Appendix C

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas KuhnThe Structure of Scientific Revolu-
tions

way beyond what we can exhaustively cover. Here we recapitid few

THE SUBJECT OF LINEAR ALGEBRA generates innumerable tomes of its own, and is
essential concepts that ChaosBook relies on. The puncisligg. (C.25):

Hamilton-Cayley equatiofif (M — 4;1) = 0 associates with each distinct root
Ai of a matrixM a projection ontath vector subspace

M - 451
/li—/lj :

P =
j#i

C.1 Linear algebra

In this section we collect a few basic definitions. The readight prefer going
straight to sect. C.2.

Vector space. A setV of element,y, z,... is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity elemert;

(b) the set ilosedwith respect tascalar multiplicationand vector addition
ax+y) = ax+ay, abeF, xyeV
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(@a+b)x = ax+bx
a(bx) = (abx
1x = X, 0x =0. (C.1)

Here the fieldF is eitherR, the field of reals numbers, @, the field of complex
numbers. Given a subs¥g c V, the set of all linear combinations of elements of
Vo, or thespanof Vj, is also a vector space.

Abasis. {e),..., ¥} s any linearly independent subset\6ivhose span i¥.
The number of basis elemerdss thedimensiorof the vector spac¥.

Dual space, dual basis. Under a general linear transformatigre GL(n, F), the
row of basis vectors transforms by right multiplicationed® = Y, (g71)i, e,
and the column ofky’s transforms by left multiplication ax’ = gx. Under
left multiplication the column (row transposed) of basistees gy transforms
asg(j) = (g*)jke(k), where thedual repg” = (g1)7 is the transpose of the inverse
of g. This observation motivates introduction oflaal representation spadé,
the space on whicBL(n, F) acts via the dual reg’.

Definition. If V is a vector representation space, thendbal space\7 is the set
of all linear forms onV over the fieldF.

If (e, .., é¥) is a basis o¥/, thenV is spanned by theual basisieq), - - -, &)},
the set ofd linear formsey, such that

K K

& - &9 =4,
whereé‘j‘ is the Kronecker symboB‘j( = 11if j = k, and zero otherwise. The
components of dual representation space vegter¥ will here be distinguished

by upper indices

0LV YY) (€.2)
They transform unde&L(n, F) as

Y= ()P’ (€.3)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroupn) c GL(n,C). In the index notation,
g can be distinguished frorg’ by keeping track of the relative ordering of the
indices,

@2 - (@)l Pa. (C.4)
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Algebra. A set of r elementst, of a vector spacg” forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set ilosedwith respect to multiplicatioly - 7~ — 77, so that for any
two elements,, ts € 7, the product, - tz also belongs ta™

r-1
ty - t/; = Z Ta/gyty s Taf/gy eC; (C5)
y=0

(b) the multiplication operation idistributive

(te+tp)-t, = to-t,+tg-t,
ty-(tp+t) = ty-tg+ts-t,.

The set of numbers,z” are called thestructure constantsThey form a matrix
rep of the algebra,

(tu)ﬁy = Trz/}y 5 (CG)

whose dimension is the dimensionf the algebra itself.

Depending on what further assumptions one makes on thepiicdtion, one
obtains diferent types of algebras. For example, if the multiplicattomssociative

(to - tg) -ty =ty - (tg- 1)),
the algebra isissociative Typical examples of products are thmatrix product
(te )3 = @AM, taeVeV, c7)
and theLie product
(ta - tp)5 = (WA - LRM)E,  tacVeV (C.8)

which defines d.ie algebra

C.2 Eigenvalues and eigenvectors

Eigenvalues of a [dxd] matrix M are the roots of its characteristic polynomial

detM — A1) = ﬂ(zi - =0. (C.9)
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Given a nonsingular matrik, with all 4; # 0, acting ond-dimensional vectors
x, we would like to determineigenvectors) of M on whichM acts by scalar
multiplication by eigenvalug;

Me® = ye. (C.10)

If 4 # 2;, € and e are linearly independent. There are at mostistinct
eigenvalues and eigenspaces, which we assume have beentedny some
method, and ordered by their real parts,/Re ReAi,1.

If all eigenvalues are distinct &) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for dsimensional vectox € RY

X =% €0 4 36 4. 4 xq e (C.11)
From (C.10) it follows that
M -4 D = - 2)e?,

matrix (M — ;1) annihilatese®), the product of all such factors annihilates any
vector, and the matri¥ satisfies its characteristic equation (C.9),

d
l—[(M — A1) =0. (C.12)
i=1

This humble fact has a name: the Hamilton-Cayley theoremelfielete one term
from this product, we find that the remainder projectsnto the corresponding
eigenspace:

l_[(M — X = ﬂui —2)%e".

j# j#i

Dividing through by the {; — 1;) factors yields therojection operators

M - 251
p = C.1
I j#i di=ay €19

which areorthogonalandcomplete

1]
=

r
PiPj = 6ijPj, (nosum onj), Z P (C.19)

m
N
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It follows from the characteristic equation (C.12) thats the eigenvalue d¥1 on
Pi subspace:

MP; = AP (no sum on). (C.15)
UsingM = M 1 and completeness relation (C.14) we can revivitas
M =/11P1+/12P2+~~' +/1dpd- (C16)

Any matrix functionf (M) takes the scalar valu;) on theP; subspacef(M) P; =
f(4) P, and is thus easily evaluated throughspectral decomposition

f(M) = > f(0)P;. (17)

This, of course, is the reason why anyone but a fool works imigtlucible reps:
they reduce matrix (AKA “operator”) evaluations to manigibns with numbers.

By (C.10) every column oP; is proportional to a right eigenvectef), and
its every row to a left eigenvectey;). In general, neither set is orthogonal, but by
the idempotence condition (C.14), they are mutually ortimag,

ey e = co. (C.18)

The non-zero constantis convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan fiments. We shall set = 1. Then itis
convenient to collect all left and right eigenvectors intsirggle matrix as follows.

Fundamental matrix (take 1). As the system is a linear, a superposition of any
two solutions tox(t) = J'x(0) is also a solution. One can take ahindependent
initial states,x"(0), X2(0), ..., X9 (0), assemble them as columns of a matrix
®(0), and formally write the solution for an arbitrary initieondition projected
onto this basis,

X(t) = dE)P0)x(0) (C.19)

whered(t) = [xD(t), XA(t), - - -, XD(1)]. d(t) is called thefundamental matriof
the system, and the Jacobian matfix= ®(t)®(0)~* can thus be fashioned out of
d trajectories|x((t)}. Numerically this works for sfliciently short times.
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Fundamental matrix (take 2). The set of solution(t) = J'(Xg)Xo for a system
of homogeneous linearftiérential equationg(f) = A(t)x(t) of order 1 and dimen-
sion d forms ad-dimensional vector space. A bag&l(t),...,ed(t)} for this

vector space is calledfandamental systenivery solutionx(t) can be written as

d
X0 =) 6.
i=1

The [dxd] matrix Fﬁl = el(j) whose columns are the right eigenvectors)'of

FO = EV0.....e%1),  FO = (). ...eq®) (C.20)

is the inverse of &undamental matrix

Jacobian matrix. The Jacobian matri¥'(xo) is the linear approximation to a
differentiable functiof!(xo), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation ahdaring caused
by the transformation. The inverse of the Jacobian matria ffinction is the
Jacobian matrix of the inverse function. fifis a map fromd-dimensional space
to itself, the Jacobian matrix is a square matrix, whoserdetant we refer to as
the ‘Jacobian.’

The Jacobian matrix can be written as transformation frosistet timetg to
the basis at timé,

3170 (x0) = Fty)F(to) ©.21

Then the matrix form of (C.18) iE(t)F(t)~* = 1, i.e., for zero time the Jacobian
matrix is the identity. exercise C.1

Example C.1 Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is

x(t) = A x(0),
where exp(At) is defined by the Taylor series for exp(x). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
x1(0), X2(0), . . . x4(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

x(t) = F(t) F(0)*x(0) = €*'x(0),

where F(t) = (Xa(t), X2(t), . . ., Xa(t)) is a fundamental matrix of the system. (J. Halcrow)
exercise C.1
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Example C.2 Complex eigenvalues.  As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining a dynamical flow are real numbers, so what is the meaning
of a complex eigenvector?

If Ak, A+1 eigenvalues that lie within a diagonal [2 x 2] sub-block M’ c M
form a complex conjugate pair, {A, Ax+1} = {u + iw, u — iw)}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e¥, e} —
(Ree® Ime®}. In this 2-dimensional real representation, M’ — N, the block N is a
sum of the rescalingxidentity and the generator of SQ(2) rotations

(u —w ) 10 0 -1
N*(w y)*“(o 1)*”(1 o/
Trajectories of X = N X, given by x(t) = J'x(0), where

N coswt —sinwt
= ’ew( sinwt coswt ) (€.22)

spiral infout around (x,y) = (0,0), see figure 4.3, with the rotation period T and the
radial expansion /contraction multiplier along the eli) eigen-direction per a turn of the
spiral:

T=21w, Aradial = e, (0-23)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x.y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 1072T).

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true iregence of symmetries,
or spacial parameter values (bifurcation points). Whataransay about situation
whered, eigenvalues are degeneralg,= 1 = diz1 = -+ = Aj;q,-17 Hamilton-
Cayley (C.12) now takes form

r
[|M-2p% =0, >'d,=d. (C.24)
=1 @
We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (C.24) can be
replaced by the minimal polynomial,

[ M- =0, (C.25)
a=1
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where the product includes each distinct eigenvalue onbeorMatrix M acts
multiplicatively

Me(@K = g el (C.26)

on ad,-dimensional subspace spanned by a linearly independérdf smsis
eigenvectorgel® D), g@2) ... g@d)y This is the easy case whose discussion we
continue in appendix D.2.1. Luckily, if the degeneracy is tlua finite or compact
symmetry group, releva¥l matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form.  This is the messy
case, so we only illustrate the key idea in example C.3.

Example C.3 Decomposition of 2-dimensional vector spaces:  Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond
what we can reasonably undertake here. However, enumerating solutions for the sim-
plest case, a general [2x 2] non-singular matrix

_( M Mg,
M 7( M1 Mz )

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-
trices. The eigenvalues

1 1
A2 = =trM + = +/(tr M)2 — 4 detM (C.27)

2 2

are the roots of the characteristic (secular) equation (C.9):

detM —11) (= D2 - 2)

= 2-trMa+detM = 0.
Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

M -1 M -1
1= , Py = ,
A1 — A2 A — A1

NETY (C.28)

Degenerate eigenvalues.if 1; = 1, = A, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix D.2.1. (b) M can be brought to Jordan form, with zeros every-
where except for the diagonal, and some 1’s directly above it; for a [2x 2] matrix the
Jordan form is

M:(’1 i) d=(10), v@=(0 1).
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v helps span the 2-dimensional space, (M — 1)V = 0, but is not an eigenvector, as Example C.5 Computing matrix exponentials. If A is diagonal (the system is
Mv® = av® + D). For every such Jordan [d, xd,] block there is only one eigenvector uncoupled), then € is given by
per block. Noting that
At ettt
Mm 7( A mm-1 ) Aot elet
{0 am i exp| = .
we see that instead of acting multiplicatively on R?, Jacobian matrix J' = exptM) Adt et
U U+t If A is diagonalizable, A = FDF~, where D is the diagonal matrix of the eigen-
€ (v) =¢ ( v ) (C.29) values of A and F is the matrix of corresponding eigenvectors, the result is simple:
A" = (FDFY)(FDF™Y)...(FDFY) = FD"F1. Inserting this into the Taylor series for
picks up a power-low correction. That spells trouble (logarithmic term Int if we bring e gives e = FeP'FL.

the extra term into the exponent). But A may not have d linearly independant eigenvectors, making F singular and

forcing us to take a different route. To illustrate this, consider [2x 2] matrices. For any
linear system in R?, there is a similarity transformation

Example C.4 Projection operator decomposition in 2 dimensions: Let’s illus-
trate how the distinct eigenvalues case works with the [2x2] matrix B=U"AU,
M = ( 4 1 ) . where the columns of U consist of the generalized eigenvectors of A such that B has
3 2 one of the following forms:
Its eigenvalues {11, A2} = {5, 1} are the roots of (C.27): 5 7( 10 ) B—( 11 ) . ( P )
detM — A1) = 2%~ 64+ 5= (5— A)(1-1) = 0. 0 u 04 @ K

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

2
41) (4 1) (1 o)(o 0) 1t sb i

_6 +5 _ ) s_[et 0 g uf 1t Bt _ at[ cosbt —sinbt
(32 3 2 01 00 e—(o eut), e—e”(o 1)» e_ea(sinbt cosbt)’

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

Associated with each root 4; is the projection operator (C.28,
‘ prol P (28 and e® = UeB'U~. What we have done is classify all [2<2] matrices as belonging to one

1 1/3 1 of three classes of geometrical transformations. The first case is scaling, the second
Pr = Z(M -n= 2\ 3 1 (C.30) is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to RY is called the Jordan normal form. (J. Halcrow)
1 (1 -1
Py = Z(M -5.1) = il 3 3 (C.31)

Matrices P; are orthonormal and complete, The dimension of the ith subspace is given
by di = trP;; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that P; satisfies the eigenvalue equation MP; = AiP;. Two

C.2.1 Floquet theory

consequences are immediate. First, we can easily evaluate any function of M by spec- When dealing with periodic orbits, some of the quantitieeady introduced in
tral decomposition, for example . . L . .
chapter 4 inherit names from the Floquet theory dfedential equations with
. e [ 58591 19531 time-periodic cofficients. Consider the equation of variations (4.2) evatliate
M7-3:1=(5"-3)P1+(1-3)P2=| 58593 19529) - a periodic orbitp of periodT, at pointx(t) € M,
Second, as P; satisfies the eigenvalue equation, its every column is a right eigenvector, .
and every row a left eigenvector. Picking first row/column we get the eigenvectors: ox = At) ox, Al = Alt+T),

D ) = 11 1 -3
€.€% [( ) ( )} with A(t) = A(X(t)). The periodicity of the stability matrix implies that dix(t)

tew-epb = (3 1).( 1 -1) is a solution, then alséx(t + T) satisfies the same equation: moreover the two

. . L . i solutions are related by (4.5)
with overall scale arbitrary. The matrix is not hermitian , so {€1)} do not form an orthog-

onal basis. The left-right eigenvector dot products ) - e, however, are orthogonal
as in (C.18), by inspection. (Continued in example 12.2.) OX(t+T) = Jp(X) ox(1), XeMp. (C.32)
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Table C.1: The first 27 least stable Floquet exponents y + i w of equilibrium EQs for plane
Couette flowRe= 400. The exponents are ordered by the decreasing real jrertwb zero expo-
nents, to the numerical precision of our computation, driz@ the two translational symmetries.

For details, see ref?].

i wls 195
12 | 007212161 004074989 SSS
3 | 0.06209526 SAA
4 | 006162059 ASA
56 | 002073075 007355143 SSS
7 | 0.009925378 SAA
8,9 | 0009654012 004551274  AAS
10,11| 0.009600794 02302166  SAA
1213| 1.460798e-06  1.542103¢-06 - - A
1415 -0.0001343539 0.231129  AAS
16 | -0.006178861 ASA
17,18| -0.007785718 01372092  AAS
19 | -0.01064716 SAA
2021(-0.01220116 02774336  SSS
22,23| -0.01539667  0.2775381  SAA
2425(-0.03451081  0.08674062 ASA
2627|-0.03719139 0215319  SAA

Even though the Jacobian matdy(x) depends upor (the ‘starting’ point of the
periodic orbit), we shall show in sect. 5.3 that its eigengal do not, so we may
write the eigenvalue equation as

Jp() D(x) = Aje(x), (C.33)

where A;j are independent of, and we refer to eigenvectoes) as ‘covariant
vectors’, or, for periodic orbits, as ‘Floquet vectors’.

Expandsx in the (C.33) eigenbasisx(t) = Y ox;(t) el , &) = e (x(0)).
Taking into account (C.32), we get that;(t) is multiplied by A per each period

ax(t+T) =" oxi(t+ e = 3" Ajoxi el
i i

We can absorb this exponential grovftbontraction by rewriting the cdiécients
oxj(t) asoxj(t) = exp@Dt)uj(t), uj(0) = 6x;(0). Thus each solution of the
equation of variations (4.2) may be expressed in the Floigpuet,

sx =Y eMtumed.  u+T) =y, (C.34)
,-

with uj(t) periodic with periodT. The expQ(t) factor is not an eigenvalue of the
Jacobian matrix)t, it is only an interpolation betweexand fT(x). The continu-
ous timet in (C.34) does not imply that eigenvalues of the Jacobianmixemjoy
any multiplicative property fot # rT: exponentst) refer to a full traversal of
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the periodic orbit. Indeed, while;(t) describes the variation ok(t) with respect
to the stationary eigen-frame fixed by eigenvectors at tfiat p€0), the object of
dynamical significance is the co-moving eigen-frame deflveldw in (5.9).

C.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King

| got forty red white and blue shoe strings

And a thousand telephones that don’t ring

Do you know where | can get rid of these things?
— Bob Dylan,Highway 61 Revisited

Table C.1, taken from ref?], is an example of how to tabulate the leading
Floquet eigenvalues of the stability matrix of an equiliini or relative equilib-
rium. The isotropy subgrouG(E'g of the corresponding eigenfunction should be

indicated. If the isotropy is trivialG(E”Q = {e}, it is omitted from the table. The
isotropy subgroufsgq of the solution itself needs to be noted, and for relative
equilibrium (10.15) the velocitg along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is complexs ftelpful to state the
period of the spiral-out motion (or spiral-in, if stabl@q = 27r/a)(E1)Q.

Table C.2, taken from ref?], is an example of how to tabulate the leading
Floquet exponents of the monodromy matrix of an periodigtabrelative pe-
riodic orbit. For a periodic orbit one states the perigd Ap = [] Ape, and the
isotropy groupG, of the orbit; for a relative periodic orbit (10.19) one staie
addition the shift parametegs = (¢1,¢2, - - ¢n). Ap, the product of expanding
Floguet multipliers (5.6) is useful, ag|Ap| is the geometric weight of cyclp
in a cycle expansion (remember that each complex eigencaligibutes twice).
We often do care about(p') = Apj/lApjl € {+1, -1}, the sign of thejth Floquet
multiplier, or, if Ap j is complex, its phasEPw(p”.

Surveying this multitude of equilibrium and Floquet expotseis aided by a
plot of the complex exponent plang, (v). An example are the eigenvalues of
equilibrium EQg from ref. [?], plotted in figure C.1. To decide how many of
the these are “physical” in the PDE case (where number ofrexqs is always
infinite, in principle), it is useful to look at thej,u") plot. However, intelli-
gent choice of thg-axis units can be tricky for high-dimensional problemsr Fo
Kuramoto-Sivashinsky system the correct choice are theswaavnbers which,
due to the O(2) symmetry, come in pairs. For plane Couettetfievgood choice
is not known as yet; one needs to group O%2p(2) wave-numbers, as well as
take care of the wall-normal node counting.

C.4 Stability of Hamiltonian flows

¢

(M.J. Feigenbaum and P. Cvitanovic)
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0.4
Figure C.1: Eigenvalues of the plane Couette flon EQ
equilibrium EQs, plotted according to their isotropy | ) 8
groups: ® + + +, the S-invariant subspacep + — —, 4 .
<4 -+ -, and A - — +, where+ symbols stand o % » “ L e e
for symmetrigantisymmetric under symmetry opera- 4 A, ‘e
tion s;, s, and s respectively, defined in ref?]. For A
tables of numerical values of stability eigenvalues s¢
Channelflow.org. o0a
-0.05 0 0.05

Table C.2: The first 13 least stable Floquet exponents u + i w of periodic orbitp = P59.77 for
plane Couette flonRe = 400, together with the symmetries of corresponding eigeve. The

eigenvalues are ordered by the decreasing real part. Thesva@igenvalue, to the numerical pre-

cision of our computation, arises from the spanwise traiosial SO(2) symmetry of this periodic
orbit. For details, see ref?].

j D_(pJ) H(pl) w%l) G(pl)
1,2 0.07212161  0.04074989 D
3 1 0.06209526 ?
4 -1 0.06162059
5,6 0.02073075  0.07355143
7 -1 0.009925378
8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

The symplectic structure of Hamilton’s equations buys usmonore than the
incompressibility, or the phase space volume conservatioded to in sect. 7.1.
The evolution equations for any g dependent quantit®) = Q(q, p) are given by
(16.31).

In terms of the Poisson brackets, the time-evolution eqodtr Q = Q(q, p)
is given by (16.33). We now recast the symplectic conditib®)in a form con-
venient for using the symplectic constraints g Writing x(t) = X = [p/, (]
and the Jacobian matrix and its inverse

aq g LR

— il ] -1 _ aq bl
M—[ﬁ ﬁ] M —[a_qp 3_%], (C.35)

aq ap aq  Ip

we can spell out the symplectic invariance condition (7.9):

o0, 70,0, 7,

aqi aQj_a_lflia_fh =0

9G0P OB IG _

apop;  opop

9G0P OB G o (C.36)
agi dp; 4 Ap; v '
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From (7.26) we obtain

oG _ 9P op 9% g _ 9% op _ 9%

= B_ A A Zh__ 7 c.a7
o, dpi op; oq - op;  dp oqp  Oq ©3n

Taken together, (C.37) and (C.36) imply that the flow consethe(p, g} Poisson
brackets

dq 99 dq; dq;
(o) = gLl ThoS
a9 Ip dq,  Ip O
{pipj} = O, {pi, qj} = dij » (C.38)

i.e., the transformations induced by a Hamiltonian flowameonical preserving
the form of the equations of motion. The first two relations symmetric under
i, j interchange and yiel®(D — 1)/2 constraints each; the last relation yiel
constraints. Hence only [®? — 2D(D - 1)/2 — D? = d(2D + 1) elements oM
are linearly independent, as it behooves group elementsea$ytmplectic group
S [(2D).

C.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrid of the flow (4.5), but themonodromy matrix M
which enters the trace formula. This matrix gives the timpesielence of a dis-
placement perpendicular to the flow on the energy manifoldeéd, we discover
some trivial parts in the Jacobian matdx An initial displacement in the direc-
tion of the flowx = wVH(X) transfers according téx(t) = x(t)st with 6t time
independent. The projection of any displacemenéxon VH(x) is constant, i.e.,
VH(X(t))ox(t) = 6E. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system onoté x(t) in form of
the (non singular) transformatidg(x(t)):

JOx(t)) = UTH(x(t) I(x(1)) U(x(0)) (C.39)
These lead to

= LJ

J
L = uu-v (C.40)

with

Note that the properties a) — c) are only fulfilled thandL if U itself is symplec-
tic.
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Choosingxe = VH(t)/|[VH(t)[? and x; as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (C.39)aay timet. Setting
U=0",Xe", X1 ,..., Xd-2") gives

1 * = . * 0 * =* . *
010...0 00O0...0

j=|0 = : =0 = , (C.41)
LM SRR
0 = 0 =

The matrixM is now the monodromy matrix and the equation of motion arergiv
by

M=IM. (C.42)

The vectorsxy, ..., Xo4-2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the malti{x) can be written
down explicitly, i.e.,

X -y -Ug? -V/qf

_ |y ox - w/e
U(t) = (%, X1, Xg, X2) = 0V NP QR (C.43)

vo-u Y/ )

with X™ = (x,y;u,v) andq = |VH| = |X. The matrixU is non singular and
symplectic at every phase space poinexcept the equilibrium points= 0. The
matrix elements fot are given (C.45). One distinguishes 4 classes of eigersalue
of M.

o stableor elliptic, if A = e#™ andv €]0, 1[.

e marginal if A = £1.

o hyperbolic inverse hyperbolicif A = €4, A = —e**.

o loxodromig if A = e*#*“ with  andw real. This is the most general case,

possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.84, is a [2<2] matrix, the eigenvalues are determined
by

. tr(M) £ \tr(M)2 -4
==

(C.44)
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i.e., tr(M) = 2 separates stable and unstable behavior.

Thel matrix elements for the local transformation (C.43) are

iy = I~ 1 =+ )= o)+ 200y~ ) + )
=(hxhy + hyhy)(hxx + By = huy = hw)]

M = q—lZ[(hi + R2)(Byy + Pu) + (02 + F2) (e + i)
=2(hxhy + hyhv)(hxu + hyv) - 2(hxhy - huhv)(hxy = hw)]

o1 = —(hZ+h2)(hu+hw) = (02 + W) (hex + hyy)

+2(hxhy = hyhy)(hxw = hyy) + 2(hchy + hyhy) (hey + Byw)

2o = -Tu, (C.45)

with h;, hjj is the derivative of the HamiltoniaH with respect to the phase space
coordinates and = [VH/[2.
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Exercises

C.1. Real representation of complex eigenvalues. (Ver-
ification of example C.2.)A, Ak.1 eigenvalues form a
complex conjugate paifdy, A1} = {4 + iw,u — iw}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P =Px, P* = Pys1,
where we denotBy by P for notational brevity.
(b) P can be written as

1 .
P= E(RHQ)’

Chapter C solutions: Linear stability

Solution C.1 - Real representation of complex eigenvalues.

soluAppStab - 1feb2008

whereR = Py + Py,1 andQ are matrices with real
elements.

© (Ptfl):%(i —I')(g)

(d) - -+ AkPy+AiPys1+- - - complex eigenvalue pair in
the spectral decomposition (C.16) is now replaced
by a real [2x2] matrix

(£ N8

or whatever you find the clearest way to write this
real representation.

(P. Cvitanovic)
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