (no sum onk)

ϕ
†
k =

1
√

N

(

1, ω−k, ω−2k, · · · , ω−(N−1)k
)

. (D.53)

The eigenvectors are orthonormal

ϕ
†
k · ϕ j = δk j , (D.54)

as the explicit evaluation ofϕ†k · ϕ j yields theKronecker delta function for a peri-
odic lattice

δk j =
1
N

N−1
∑

ℓ=0

ei 2π
N (k− j)ℓ

.
.

.

.
..

.

N−2

N−1

0

1

2

3
5 4

k

. (D.55)

The sum is over theN unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unlessk = j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (D.52),
(D.53) as

(Pk)ℓℓ′ = (ϕk)ℓ(ϕ
†
k)ℓ′ =

1
N

ei 2π
N (ℓ−ℓ′)k , (no sum onk) . (D.56)

The completeness (D.50) follows from (D.55), and the orthonormality (D.51)
from (D.54).

φ̃k, the projection of theφ configuration on thek-th subspace is given by

(Pk · φ)ℓ = φ̃k (ϕk)ℓ , (no sum onk)

φ̃k = ϕ
†
k · φ =

1
√

N

N−1
∑

ℓ=0

e−i 2π
N kℓφℓ (D.57)

We recognizẽφk as thediscrete Fourier transformof φℓ. Hopefully rediscovering
it this way helps you a little toward understanding why Fourier transforms are full
of eix·p factors (they are eigenvalues of the generator of translations) and when
are they the natural set of basis functions (only if the theory is translationally
invariant).
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D.5.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑

kk′
PkMPk′ =

∑

kk′
ϕk(ϕ

†
k ·M · ϕk′)ϕ

†
k′ .

The matrix

M̃kk′ = (ϕ†k ·M · ϕk′) (D.58)

is the Fourier space representation ofM . According to (D.54) the matrixUkℓ =

(ϕk)ℓ = 1√
N

ei 2π
N kℓ is a unitary matrix, so the Fourier transform is a linear, unitary

transformation,UU† =
∑

Pk = 1, with Jacobian detU = 1. The form of the
invariant function (D.43) does not change underφ→ φ̃k transformation, and from
the formal point of view, it does not matter whether we compute in the Fourier
space or in the configuration space that we started out with. For example, the
trace ofM is the trace in either representation

tr M =
∑

ℓ

Mℓℓ =
∑

kk′

∑

ℓ

(PkMPk′)ℓℓ

=
∑

kk′

∑

ℓ

(ϕk)ℓ(ϕ
†
k ·M · ϕk′)(ϕ

†
k′ )ℓ =

∑

kk′
δkk′ M̃kk′ = tr M̃ .

From this it follows that trMn = tr M̃n, and from the tr ln= ln tr relation that
det M = det M̃ . In fact, any scalar combination ofφ’s, J’s and couplings, such as
the partition functionZ[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the payback?

D.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (D.52) to convertσ matrices into scalars. IfM
commuteswith σ, then (ϕ†k ·M ·ϕk′ ) = M̃kδkk′ , and the matrixM acts as a multipli-
cation by the scalar̃Mk on thekth subspace. For example, for the 1-dimensional
version of the lattice Laplacian (D.38) the projection on the k-th subspace is

(ϕ†k · � · ϕk′) =
2
a2

(

1
2

(ω−k + ωk) − 1

)

(ϕ†k · ϕk′)

=
2

a2

(

cos

(

2π
N

k

)

− 1

)

δkk′ (D.59)
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In the k-th subspace the bare propagator is simply a number, and, in contrast to
the mess generated by (D.41), there is nothing to invertingM−1:

(ϕ†k · M · ϕk′) = (G̃0)kδkk ′ =
1
β

δkk ′

m′20 −
2c
a2

∑d
µ=1

(

cos
(

2π
N kµ

)

− 1
) , (D.60)

wherek = (k1, k2, · · · , kµ) is a d-dimensional vector in theNd-dimensional dual
lattice.

Going back to the partition function and sticking in the factors of 1 into the
bilinear part of the interaction, we replace the spatialJℓ by its Fourier transform̃Jk,
and the spatial propagator (M)ℓℓ′ by the diagonalized Fourier transformed (G̃0)k

JT · M · J =
∑

k,k′
(JT · ϕk)(ϕ

†
k · M · ϕk′)(ϕ

†
k′ · J) =

∑

k

J̃†k(G̃0)kJ̃k . (D.61)

D.6 C4v factorization

If an N-disk arrangement hasCN symmetry, and the disk visitation sequence is
given by disk labels{ǫ1ǫ2ǫ3 . . .}, only the relative incrementsρi = ǫi+1 − ǫi modN
matter. Symmetries under reflections across axes increase the group toCNv and
add relations between symbols:{ǫi} and {N − ǫi} differ only by a reflection. As
a consequence of this reflection increments become decrements until the next re-
flection and vice versa. Consider four equal disks placed on the vertices of a
square (figure D.1). The symmetry group consists of the identity e, the two re-
flectionsσx, σy acrossx, y axes, the two diagonal reflectionsσ13, σ24, and the
three rotationsC4, C2 andC3

4 by anglesπ/2, π and 3π/2. We start by exploiting
theC4 subgroup symmetry in order to replace the absolute labelsǫi ∈ {1, 2, 3, 4}
by relative incrementsρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new sym-
bol will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1→ disk 2 segment as the
starting segment, this symbol string is mapped into the diskvisitation sequence
1+12+13+21 . . . = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1corresponds to a flip in orientation after the second and fifthsymbols);
this time the period in the full space is twice that of the fundamental domain. In
particular, the fundamental domain fixed points correspondto the following 4-disk
cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2
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Figure D.1: Symmetries of four disks on a square. A
fundamental domain indicated by the shaded wedge.

3

4 1

2
C4

C4

3

C4

3

y

x

= C2

13

24

Figure D.2: Symmetries of four disks on a rectangle.
A fundamental domain indicated by the shaded wedge.

Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table D.1.

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk spaceby the accumulated
product of theC4v group elementsg1 = C, g2 = C2, g1 = σdiagC = σaxis,

whereC is a rotation byπ/2. In the112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table D.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

TheC4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representationsE. Substituting theC4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (21.15) we obtain:
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Table D.1: C4v correspondence between the ternary fundamental domain prime cycles ˜p
and the full 4-disk{1,2,3,4} labeled cyclesp, together with theC4v transformation that
maps the end point of the ˜p cycle into an irreducible segment of thep cycle. For ty-
pographical convenience, the symbol 1of sect. D.6 has been replaced by 0, so that the
ternary alphabet is{0, 1, 2}. The degeneracy of thep cycle ismp = 8np̃/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotation byπ and a reflection across a diagonal.
The two pairs of cycles marked by (a) and (b) are related by time reversal, but cannot be
mapped into each other byC4v transformations.

p̃ p hp̃

0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃

0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2

0012 1212 4141 34342323C3
4

0021 (a) 1213 4142 34312324 C3
4

0022 1213 e
0102 (a) 1214 2321 34324143 C4
0111 1214 3234 σ13
0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24
0211 1243 2134 σx
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 34124123C4
1122 1231 3413 C2

1222 1242 4131 34242313C3
4

hp̃ A1 A2 B1 B2 E
e: (1− tp̃)8 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)4

C2: (1− t2p̃)4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1+ tp̃)4

C4,C3
4: (1− t4p̃)2 = (1− tp̃) (1− tp̃) (1+ tp̃) (1+ tp̃) (1+ t2p̃)2

σaxes: (1− t2p̃)4 = (1− tp̃) (1+ tp̃) (1− tp̃) (1+ tp̃) (1− t2p̃)2

σdiag: (1− t2p̃)4 = (1− tp̃) (1+ tp̃) (1+ tp̃) (1− tp̃) (1− t2p̃)2

The possible irreducible segment group elementshp̃ are listed in the first col-
umn; σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag

denotes a reflection across a diagonal (see figure D.1). In addition, degener-
ate pairs of boundary orbits can run along the symmetry linesin the full space,
with the fundamental domain group theory weightshp = (C2 + σx)/2 (axes) and
hp = (C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1− t2p̃)2 = (1− tp̃)(1− 0tp̃)(1− tp̃)(1− 0tp̃)(1+ tp̃)2

diagonals: (1− t2p̃)2 = (1− tp̃)(1− 0tp̃)(1− 0tp̃)(1− tp̃)(1+ tp̃)2(D.62)

(we have assumed thattp̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits13,24
occur; they correspond to the2 fixed point in the fundamental domain.
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TheA1 subspace inC4v cycle expansion is given by

1/ζA1 = (1− t0)(1− t1)(1− t2)(1− t01)(1− t02)(1− t12)

(1− t001)(1− t002)(1− t011)(1− t012)(1− t021)(1− t022)(1− t112)

(1− t122)(1− t0001)(1− t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 − t1 − t2 − (t01− t0t1) − (t02− t0t2) − (t12 − t1t2)

−(t001− t0t01) − (t002− t0t02) − (t011− t1t01)

−(t022− t2t02) − (t112− t1t12) − (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (D.63)

(for typographical convenience, 1is replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characterscan be read off the symbol
strings: χA2(hp̃) = (−1)n0, χB1(hp̃) = (−1)n1, χB2(hp̃) = (−1)n0+n1, wheren0 and
n1 are the number of times symbols 0, 1 appear in the ˜p symbol string. ForB2 all
tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1+ t0)(1+ t1)(1− t2)(1− t01)(1+ t02)(1+ t12)

(1+ t001)(1− t002)(1+ t011)(1− t012)(1− t021)(1+ t022)(1− t112)

(1+ t122)(1− t0001)(1+ t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .

= 1+ t0 + t1 − t2 − (t01− t0t1) + (t02− t0t2) + (t12 − t1t2)

+(t001− t0t01) − (t002− t0t02) + (t011− t1t01)

+(t022− t2t02) − (t112− t1t12) + (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (D.64)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (D.62) the orbitt2 does not contribute toA2 and
B1,

1/ζA2 = (1+ t0)(1− t1)(1+ t01)(1+ t02)(1− t12)

(1− t001)(1− t002)(1+ t011)(1+ t012)(1+ t021)(1+ t022)(1− t112)

(1− t122)(1+ t0001)(1+ t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1+ t0 − t1 + (t01 − t0t1) + t02− t12

−(t001− t0t01) − (t002− t0t02) + (t011− t1t01)

+t022− t122− (t112− t1t12) + (t012+ t021− t0t12− t1t02) . . .(D.65)

and

1/ζB1 = (1− t0)(1+ t1)(1+ t01)(1− t02)(1+ t12)

(1+ t001)(1− t002)(1− t011)(1+ t012)(1+ t021)(1− t022)(1− t112)

(1+ t122)(1+ t0001)(1− t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .

= 1− t0 + t1 + (t01 − t0t1) − t02+ t12

+(t001− t0t01) − (t002− t0t02) − (t011− t1t01)

−t022+ t122− (t112− t1t12) + (t012+ t021− t0t12− t1t02) . . .(D.66)
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In the above we have assumed thatt2 does not change sign underC4v reflections.
For the mixed-symmetry subspaceE the curvature expansion is given by

1/ζE = 1+ t2 + (−t0
2 + t1

2) + (2t002− t2t0
2 − 2t112+ t2t1

2)

+(2t0011− 2t0022+ 2t2t002− t01
2 − t02

2 + 2t1122− 2t2t112

+t12
2 − t0

2t1
2) + (2t00002− 2t00112+ 2t2t0011− 2t00121− 2t00211

+2t00222− 2t2t0022+ 2t01012+ 2t01021− 2t01102− t2t01
2 + 2t02022

−t2t02
2 + 2t11112− 2t11222+ 2t2t1122− 2t12122+ t2t12

2 − t2t0
2t1

2

+2t002(−t0
2 + t1

2) − 2t112(−t0
2 + t1

2)) (D.67)

A quick test of theζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substitutingtp = znp into the expansion yields

1/ζA1 = 1− 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1+ z ,

in agreement with (15.46). exercise 20.8

D.7 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle hasC2v sym-
metry (figure D.2b).C2v consists of{e, σx, σy,C2}, i.e., the reflections across the
symmetry axes and a rotation byπ.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded backby a reflection
on that axis; with these symmetry operationsg0 = σx and g1 = σy we asso-
ciate labels 1 and 0, respectively. Orbits going to the diagonally opposed disk
cross the boundaries of the fundamental domain twice; the product of these two
reflections is justC2 = σxσy, to which we assign the label 2. For example, a
ternary string 0 0 1 0 2 0 1. . . is converted into 12143123. . ., and the associated
group-theory weight is given by. . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in table D.2.
Note that already at length three there is a pair of cycles (012= 143 and 021= 142)
related by time reversal, butnot by anyC2v symmetries.

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics.
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Table D.2: C2v correspondence between the ternary{0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk{1,2,3,4} cyclesp, together with theC2v transformation that
maps the end point of the ˜p cycle into an irreducible segment of thep cycle. The de-
generacy of thep cycle ismp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other byC2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect. D.7, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2
0211 1421 2312 σx
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

The groupC2v has four 1-dimensional representations, distinguished bytheir
behavior under axis reflections. TheA1 representation is symmetric with respect
to both reflections; theA2 representation is antisymmetric with respect to both.
TheB1 andB2 representations are symmetric under one and antisymmetricunder
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (21.14), the contributions of peri-
odic orbits split as follows

gp̃ A1 A2 B1 B2

e: (1− tp̃)4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
C2: (1− t2p̃)2 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
σx: (1− t2p̃)2 = (1− tp̃) (1+ tp̃) (1− tp̃) (1+ tp̃)
σy: (1− t2p̃)2 = (1− tp̃) (1+ tp̃) (1+ tp̃) (1− tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
table D.2. ForA1 all characters are+1, and the corresponding cycle expansion is
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given in (D.63). Similarly, the totally antisymmetric subspace factorizationA2 is
given by (D.64), theB2 factorization ofC4v. ForB1 all tp with an odd total number
of 0’s and 2’s change sign:

1/ζB1 = (1+ t0)(1− t1)(1+ t2)(1+ t01)(1− t02)(1+ t12)

(1− t001)(1+ t002)(1+ t011)(1− t012)(1− t021)(1+ t022)(1+ t112)

(1− t122)(1+ t0001)(1− t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .

= 1+ t0 − t1 + t2 + (t01− t0t1) − (t02− t0t2) + (t12 − t1t2)

−(t001− t0t01) + (t002− t0t02) + (t011− t1t01)

+(t022− t2t02) + (t112− t1t12) − (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (D.68)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1− t0)(1+ t1)(1+ t2)(1+ t01)(1+ t02)(1− t12)

(1+ t001)(1+ t002)(1− t011)(1− t012)(1− t021)(1− t022)(1+ t112)

(1+ t122)(1+ t0001)(1+ t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 + t1 + t2 + (t01− t0t1) + (t02− t0t2) − (t12 − t1t2)

+(t001− t0t01) + (t002− t0t02) − (t011− t1t01)

−(t022− t2t02) + (t112− t1t12) + (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (D.69)

Note that all of the above cycle expansions group long orbitstogether with their
pseudo-orbit shadows, so that the shadowing arguments for convergence still ap-
ply.

The topological polynomial factorizes as

1
ζA1

= 1− 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1+ z,

consistent with the 4-disk factorization (15.46).

D.8 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.17).For b , 0 the
Hénon map is reversible: the backward iteration of (3.18) is given by

xn−1 = −
1
b

(1− ax2
n − xn+1) . (D.70)

appendSymm - 22sep2010 ChaosBook.org version15, Jan 18 2015

EXERCISES 867

Hence the time reversal amounts tob→ 1/b, a→ a/b2 symmetry in the param-
eter plane, together withx→ −x/b in the coordinate plane, and there is no need
to explore the (a, b) parameter plane outside the stripb ∈ {−1, 1}. Forb = −1 the
map is orientation and area preserving ,

xn−1 = 1− ax2
n − xn+1 , (D.71)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across thexn+1 = xn diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the orientation reversingb = 1
case we have

xn−1 = 1− ax2
n + xn+1 , (D.72)

and the non–wandering set is symmetric across thexn+1 = −xn diagonal.

Commentary

Remark D.1 Literature This material is covered in any introduction to linear alge-
bra [D.1, D.2, D.3] or group theory [21.16, 10.2]. The exposition given in sects. D.2.1
and D.2.2 is taken from refs. [?, D.24, 9.5]. Who wrote this down first we do not know,
but we like Harter’s exposition [?, D.26,?] best. Harter’s theory of class algebrasoffers a
more elegant and systematic way of constructing the maximalset of commuting invariant
matricesM i than the sketch offered in this section.

Remark D.2 Labeling conventions While there is a variety of labeling conventions [25.19,
9A.14] for the reducedC4v dynamics, we prefer the one introduced here because of its
close relation to the group-theoretic structure of the dynamics: the global 4-disk trajec-
tory can be generated by mapping the fundamental domain trajectories onto the full 4-disk
space by the accumulated product of theC4v group elements.

Remark D.3 C2v symmetry C2v is the symmetry of several systems studied in the
literature, such as the stadium billiard [8.10], and the 2-dimensional anisotropic Kepler
potential [21.3].

Exercises

D.1. Am I a group? Show that multiplication table
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e a b c d f
e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix D.1.)

From W.G. Harter [?]

D.2. Three coupled pendulums with aC2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same massm and lengthl, the one midway of same
length but different massM, with the tip coupled to the
tips of the outer ones with springs of stiffnessk. Assume
displacements are small,xi/l ≪ 1.

(a) Show that the acceleration matrixẍ = −a x is
















ẍ1
ẍ2
ẍ3

















= −
















a+ b −a 0
−c 2c+ b −c
0 −a a+ b

































x1
x2
x3

















,

wherea = k/ml, c = k/Ml andb = g/l.

(b) Check that [a,R] = 0, i.e., that the dynamics is
invariant underC2 = {e,R}, whereR interchanges the
outer pendulums,

R =

















0 0 1
0 1 0
1 0 0

















.

(c) Construct the corresponding projection operatorsP+
andP−, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(ω(−))2 = a + b, and a 2-dimensional subspace, with
acceleration matrix (trust your own algebra, if it strays
from what is stated here)

a(+) =

[

a+ b −
√

2a
−
√

2c c+ b

]

.

The exercise is simple enough that you can do it with-
out using the symmetry, so: constructP+,P− first, use
them to reducea to irreps, then proceed with computing
remaining eigenvalues ofa.

(d) Does anything interesting happen ifM = m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimensiond gets reduced to a set of subspaces
whose dimensionsd(α) satisfy

∑

d(α) = d. Beyond that,
love many, trust few, and paddle your own canoe.

From W.G. Harter [?]

D.3. Lorenz system in polar coordinates: dynamics.
(continuation of exercise 9A.3)

1. Show that (9A.29) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined

(r1, θ1, z1) = (
√

2b(ρ − 1), π/4, ρ− 1) .(D.73)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here
the precise numbers to help you check your pro-
grams):

EQ1 = (0, 12, 27) equilibrium: (and itsC1/2-
rotationEQ2) has one stable real eigenvalue
λ(1) = −13.854578,
and the unstable complex conjugate pair
λ(2,3) = µ(2) ± iω(2) = 0.093956± i10.194505.
The unstable eigenplane is defined by eigen-
vectors
Ree(2) = (−0.4955,−0.2010,−0.8450)
Im e(2) = (0.5325,−0.8464, 0)
with periodT = 2π/ω(2) = 0.6163306,
radial expansion multiplier
Λr = exp(2πµ(2)/ω(2)) = 1.059617,
and the contracting multiplier
Λc = exp(2πµ(1)/ω(2)) ≈ 1.95686× 10−4

along the stable eigenvector ofEQ1,
e(3) = (0.8557,−0.3298,−0.3988).

EQ0 = (0, 0, 0) equilibrium: The stable eigen-
vectore(1) = (0, 0, 1) of EQ0, has contraction rate
λ(2) = −b = −2.666. . ..
The other stable eigenvector is
e(2) = (−0.244001,−0.969775,0), with contract-
ing eigenvalue
λ(2) = −22.8277. The unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the
Lorenz coordinates figure 2.5, and in the doubled-
polar angle coordinates (9A.27) for the Lorenz pa-
rameter valuesσ = 10,b = 8/3,ρ = 28. Topolog-
ically, does it resemble the Lorenz butterfly, the
Rössler attractor, or neither? The Poincaré sec-
tion of the Lorenz flow fixed by thez-axis and the
equilibrium in the doubled polar angle represen-
tation, and the corresponding Poincaré return map
(sn, sn + 1) are plotted in figure 11.8.

4. Construct the Poincaré return map (sn, sn+1),
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wheres is arc-length measured along the unstable
manifold of EQ0, lower Poincaré section of fig-
ure 11.8 (b). Elucidate its relation to the Poincaré
return map of figure 11.9. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar represen-
tation Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How
do the Floquet multipliers of relative periodic or-
bits of the representations relate to each other?

6. What does the volume contraction formula (4.41)
look like now? Interpret.

D.4. Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference
operator (D.39), its inverse (the “free” propagator of sta-
tistical mechanics and quantum field theory) is a messier
object. A way to compute is to start expanding propaga-
tor as a power series in the Laplacian

1
m21− � =

1
m2

∞
∑

n=0

1
m2n
�

n . (D.74)

As � is a finite matrix, the expansion is convergent for
sufficiently largem2. To get a feeling for what is in-
volved in evaluating such series, show that�2 is:

�
2 =

1
a4



















































6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6



















































.(D.75)

What�3, �4, · · · contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while theinversepropa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer-
cise D.5.

D.5. Lattice Laplacian diagonalized. Insert the iden-
tity

∑

P(k) = 1 wherever you profitably can, and use the
eigenvalue equation (D.52) to convert shiftσ matrices
into scalars. IfM commuteswith σ, then (ϕ†k ·M · ϕk′) =
M̃(k)δkk′ , and the matrixM acts as a multiplication by
the scalarM̃(k) on thekth subspace. Show that for the 1-
dimensional version of the lattice Laplacian (D.39) the
projection on thekth subspace is

(ϕ†k · � · ϕk′ ) =
2
a2

(

cos

(

2π
N

k

)

− 1

)

δkk′ . (D.76)

In thekth subspace the propagator is simply a number,
and, in contrast to the mess generated by (D.74), there is
nothing to evaluating:

ϕ
†
k·

1
m21− � ·ϕk′ =

δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

,(D.77)

wherek is a site in theN-dimensional dual lattice, and
a = L/N is the lattice spacing.

D.6. Fix Predrag’s lecture od Feb 5, 2008. Are theC3

frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.
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