
Appendix A19

Implementing evolution

A19.1 Koopmania

T
he Koopman operator action on a state space function a(x) is to replace it by

its downstream value time t later, a(x)→ a(x(t)), evaluated at the trajectory

point x(t):

[

K ta
]

(x) = a( f t(x)) =

∫

M

dyK t(x, y) a(y)

K t(x, y) = δ
(

y − f t(x)
)

. (A19.1)

Given an initial density of representative points ρ(x), the average value of a(x)

evolves as

〈a〉(t) =
1

|ρM|

∫

M

dx a( f t(x)) ρ(x) =
1

|ρM|

∫

M

dx
[

K ta
]

(x) ρ(x)

=
1

|ρM|

∫

M

dx dy a(y) δ
(

y − f t(x)
)

ρ(x) .

The ‘propagator’ δ
(

y − f t(x)
)

can be interpreted as belonging to the Perron-Frobenius

operator (19.10), so the two operators are adjoint to each other,

∫

M

dx
[

K ta
]

(x) ρ(x) =

∫

M

dy a(y)
[

Ltρ
]

(y) . (A19.2)

This suggests an alternative point of view, which is to push dynamical effects

into the density. In contrast to the Koopman operator which advances the trajec-

tory by time t, the Perron-Frobenius operator depends on the trajectory point time

t in the past
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APPENDIX A19. IMPLEMENTING EVOLUTION 914

The Perron-Frobenius operators are non-normal, not self-adjoint operators,

so their left and right eigenvectors differ. The right eigenvectors of a Perron-

Frobenius operator are the left eigenvectors of the Koopman, and vice versa.

While one might think of a Koopman operator as an ‘inverse’ of the Perron-

Frobenius operator, the notion of adjoint is the right one, especially in settings

where flow is not time-reversible, as is the case for dissipative PDEs (infinite di-

mensional flows contracting forward in time) and for stochastic flows.

The family of Koopman’s operators
{

K t}

t∈R+
forms a semigroup parameter-

ized by time

(a) K0 = 1

(b) K tK t′ = K t+t′ t, t′ ≥ 0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time transla-

tions defined by

A = lim
t→0+

1

t

(

K t − 1
)

.

(If the flow is finite-dimensional and invertible, A is a generator of a group). The

explicit form of A follows from expanding dynamical evolution up to first order,

as in (2.6):

A a(x) = lim
t→0+

1

t

(

a( f t(x)) − a(x)
)

= vi(x)∂ia(x) . (A19.3)

Of course, that is nothing but the definition of the time derivative, so the equation

of motion for a(x) is

(

d

dt
−A

)

a(x) = 0 . (A19.4)

The finite time Koopman operator (A19.1) can be formally expressed by expo- appendix A19.2

nentiating the time-evolution generator A as

K t = etA . (A19.5)

The generator A looks very much like the generator of translations. Indeed, exercise A19.1

for a constant velocity field dynamical evolution is nothing but a translation by

time× velocity: exercise 19.10

etv ∂
∂x a(x) = a(x + tv) . (A19.6)

As we will not need to implement a computational formula for general etA in what

follows, we relegate making sense of such operators to appendix A19.2. Here appendix A19.2

we limit ourselves to a brief remark about the notion of “spectrum” of a linear

operator.

The Koopman operator K acts multiplicatively in time, so it is reasonable to

suppose that there exist constants M > 0, β ≥ 0 such that ||K t || ≤ Metβ for all
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APPENDIX A19. IMPLEMENTING EVOLUTION 915

t ≥ 0. What does that mean? The operator norm is define in the same spirit in

which we defined the matrix norms in sect. A45.2: We are assuming that no value

of K tρ(x) grows faster than exponentially for any choice of function ρ(x), so that

the fastest possible growth can be bounded by etβ, a reasonable expectation in the

light of the simplest example studied so far, the exact escape rate (20.41). If that

is so, multiplying K t by e−tβ we construct a new operator e−tβK t = et(A−β) which

decays exponentially for large t, ||et(A−β) || ≤ M. We say that e−tβK t is an element

of a bounded semigroup with generator A − β1. Given this bound, it follows by

the Laplace transform

∫ ∞

0

dt e−stK t =
1

s −A
, Re s > β , (A19.7)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to cause section A45.2

separation into constituents)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

s −A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∫ ∞

0

dt e−st Metβ =
M

s − β
.

If one is interested in the spectrum of K , as we will be, the resolvent operator is a

natural object to study. The main lesson of this brief aside is that for the continu-

ous time flows the Laplace transform is the tool that brings down the generator in

(19.26) into the resolvent form (20.32) and enables us to study its spectrum.

A19.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operators K t. We have introduced

the generator of the semigroup (19.24) as

A =
d

dt
K t

∣

∣

∣

∣

∣

t=0
.

If we now take the derivative at arbitrary times we get

(

d

dt
K tψ

)

(x) = lim
η→0

ψ( f t+η(x)) − ψ( f t(x))

η

= vi( f t(x))
∂

∂x̃i

ψ(x̃)

∣

∣

∣

∣

∣

x̃= f t(x)

=
(

K tAψ
)

(x)

which can be formally integrated like an ordinary differential equation yielding exercise A19.1

K t = etA . (A19.8)

This guarantees that the Laplace transform manipulations in sect. 19.5 are correct.

Though the formal expression of the semigroup (A19.8) is quite simple one has
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to take care in implementing its action. If we express the exponential through the

power series

K t =

∞
∑

k=0

tk

k!
Ak , (A19.9)

we encounter the problem that the infinitesimal generator (19.24) contains non-

commuting pieces, i.e., there are i, j combinations for which the commutator does

not satisfy

[

∂

∂xi

, v j(x)

]

= 0 .

To derive a more useful representation, we follow the strategy used for finite-

dimensional matrix operators in sects. 4.3 and 4.4 and use the semigroup property

to write

K t =

t/δτ
∏

m=1

Kδτ

as the starting point for a discretized approximation to the continuous time dy-

namics, with time step δτ. Omitting terms from the second order onwards in the

expansion of Kδτ yields an error of order O(δτ2). This might be acceptable if the

time step δτ is sufficiently small. In practice we write the Euler product

K t =

t/δτ
∏

m=1

(

1 + δτA(m)

)

+ O(δτ2) (A19.10)

where

(

A(m)ψ
)

(x) = vi( f mδτ(x))
∂ψ

∂x̃i

∣

∣

∣

∣

∣

x̃= f mδτ(x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi
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xi + δτvi(x)
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
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. (A19.11)

We see that the product form (A19.10) of the operator is nothing else but a pre- exercise 2.6

scription for finite time step integration of the equations of motion - in this case

the simplest Euler type integrator which advances the trajectory by δτ×velocity at

each time step.

A19.2.1 A symplectic integrator

The procedure we described above is only a starting point for more so-

phisticated approximations. As an example on how to get a sharper bound on the
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error term consider the Hamiltonian flowA = B + C, B = pi
∂
∂qi

, C = −∂iV(q) ∂
∂pi

.

Clearly the potential and the kinetic parts do not commute. We make sense of the exercise A19.2

formal solution (A19.10) by splitting it into infinitesimal steps and keeping terms

up to δτ2 in

Kδτ = K̂δτ +
1

24
δτ3[B + 2C, [B,C]] + · · · , (A19.12)

where

K̂δτ = e
1
2
δτBeδτCe

1
2
δτB . (A19.13)

The approximate infinitesimal Liouville operator K̂δτ is of the form that now gen-

erates evolution as a sequence of mappings induced by (19.27), a free flight by
1
2
δτB, scattering by δτ∂V(q′), followed again by 1

2
δτB free flight:

e
1
2
δτB

{

q

p

}

→

{

q′

p′

}

=

{

q − δτ
2

p

p

}

eδτC
{

q′

p′

}

→

{

q′′

p′′

}

=

{

q′

p′ + δτ∂V(q′)

}

e
1
2
δτB

{

q′′

p′′

}

→

{

q′′′

p′′′

}

=

{

q′ − δτ
2

p′′

p′′

}

(A19.14)

Collecting the terms we obtain an integration rule for this type of symplectic flow

which is better than the straight Euler integration (A19.11) as it is accurate up to

order δτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (A19.15)

The Jacobian matrix of one integration step is given by

M =

[

1 −δτ/2
0 1

] [

1 0
δτ∂V(q′) 1

] [

1 −δτ/2
0 1

]

. (A19.16)

Note that the billiard flow (9.11) is an example of such symplectic integrator. In

that case the free flight is interrupted by instantaneous wall reflections, and can be

integrated out.

Commentary

Remark A19.1 Koopman operators. The “Heisenberg picture” in dynamical sys-

tems theory has been introduced by Koopman and Von Neumann [A1.3, A1.4], see also

ref. [19.12]. Inspired by the contemporary advances in quantum mechanics, Koopman [A1.3]

observed in 1931 thatK t is unitary on L2(µ) Hilbert spaces. The Koopman operator is the
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EXERCISES 918

classical analogue of the quantum evolution operator exp
(

iĤt/~
)

– the kernel of Lt(y, x)

introduced in (19.13) (see also sect. 20.3) is the analogue of the Green’s function dis-

cussed here in chapter 35. The relation between the spectrum of the Koopman operator

and classical ergodicity was formalized by von Neumann [A1.4]. We shall not use Hilbert

spaces here and the operators that we shall study will not be unitary. For a discussion

of the relation between the Perron-Frobenius operators and the Koopman operators for

finite dimensional deterministic invertible flows, infinite dimensional contracting flows,

and stochastic flows, see Lasota-Mackey [19.12] and Gaspard [A1.65].

Remark A19.2 Symplectic integration. The reviews [A19.10] and [A19.11] offer a

good starting point for exploring the symplectic integrators literature. For a higher order

integrators of type (A19.13), check ref. [A19.16].

Exercises

A19.1. Exponential form of semigroup elements. Check

that the Koopman operator and the evolution generator

commute, K tA = AK t, by considering the action of

both operators on an arbitrary state space function a(x).

A19.2. Non-commutativity. Check that the commutators in

(A19.12) are not vanishing by showing that

[B,C] = −p

(

V ′′
∂

∂p
− V ′

∂

∂q

)

.

A19.3. Symplectic leapfrog integrator. Implement (A19.15)

for 2-dimensional Hamiltonian flows; compare it with

Runge-Kutta integrator by integrating trajectories in

some (chaotic) Hamiltonian flow.
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