
Appendix C

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn,The Structure of Scientific Revolu-
tions

The subject of linear algebra generates innumerable tomes of its own, and is
way beyond what we can exhaustively cover. Here we recapitulate a few
essential concepts that ChaosBook relies on. The punch lineis Eq. (C.25):

Hamilton-Cayley equation
∏

(M − λi1) = 0 associates with each distinct root
λi of a matrixM a projection ontoith vector subspace

Pi =
∏

j,i

M − λ j1
λi − λ j

.

C.1 Linear algebra

In this section we collect a few basic definitions. The readermight prefer going
straight to sect. C.2.

Vector space. A setV of elementsx, y, z, . . . is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity element0;

(b) the set isclosedwith respect toscalar multiplicationand vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V
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(a+ b)x = ax + bx

a(bx) = (ab)x

1x = x , 0x = 0 . (C.1)

Here the fieldF is eitherR, the field of reals numbers, orC, the field of complex
numbers. Given a subsetV0 ⊂ V, the set of all linear combinations of elements of
V0, or thespanof V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset ofV whose span isV.
The number of basis elementsd is thedimensionof the vector spaceV.

Dual space, dual basis. Under a general linear transformationg ∈ GL(n, F), the
row of basis vectors transforms by right multiplication ase( j) =

∑

k(g−1) j
k e(k),

and the column ofxa’s transforms by left multiplication asx′ = gx. Under
left multiplication the column (row transposed) of basis vectors e(k) transforms
ase( j) = (g†) j

ke(k), where thedual repg† = (g−1)⊤ is the transpose of the inverse
of g. This observation motivates introduction of adual representation spacēV,
the space on whichGL(n, F) acts via the dual repg†.

Definition. If V is a vector representation space, then thedual spaceV̄ is the set
of all linear forms onV over the fieldF.

If {e(1), · · · , e(d)} is a basis ofV, thenV̄ is spanned by thedual basis{e(1), · · · , e(d)},
the set ofd linear formse(k) such that

e( j) · e(k) = δkj ,

whereδkj is the Kronecker symbol,δkj = 1 if j = k, and zero otherwise. The

components of dual representation space vectors ¯y ∈ V̄ will here be distinguished
by upper indices

(y1, y2, . . . , yn) . (C.2)

They transform underGL(n, F) as

y′a = (g†)a
byb . (C.3)

For GL(n, F) no complex conjugation is implied by the† notation; that interpre-
tation applies only to unitary subgroupsU(n) ⊂ GL(n,C). In the index notation,
g can be distinguished fromg† by keeping track of the relative ordering of the
indices,

(g)b
a→ ga

b , (g†)b
a→ gb

a . (C.4)
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Algebra. A set of r elementstα of a vector spaceT forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set isclosedwith respect to multiplicationT · T → T , so that for any
two elementstα, tβ ∈ T , the producttα · tβ also belongs toT :

tα · tβ =
r−1
∑

γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (C.5)

(b) the multiplication operation isdistributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbersταβγ are called thestructure constants. They form a matrix
rep of the algebra,

(tα)βγ ≡ ταβγ , (C.6)

whose dimension is the dimensionr of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplicationis associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra isassociative. Typical examples of products are thematrix product

(tα · tβ)c
a = (tα)

b
a(tβ)

c
b , tα ∈ V ⊗ V̄ , (C.7)

and theLie product

(tα · tβ)c
a = (tα)

b
a(tβ)

c
b − (tα)

b
c(tβ)

a
b , tα ∈ V ⊗ V̄ (C.8)

which defines aLie algebra.

C.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (C.9)
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Given a nonsingular matrixM , with all λi , 0, acting ond-dimensional vectors
x, we would like to determineeigenvectorse(i) of M on whichM acts by scalar
multiplication by eigenvalueλi

M e(i) = λie(i) . (C.10)

If λi , λ j , e(i) and e( j) are linearly independent. There are at mostd distinct
eigenvalues and eigenspaces, which we assume have been computed by some
method, and ordered by their real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct e( j) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for anyd-dimensional vectorx ∈ Rd

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (C.11)

From (C.10) it follows that

(M − λi1) e( j) = (λ j − λi) e( j) ,

matrix (M − λi1) annihilatese(i), the product of all such factors annihilates any
vector, and the matrixM satisfies its characteristic equation (C.9),

d
∏

i=1

(M − λi1) = 0 . (C.12)

This humble fact has a name: the Hamilton-Cayley theorem. Ifwe delete one term
from this product, we find that the remainder projectsx onto the corresponding
eigenspace:

∏

j,i

(M − λ j1)x =
∏

j,i

(λi − λ j)xie(i) .

Dividing through by the (λi − λ j) factors yields theprojection operators

Pi =
∏

j,i

M − λ j1
λi − λ j

, (C.13)

which areorthogonalandcomplete:

PiP j = δi j P j , (no sum onj) ,
r

∑

i=1

Pi = 1 . (C.14)
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It follows from the characteristic equation (C.12) thatλi is the eigenvalue ofM on
Pi subspace:

M P i = λiPi (no sum oni) . (C.15)

UsingM = M 1 and completeness relation (C.14) we can rewriteM as

M = λ1P1 + λ2P2 + · · · + λdPd . (C.16)

Any matrix function f (M ) takes the scalar valuef (λi ) on thePi subspace,f (M ) Pi =

f (λi ) Pi , and is thus easily evaluated through itsspectral decomposition

f (M ) =
∑

i

f (λi)Pi . (C.17)

This, of course, is the reason why anyone but a fool works withirreducible reps:
they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (C.10) every column ofPi is proportional to a right eigenvectore(i), and
its every row to a left eigenvectore(i). In general, neither set is orthogonal, but by
the idempotence condition (C.14), they are mutually orthogonal,

e(i) · e( j) = cδ j
i . (C.18)

The non-zero constantc is convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan coefficients. We shall setc = 1. Then it is
convenient to collect all left and right eigenvectors into asingle matrix as follows.

Fundamental matrix (take 1). As the system is a linear, a superposition of any
two solutions tox(t) = Jtx(0) is also a solution. One can take anyd independent
initial states,x(1)(0), x(2)(0), . . . , x(d)(0), assemble them as columns of a matrix
Φ(0), and formally write the solution for an arbitrary initial condition projected
onto this basis,

x(t) = Φ(t)Φ(0)−1x(0) (C.19)

whereΦ(t) = [x(1)(t), x(2)(t), · · · , x(d)(t)]. Φ(t) is called thefundamental matrixof
the system, and the Jacobian matrixJt = Φ(t)Φ(0)−1 can thus be fashioned out of
d trajectories{x( j)(t)}. Numerically this works for sufficiently short times.
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Fundamental matrix (take 2). The set of solutionsx(t) = Jt(x0)x0 for a system
of homogeneous linear differential equations ˙x(t) = A(t)x(t) of order 1 and dimen-
sion d forms ad-dimensional vector space. A basis{e(1)(t), . . . , e(d)(t)} for this
vector space is called afundamental system. Every solutionx(t) can be written as

x(t) =
d

∑

i=1

ci e(i)(t) .

The [d×d] matrix F−1
i j = e( j)

i whose columns are the right eigenvectors ofJt

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (C.20)

is the inverse of afundamental matrix.

Jacobian matrix. The Jacobian matrixJt(x0) is the linear approximation to a
differentiable functionf t(x0), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation andshearing caused
by the transformation. The inverse of the Jacobian matrix ofa function is the
Jacobian matrix of the inverse function. Iff is a map fromd-dimensional space
to itself, the Jacobian matrix is a square matrix, whose determinant we refer to as
the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at timet0 to
the basis at timet1,

Jt1−t0(x0) = F(t1)F(t0)−1 . (C.21)

Then the matrix form of (C.18) isF(t)F(t)−1 = 1, i.e., for zero time the Jacobian
matrix is the identity. exercise C.1

Example C.1 Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is

x(t) = eA tx(0) ,

where exp(A t) is defined by the Taylor series for exp(x). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

x(t) = F(t) F(0)−1x(0) = eAtx(0) ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system. (J. Halcrow)
exercise C.1
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Example C.2 Complex eigenvalues. As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining a dynamical flow are real numbers, so what is the meaning
of a complex eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2× 2] sub-block M ′ ⊂ M
form a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →

{Ree(k), Im e(k)}. In this 2-dimensional real representation, M ′ → N, the block N is a
sum of the rescaling×identity and the generator of SO(2) rotations

N =
(

µ −ω
ω µ

)

= µ

(

1 0
0 1

)

+ ω

(

0 −1
1 0

)

.

Trajectories of ẋ = N x, given by x(t) = Jt x(0), where

Jt = etN = etµ

(

cosωt − sin ωt
sin ωt cosωt

)

, (C.22)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period T and the
radial expansion /contraction multiplier along the e( j) eigen-direction per a turn of the
spiral:

T = 2π/ω , Λradial = eTµ . (C.23)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true in presence of symmetries,
or spacial parameter values (bifurcation points). What canone say about situation
wheredα eigenvalues are degenerate,λα = λi = λi+1 = · · · = λi+dα−1? Hamilton-
Cayley (C.12) now takes form

r
∏

α=1

(M − λα1)dα = 0 ,
∑

α

dα = d . (C.24)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (C.24) can be
replaced by the minimal polynomial,

r
∏

α=1

(M − λα1) = 0 , (C.25)
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where the product includes each distinct eigenvalue only once. Matrix M acts
multiplicatively

M e(α,k) = λie(α,k) , (C.26)

on a dα-dimensional subspace spanned by a linearly independent set of basis
eigenvectors{e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion we
continue in appendix D.2.1. Luckily, if the degeneracy is due to a finite or compact
symmetry group, relevantM matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy
case, so we only illustrate the key idea in example C.3.

Example C.3 Decomposition of 2-dimensional vector spaces: Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond
what we can reasonably undertake here. However, enumerating solutions for the sim-
plest case, a general [2×2] non-singular matrix

M =
(

M11 M12
M21 M22

)

.

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-
trices. The eigenvalues

λ1,2 =
1
2

tr M ±
1
2

√

(tr M )2 − 4 detM (C.27)

are the roots of the characteristic (secular) equation (C.9):

det (M − λ 1) = (λ1 − λ)(λ2 − λ)

= λ2 − tr M λ + detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M − λ21
λ1 − λ2

, P2 =
M − λ11
λ2 − λ1

, λ1 , λ2 . (C.28)

Degenerate eigenvalues.If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix D.2.1. (b) M can be brought to Jordan form, with zeros every-
where except for the diagonal, and some 1’s directly above it; for a [2×2] matrix the
Jordan form is

M =
(

λ 1
0 λ

)

, e(1) =
(

1 0
)

, v(2) =
(

0 1
)

.
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v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector, as
Mv (2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one eigenvector
per block. Noting that

Mm =

(

λm mλm−1

0 λm

)

,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM )

etM
(

u
v

)

= etλ

(

u+ tv
v

)

(C.29)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring
the extra term into the exponent).

Example C.4 Projection operator decomposition in 2 dimensions: Let’s illus-
trate how the distinct eigenvalues case works with the [2×2] matrix

M =
(

4 1
3 2

)

.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (C.27):

det (M − λ1) = λ2 − 6λ + 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(

4 1
3 2

)2

− 6

(

4 1
3 2

)

+ 5

(

1 0
0 1

)

=

(

0 0
0 0

)

.

Associated with each root λi is the projection operator (C.28)

P1 =
1
4

(M − 1) =
1
4

(

3 1
3 1

)

(C.30)

P2 =
1
4

(M − 5 · 1) =
1
4

(

1 −1
−3 3

)

. (C.31)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation M P i = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

(

58591 19531
58593 19529

)

.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
(

1 1
)

,
(

1 −3
)

}

{e(1), e(2)} = {
(

3 1
)

,
(

1 −1
)

} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e( j) · e(k), however, are orthogonal
as in (C.18), by inspection. (Continued in example 12.2.)
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Example C.5 Computing matrix exponentials. If A is diagonal (the system is
uncoupled), then etA is given by

exp































λ1t
λ2t

. . .

λdt































=

































eλ1t

eλ2t

. . .

eλdt

































.

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor series for
ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

(

λ 0
0 µ

)

, B =

(

λ 1
0 λ

)

, B =

(

µ −ω
ω µ

)

.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

(

eλt 0
0 eµt

)

, eBt = eλt
(

1 t
0 1

)

, eBt = eat

(

cosbt − sinbt
sinbt cosbt

)

,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to one
of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

C.2.1 Floquet theory

When dealing with periodic orbits, some of the quantities already introduced in
chapter 4 inherit names from the Floquet theory of differential equations with
time-periodic coefficients. Consider the equation of variations (4.2) evaluated on
a periodic orbitp of periodT, at pointx(t) ∈ Mp,

δ̇x = A(t) δx , A(t) = A(t + T) ,

with A(t) = A(x(t)). The periodicity of the stability matrix implies that ifδx(t)
is a solution, then alsoδx(t + T) satisfies the same equation: moreover the two
solutions are related by (4.5)

δx(t + T) = Jp(x) δx(t) , x ∈ Mp . (C.32)
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Table C.1: The first 27 least stable Floquet exponentsλ = µ ± i ω of equilibrium EQ5 for plane
Couette flow,Re= 400. The exponents are ordered by the decreasing real part. The two zero expo-
nents, to the numerical precision of our computation, arisefrom the two translational symmetries.
For details, see ref. [?].

j µ
( j)
EQ5 ω

( j)
EQ5 s1s2s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A

5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA

8,9 0.009654012 0.04551274 AA S
10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S

16 -0.006178861 A S A
17,18 -0.007785718 0.1372092 AA S

19 -0.01064716 S AA
20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

Even though the Jacobian matrixJp(x) depends uponx (the ‘starting’ point of the
periodic orbit), we shall show in sect. 5.3 that its eigenvalues do not, so we may
write the eigenvalue equation as

Jp(x) e( j)(x) = Λ j e( j)(x) , (C.33)

whereΛ j are independent ofx, and we refer to eigenvectorse( j) as ‘covariant
vectors’, or, for periodic orbits, as ‘Floquet vectors’.

Expandδx in the (C.33) eigenbasis,δx(t) =
∑

δx j(t) e( j) , e( j) = e( j)(x(0)) .
Taking into account (C.32), we get thatδx j(t) is multiplied byΛ j per each period

δx(t + T) =
∑

j

δx j(t + T) e( j) =
∑

j

Λ j δx j(t) e( j) .

We can absorb this exponential growth/ contraction by rewriting the coefficients
δx j(t) as δx j(t) = exp(λ( j)t) u j (t) , u j(0) = δx j(0) . Thus each solution of the
equation of variations (4.2) may be expressed in the Floquetform,

δx(t) =
∑

j

eλ
( j)t u j(t) e( j) , u j(t + T) = u j(t) , (C.34)

with u j(t) periodic with periodT. The exp(λ( j)t) factor is not an eigenvalue of the
Jacobian matrixJt, it is only an interpolation betweenx and f T(x). The continu-
ous timet in (C.34) does not imply that eigenvalues of the Jacobian matrix enjoy
any multiplicative property fort , rT : exponentsλ( j) refer to a full traversal of
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the periodic orbit. Indeed, whileu j(t) describes the variation ofδx(t) with respect
to the stationary eigen-frame fixed by eigenvectors at the point x(0), the object of
dynamical significance is the co-moving eigen-frame definedbelow in (5.9).

C.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King
I got forty red white and blue shoe strings
And a thousand telephones that don’t ring
Do you know where I can get rid of these things?

— Bob Dylan,Highway 61 Revisited

Table C.1, taken from ref. [?], is an example of how to tabulate the leading
Floquet eigenvalues of the stability matrix of an equilibrium or relative equilib-
rium. The isotropy subgroupG( j)

EQ of the corresponding eigenfunction should be

indicated. If the isotropy is trivial,G( j)
EQ = {e}, it is omitted from the table. The

isotropy subgroupGEQ of the solution itself needs to be noted, and for relative
equilibrium (10.15) the velocityc along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is complex, it is helpful to state the
period of the spiral-out motion (or spiral-in, if stable),TEQ = 2π/ω(1)

EQ.

Table C.2, taken from ref. [?], is an example of how to tabulate the leading
Floquet exponents of the monodromy matrix of an periodic orbit or relative pe-
riodic orbit. For a periodic orbit one states the periodTp, Λp =

∏

Λp,e, and the
isotropy groupGp of the orbit; for a relative periodic orbit (10.19) one states in
addition the shift parametersφ = (φ1, φ2, · · · φN). Λp, the product of expanding
Floquet multipliers (5.6) is useful, as 1/|Λp| is the geometric weight of cyclep
in a cycle expansion (remember that each complex eigenvaluecontributes twice).
We often do care aboutσ( j)

p = Λp, j/|Λp, j | ∈ {+1,−1}, the sign of thejth Floquet

multiplier, or, ifΛp, j is complex, its phaseTpω
( j)
p .

Surveying this multitude of equilibrium and Floquet exponents is aided by a
plot of the complex exponent plane (µ, ω). An example are the eigenvalues of
equilibrium EQ8 from ref. [?], plotted in figure C.1. To decide how many of
the these are “physical” in the PDE case (where number of exponents is always
infinite, in principle), it is useful to look at the (j, µ( j)) plot. However, intelli-
gent choice of thej-axis units can be tricky for high-dimensional problems. For
Kuramoto-Sivashinsky system the correct choice are the wave-numbers which,
due to the O(2) symmetry, come in pairs. For plane Couette flowthe good choice
is not known as yet; one needs to group O(2)× O(2) wave-numbers, as well as
take care of the wall-normal node counting.

C.4 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)
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Figure C.1: Eigenvalues of the plane Couette flow
equilibrium EQ8, plotted according to their isotropy
groups:• + + +, theS-invariant subspace,◮ + − −,
◭ − + −, and N − − +, where± symbols stand
for symmetric/antisymmetric under symmetry opera-
tion s1, s2, ands3 respectively, defined in ref. [?]. For
tables of numerical values of stability eigenvalues see
Channelflow.org.

−0.05 0 0.05 0.1
−0.4

−0.2

0

0.2

0.4

EQ
8

Table C.2: The first 13 least stable Floquet exponentsλ = µ ± i ω of periodic orbitp = P59.77 for
plane Couette flow,Re= 400, together with the symmetries of corresponding eigenvectors. The
eigenvalues are ordered by the decreasing real part. The onezero eigenvalue, to the numerical pre-
cision of our computation, arises from the spanwise translational SO(2) symmetry of this periodic
orbit. For details, see ref. [?].

j σ
( j)
p µ

( j)
p ω

( j)
p G( j)

p

1,2 0.07212161 0.04074989 D1
3 1 0.06209526 ?
4 -1 0.06162059

5,6 0.02073075 0.07355143
7 -1 0.009925378

8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

The symplectic structure of Hamilton’s equations buys us much more than the
incompressibility, or the phase space volume conservationalluded to in sect. 7.1.
The evolution equations for anyp, q dependent quantityQ = Q(q, p) are given by
(16.31).

In terms of the Poisson brackets, the time-evolution equation for Q = Q(q, p)
is given by (16.33). We now recast the symplectic condition (7.9) in a form con-
venient for using the symplectic constraints onM. Writing x(t) = x′ = [p′, q′]
and the Jacobian matrix and its inverse

M =















∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p















, M−1 =















∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′















, (C.35)

we can spell out the symplectic invariance condition (7.9):

∂q′k
∂qi

∂p′k
∂q j
−
∂p′k
∂qi

∂q′k
∂q j

= 0

∂q′k
∂pi

∂p′k
∂p j
−
∂p′k
∂pi

∂q′k
∂p j

= 0

∂q′k
∂qi

∂p′k
∂p j
−
∂p′k
∂qi

∂q′k
∂p j

= δi j . (C.36)
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From (7.26) we obtain

∂qi

∂q′j
=
∂p′j
∂pi
,
∂pi

∂p′j
=
∂q′j
∂qi
,
∂qi

∂p′j
= −
∂q′j
∂pi
,
∂pi

∂q′j
= −
∂p′j
∂qi
. (C.37)

Taken together, (C.37) and (C.36) imply that the flow conserves the{p, q} Poisson
brackets

{qi , q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi , p j} = 0 , {pi , q j} = δi j , (C.38)

i.e., the transformations induced by a Hamiltonian flow arecanonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yieldD(D − 1)/2 constraints each; the last relation yieldsD2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1) elements ofM
are linearly independent, as it behooves group elements of the symplectic group
S p(2D).

C.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrixJ of the flow (4.5), but themonodromy matrix M,
which enters the trace formula. This matrix gives the time dependence of a dis-
placement perpendicular to the flow on the energy manifold. Indeed, we discover
some trivial parts in the Jacobian matrixJ. An initial displacement in the direc-
tion of the flow x = ω∇H(x) transfers according toδx(t) = xt(t)δt with δt time
independent. The projection of any displacement onδx on∇H(x) is constant, i.e.,
∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system on theorbit x(t) in form of
the (non singular) transformationU(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (C.39)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (C.40)

Note that the properties a) – c) are only fulfilled forJ̃ andL̃ if U itself is symplec-
tic.
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ChoosingxE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (C.39) atany timet. Setting
U = (xt

⊤, xE
⊤, x1

⊤, . . . , x2d−2
⊤) gives

J̃ =









































1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...
... M

0 ∗









































; L̃ =









































0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...
... l

0 ∗









































, (C.41)

The matrixM is now the monodromy matrix and the equation of motion are given
by

Ṁ = l M . (C.42)

The vectorsx1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrixU(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE, x2) =





























ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2





























(C.43)

with x⊤ = (x, y; u, v) and q = |∇H| = |ẋ|. The matrixU is non singular and
symplectic at every phase space pointx, except the equilibrium points ˙x = 0. The
matrix elements forl are given (C.45). One distinguishes 4 classes of eigenvalues
of M .

• stableor elliptic, if Λ = e±iπν andν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±µ±iω with µ andω real. This is the most general case,
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e.,M is a [2×2] matrix, the eigenvalues are determined
by

λ =
tr (M ) ±

√

tr (M )2 − 4
2

, (C.44)
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i.e., tr (M ) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (C.43) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu− hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (C.45)

with hi , hi j is the derivative of the HamiltonianH with respect to the phase space
coordinates andq = |∇H|2.
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Exercises

C.1. Real representation of complex eigenvalues. (Ver-
ification of example C.2.)λk, λk+1 eigenvalues form a
complex conjugate pair,{λk, λk+1} = {µ + iω, µ − iω}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denotePk by P for notational brevity.

(b) P can be written as

P =
1
2

(R + iQ) ,

whereR = Pk +Pk+1 andQ are matrices with real
elements.

(c)

(

Pk
Pk+1

)

=
1
2

(

1 i
1 −i

) (

R
Q

)

.

(d) · · ·+λkPk+λ
∗
kPk+1+· · · complex eigenvalue pair in

the spectral decomposition (C.16) is now replaced
by a real [2×2] matrix

· · · +

(

µ −ω
ω µ

) (

R
Q

)

+ · · ·

or whatever you find the clearest way to write this
real representation.

Chapter C solutions: Linear stability

Solution C.1 - Real representation of complex eigenvalues.

1
2

(

1 1
−i i

) (

λ 0
0 λ∗

) (

1 i
1 −i

)

=

(

µ −ω
ω µ

)

.

(P. Cvitanović)
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