Appendix A

A brief history of chaos

L aws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol'd’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads's Law: Everything of importance has
been said before by someone who did not discover
it.

—Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, exsally a history of
something that has preoccupied at one time or other anyusetionker from
ancient Sumer to today’s Hong Kong. A mathematician, to sakexample, might
see it this way: “History of dynamical systems.” Nevertlsslehere comes yet
another very imperfect attempt.

A.1 Chaosisborn

I'll maybe discuss more about its history when | learn
more about it.

—Maciej Zworski
(R. Mainieri and P. Cvitanovit)
RYING TO PREDICT the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was imaottfor deter-

mining the longitude of ships while traversing open seas.
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Kepler's Rudolphine tables had been a great improvement réwious ta-
bles, and Kepler was justly proud of his achievements. Heeanirothe introduc-
tion to the announcement of Kepler's third ladarmonice MundiLinz, 1619) in
a style that would not fly with the contemporaPhysical Review Lettemsditors:

What | prophesied two-and-twenty years ago, as soon as dwised
the five solids among the heavenly orbits—what | firmly bedlong before
| had seen Ptolemyldarmonics-what | had promised my friends in the title
of this book, which I named before | was sure of my discovetyatgixteen
years ago, | urged as the thing to be sought-that for whicingfTycho
Brahé, for which | settled in Prague, for which | have deddtee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expenatiti is not
eighteen months since | got the first glimpse of light, thremths since
the dawn, very few days since the unveiled sun, most adneir@bbaze
upon, burst upon me. Nothing holds me; | will indulge my sdcdhery; |
will triumph over mankind by the honest confession that Iéatolen the
golden vases of the Egyptians to build up a tabernacle for oy fér away
from the confines of Egypt. If you forgive me, | rejoice; if yave angry, |
can bear it; the die is cast, the book is written, to be redteeiow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood stile Slewton.
The formalism that we use today was developed by Euler andabgg. By the
end of the 1800’s the three problems that would lead to themaif chaotic
dynamics were already known: the three-body problem, thedic hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thgdliorbits of Kepler
and set an example of how equations of motion could be solyadtbgrating.
But the motion of the Moon is not well approximated by an slipvith the Earth
at a focus; at least thdfects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already podseEselo that one has
to consider the motion of three bodies: the Moon, the Earit,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodpl@m was also
a model to another concern in astronomy. In the Newtonianeiefdthe solar
system it is possible for one of the planets to go from antaliprbit around the
Sun to an orbit that escaped its dominion or that plunged righ it. Knowing

if any of the planets would do so became the problem of thelisyadif the solar
system. A planet would not meet this terrible end if solartesysconsisted of
two celestial bodies, but whether such fate could befalhim three-body case
remained unclear.

After many failed attempts to solve the three-body problaatural philoso-
phers started to suspect that it was impossible to integfréie usual technique for
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integrating problems was to find the conserved quantitisantities that do not
change with time and allow one to relate the momenta andiposiat diferent

times. The first sign on the impossibility of integrating ttheee-body problem
came from a result of Bruns that showed that there were ncecesd quantities
that were polynomial in the momenta and positions. Brunsultedid not pre-

clude the possibility of more complicated conserved qtiasti This problem was
settled by Poincaré and Sundman in two verffadent ways [A.1, A.2].

In an attempt to promote the journAkta MathematicaMittag-Leffler got
the permission of the King Oscar Il of Sweden and Norway taldisth a mathe-
matical competition. Several questions were posed (aifindioe king would have
preferred only one), and the prize of 2500 kroner would gbédatest submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract eadr atttording
to Newton’s laws, under the assumption that no two points esf#fide, try
to find a representation of the coordinates of each point aariassin a
variable that is some known function of time and for all of whwalues the
series converges uniformly.

This problem, whose solution would considerably extend under-
standing of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedeguantities that
were analytic in the momenta and positions could not exigt. sfow that he
introduced methods that were very geometrical in spiri& ithportance of state
space flow, the role of periodic orbits and their cross sastidthe homoclinic
points.

The interesting thing about Poincaré’s work was that itrditisolve the prob-
lem posed. He did not find a function that would give the camatéis as a function
of time for all times. He did not show that it was impossiblder, but rather that
it could not be done with the Bernoulli technique of findingomserved quantity
and trying to integrate. Integration would seem unlikelgnir Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-b8medish mathe-
matician Sundman. Sundman showed that to integrate the-bugy problem
one had to confront the two-body collisions. He did that bimg them go away
through a trick known as regularization of the collision rifield. The trick is not
to expand the coordinates as a function of tiimbut rather as a function offt.
To solve the problem for all times he used a conformal map angtrip. This
allowed Sundman to obtain a series expansion for the ccatelinvalid for all
times, solving the problem that was proposed by Weirstratise King Oscar II's
competition.

The Sundman’s series are not used today to compute thettndgscof any
three-body system. That is more simply accomplished by migalenethods or
through series that, although divergent, produce betteenical results. The con-
formal map and the collision regularization mean that theeseare &ectively in
the variable 1- e k. Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more ternmsghg one has ever

appendHist - 20Mar2013 ChaosBook.org version15, Jan 18 2015



APPENDIX A. A BRIEF HISTORY OF CHAOS 788

wanted to compute, are needed to achieve numerical com@rg&hough Sund-
man’s work deserves better credit than it gets, it did nat liyp to Weirstrass’s
expectations, and the series solution did not “considgraxtend our understand-
ing of the solar system.” The work that followed from Poirécdid.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development abtah dynamics

was the ergodic hypothesis of Boltzmann. Maxwell and Bo#tmumhad combined
the mechanics of Newton with notions of probability in ortieicreate statistical
mechanics, deriving thermodynamics from the equationsexfhanics. To eval-
uate the heat capacity of even a simple system, Boltzmanrnchathke a great
simplifying assumption of ergodicity: that the dynamicgdtem would visit every
part of the phase space allowed by conservation laws ecofédlg. This hypoth-

esis was extended to other averages used in statisticalameshand was called
the ergodic hypothesis. It was reformulated by Poincaréatothat a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be vefiialilt. By the end of
twentieth century it has only been shown true for a few systand wrong for
quite a few others. Early on, as a mathematical necessiyrthof of the hypoth-
esis was broken down into two parts. First one would showtti@imechanical
system was ergodic (it would go near any point) and then onddwvshow that
it would go near each point equally often and regularly so tiha computed av-
erages made mathematical sense. Koopman took the firstnspgpving the er-
godic hypothesis when he realized that it was possible trmaflate it using the
recently developed methods of Hilbert spaces [A.3]. This @@ important step
that showed that it was possible to take a finite-dimensiooalinear problem
and reformulate it as a infinite-dimensional linear prohleébhis does not make
the problem easier, but it does allow one to useffedint set of mathematical
tools on the problem. Shortly after Koopman started lentuan his method, von
Neumann proved a version of the ergodic hypothesis, gitititgistatus of a the-
orem [A.4]. He proved that if the mechanical system was agydkden the com- chapter 16
puted averages would make sense. Soon afterwards Hirgbblished a much
stronger version of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the developimeinthe theory of
chaotic dynamical systems was the work on the nonlineallascs. The prob-
lem is to construct mechanical models that would aid our tstdeding of phys-
ical systems. Lord Rayleigh came to the problem throughriterest in under-
standing how musical instruments generate sound. In theafioximation one
can construct a model of a musical instrument as a lineallatsci But real in-
struments do not produce a simple tone forever as the linezlator does, so
Lord Rayleigh modified this simple model by adding frictiomdamore realistic
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models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhared pure tone
and decay with time when not stroked. In his botike Theory of SounHord
Rayleigh introduced a series of methods that would proveegeneral, such as
the notion of a limit cycle, a periodic motion a system goesegardless of the
initial conditions.

A.2 Chaosgrowsup

(R. Mainieri)

The theorems of von Neumann and Birldhon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developad/andirections. One
direction took an abstract approach and considered dy@dsystems as trans-
formations of measurable spaces into themselves. Couldassify these trans-
formations in a meaningful way? This lead Kolmogorov to thieaduction of the
concept of entropy for dynamical systems. With entropy agrechical invariant
it became possible to classify a set of abstract dynamicesys known as the
Bernoulli systems. The other line that developed from tigedic hypothesis was
in trying to find mechanical systems that are ergodic. An @igsystem could
not have stable orbits, as these would break ergodicity. nNSi888 Hadamard
published a paper with a playful title of ‘... billiards '.where he showed that
the motion of balls on surfaces of constant negative curgatieverywhere un-
stable. This dynamical system was to prove very useful amdé taken up by
Birkhoft. Morse in 1923 showed that it was possible to enumerate thies af
a ball on a surface of constant negative curvature. He d&lhiintroducing a
symbolic code to each orbit and showed that the number oftpessodes grew
exponentially with the length of the code. With contribatsoby Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a balasurface of con-
stant negative curvature was ergodic. The importance sfrdsult escaped most
physicists, one exception being Krylov, who understood ¢&physical billiard
was a dynamical system on a surface of negative curvaturgyithuthe curvature
concentrated along the lines of collision. Sinai, who wassfttst to show that a
physical billiard can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developmérprompted
many experiments and some theoretical development by vapalieDuting, and
Hayashi. They found other systems in which the nonlineaitlatur played a role
and classified the possible motions of these systems. Thigei@ness of experi-
ments, and the possibility of analysis was too much of tetigutdor Mary Lucy
Cartwright and J.E. Littlewood [A.5], who set out to provatimany of the struc-
tures conjectured by the experimentalists and theoregibgicists did indeed
follow from the equations of motion. Birktibhad found a ‘remarkable curve’ in
a two dimensional map; it appeared to be noffiedentiable and it would be nice
to see if a smooth flow could generate such a curve. The worladir@ight and
Littlewood lead to the work of Levinson, which in turn proeid the basis for the
horseshoe construction of S. Smale. chapter 12
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In Russia, Lyapunov paralleled the methods of Poincaré initidted the
strong Russian dynamical systems school [A.6]. Andronaviezh on with the
study of nonlinear oscillators and in 1937 introduced tbgetwith Pontryagin
the notion of coarse systems. They were formalizing the rstaleding garnered
from the study of nonlinear oscillators, the understandiveg many of the details
on how these oscillators work do ndtect the overall picture of the state space:
there will still be limit cycles if one changes the dissipatior spring force func-
tion by a little bit. And changing the system a little bit hag great advantage of
eliminating exceptional cases in the mathematical armlySoarse systems were
the concept that caught Smale’s attention and enticed hatutty dynamical sys-
tems.

A.3 Chaoswith us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where hé Areol'd,
Anosov, Sinai, and Novikov. He lectured there, and spentt afldime with
Anosov. He suggested a series of conjectures, most of whiatsév proved
within a year. It was Anosov who showed that there are dynalnsigstems for
which all points (as opposed to a non—wandering set) admihyiperbolic struc-
ture, and it was in honor of this result that Smale named thgsims Axiom-A.
In Kiev Smale found a receptive audience that had been tigrddoout these prob-
lems. Smale’s result catalyzed their thoughts and inidiatehain of developments
that persisted into the 1970’s.

Smale collected his results and their development in th& i®@ew article on
dynamical systems, entitled “Bérentiable dynamical systems” [A.7]. There aogapter 12
many great ideas in this paper: the global foliation of iresairsets of the map into
disjoint stable and unstable parts; the existence of a Glooseand enumeration
and ordering of all its orbits; the use of zeta functions tmgtdynamical systems.

The emphasis of the paper is on the global properties of thardical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotmdological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little emoonfusing. The
general character of entropy was understood by Weiner, w@imed to have spo-
ken to Shannon. In 1948 Shannon published his results omiatton theory,
where he discusses the entropy of the shift transformatiolmogorov went
far beyond and suggested a definition of the metric entro@nairea preserving
transformation in order to classify Bernoulli shifts. Theggestion was taken by
his student Sinai and the results published in 1959. In 1960liR connected
these results to measure-theoretical notions of entrofwe rext step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim Avdrew; these
papers showed that one could define the notion of topologitbpy and use it
as an invariant to classify continuous maps. In 1967 Anosal @inai applied
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the notion of entropy to the study of dynamical systems. I \wathe context
of studying the entropy associated to a dynamical systemSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems statistical me-
chanics; this has been a very fruitful relationship. It adusasure notions to the
topological framework laid down in Smale’s paper. Markovtiians divide the
state space of the dynamical system into nice little boxatsrttap into each other.
Each box is labeled by a code and the dynamics on the state spgss the codes
around, inducing a symbolic dynamics. From the number okebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical
system. In 1970 Bowen came up independently with the sanaes,iddthough
there was presumably some flow of information back and foeflode these pa-
pers got published. Bowen also introduced the importantepinof shadowing of
chaotic orbits. We do not know whether at this point the retest with statistical
mechanics were clear to everyone. They became expliciteamibrk of Ruelle.
Ruelle understood that the topology of the orbits could leeiied by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatestinvariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundestiof the statisti-
cal mechanics approach to chaotic systems, research tirsaetlying particular
cases. The simplest case to consider is 1-dimensional mEps.topology of
the orbits for parabola-like maps was worked out in 1973 byrdfmlis, Stein,
and Stein [A.8]. The more general 1-dimensional case wagetoout in 1976
by Milnor and Thurston in a widely circulated preprint, weosxtended version
eventually got published in 1988 [A.9].

A lecture of Smale and the results of Metropolis, Stein, at&nSnspired
Feigenbaum to study simple maps. This lead him to the disg@mf¢he universal-
ity in quadratic maps and the application of ideas from fiblelery to dynamical
systems. Feigenbaum'’s work was the culmination in the stidydimensional
systems; a complete analysis of a nontrivial transitiorhtos. Feigenbaum intro-
duced many new ideas into the field: the use of the renornti@izgroup which
led him to introduce functional equations in the study ofaiyical systems, the
scaling function which completed the link between dynaisgatems and statis-
tical mechanics, and the presentation functions whichridesthe dynamics of
scaling functions.

The work in more than one dimension progressed very slowdyisustill far
from completed. The first result in trying to understand theotogy of the or-
bits in two dimensions (the equivalent of Metropolis, Steind Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19f&r$ton was giv-
ing lectures “On the geometry and dynamics dfebmorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not bBppled in physics,
but much of the classification that Thurston developed caolb@ined from the
notion of a ‘pruning front’ formulated independently by @novic.
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Once one develops an understanding of the topology of thisata dynam-
ical system, one needs to be able to compute its propertiasliechad already
generalized the zeta function introduced by Artin and Mg2ul0], so that it
could be used to compute the average value of observables difficulty with
Ruelle’s zeta function is that it does not converge very wéltarting out from
Smale’s observation that a chaotic dynamical system isedefith a set of peri-
odic orbits, Cvitanovi¢ used these orbits as a skeleton bichwto evaluate the
averages of observables, and organized such calculatidasms of rapidly con-
verging cycle expansions. This convergence is attainedinguhe shorter orbits
used as a basis for shadowing the longer orbits.

This account is far from complete, but we hope that it willhgét a sense of
perspective on the field. It is not a fad and it will not die &mg soon.

A.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics

(P. Cvitanovit)

The history of periodic orbit theory is rich and curious;eatadvances are equally
inspired by more than a century of developments in threeragpaubjects: 1.
classical chaotic dynamigsnitiated by Poincaré and put on its modern footing
by Smale [A.7], Ruelle [A.11], and many others, Quantum theorynitiated by
Bohr, with the modern ‘chaotic’ formulation by GutzwilleA[12, A.13], and 3.
analyticnumber theorynitiated by Riemann and formulated as a spectral prob-
lem by Selberg [A.14, A.15]. Following fferent lines of reasoning and driven
by different motivations, the three separate roads all arritaed formulaszeta
functionsandspectral determinants

The fact that these fields are all related is far from obvi@ums even today
the practitioners tend to cite papers only from their subegity. In Gutzwiller’s
words [A.13], “The classical periodic orbits are a crucitdpping stone in the
understanding of quantum mechanics, in particular when dtassical system
is chaotic. This situation is very satisfying when one third€ Poincaré who
emphasized the importance of periodic orbits in classicatimanics, but could
not have had any idea of what they could mean for quantum meéaghaT he set
of energy levels and the set of periodic orbits are compleangrio each other
since they are essentially related through a Fourier toamsfSuch a relation had
been found earlier by the mathematicians in the study of #yadcian operator
on Riemannian surfaces with constant negative curvatuhes [&€d to Selberg’s
trace formula in 1956 which has exactly the same form, bupbag to be exact.”
A posteriorj one can say that zeta functions arise in both classical aadtgm
mechanics because the dynamical evolution can be desdoipélde action of
linear evolution (or transfer) operators on infinite-direi@mal vector spaces. The
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spectra of these operators are given by the zeros of apategieterminants. Onesection 19.1
way to evaluate determinants is to expand them in terms oéstdog detf) =

tr (log £). In this way the spectrum of an evolution operator becore&sad to

its traces, i.e. periodic orbits. A deeper way of restating ts to observe thatexercise 4.1
the trace formulas perform the same role in all of the abowblpms; they relate

the spectrum of lengths (local dynamics) to the spectrumggnealues (global
eigenstates), and for nonlinear geometries they play aamdéogous to the one

that Fourier transform plays for the circle.

Distant history is easily sanitized and mythologized. As approach the
present, our vision is inevitably more myopic; for veryfdient accounts covering
the same recent history, see V. Baladi [A.16] (a mathenaatigiperspective), and
M. V. Berry [A.17] (a quantum chaologist’s perspective). @fe grateful for any
comments from the reader that would help make what followsafed balanced.

M. Gutzwiller was the first to demonstrate that chaotic dyitaris built upon
unstable periodic orbits in his 1960’s work on the quaniiratof classically
chaotic quantum systems, where the ‘Gutzwiller trace fda'mives the semiclas-chapter 34
sical quantum spectrum as a sum over classical perioditsg¢il8, A.19, A.20,
A.12]. Equally important was D. Ruelle’s 1970’s work on hyipaic systems,
where ergodic averages associated with natural invarigaisaores are expressechapter 19
as weighted sums on the infinite set of unstable periodidsdmbedded in the
underlying chaotic set [A.21, A.22]. This idea can be traoadk to the following remark 19.2
sources: 1. the foundational 1967 review [A.7], where S. IBmeoposed as “a
wild idea in this direction” a (technically incorrect, butgscient) zeta function
over periodic orbits, 2. the 1965 Artin-Mazur zeta functfoncounting periodic chapter 15
orbits [A.10], and 3. the 1956 Selberg number-theoretia fenctions for Rie-
mann surfaces of constant curvature [A.14]. That one coaifdputeusing these
infinite sets was not clear at all. Ruelle [A.11] never attesdpexplicit computa-
tions, and Gutzwiller only attempted to implement sumnregiover anisotropic
Kepler periodic orbits by treating them as Ising model canfigions [A.23] (In
retrospect, Gutzwiller was lucky; it turns out that the mpegiodic orbits one
includes, the worse convergence one gets [A.24]).

For a long time the convergence of such sums bedeviled tléitpyaers, un-
til the mathematically rigorous spectral determinantshigperbolic deterministic
flows, and the closely related semiclassicaly exact Guliezmdleta functions were
recast in terms of highly convergerycle expansiondJnder these circumstances,
a relatively few short periodic orbits lead to highly acderbng time averages of
quantities measured in chaotic dynamics and of spectraummtgm systems. The
idea, in a nutshell, is that long orbits are shadowed by shorbits, and theth
term in a cycle expansion is thefidirence between the shorter cycles estimate of
the periodn-cycles’ contribution and the exaricycles sum. For unstable, hyper-
bolic flows, this diference falls & exponentially or super-exponentially [A.60].
Contrary to what some literature says, cycle expansionsi@more ‘clever re- chapter K
summations’ than the Plemelj-Smithies cumulant evalunatioa determinant is a
‘resummation’, and their theory is considerably more reasg than what prac-
titioners of quantum chaos fear: there is no ‘abscissa dflates convergence’,
there is no ‘entropy barrier’, and the exponential proétern of cycles is not the
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problem.

Cvitanovit derived ‘cycle expansions’ in 1986-87, in dfod to prove that chapter 20
the mode-locking dimension for critical circle maps dise@d by Jensen, Bak
and Bohr [A.25] is universal; the same kind of periodic alatre involved in
the Hénon map, but now in renormalization ‘time’. The sytiddynamics of
the Hénon attractor (the pruning front conjecture [A.26]roded by transition
graphs, topological entropy is given by roots of their deieants. This observa-chapter 15
tion led to the study of convergence of spectral determstmtboth discrete-time
(iterated maps) and continuous-time deterministic flondHl®ODDESs and PDES).
Cycle expansions thus arose not from temporal dynamics$rdoatstudies of scal- chapter 23
ings in period-doubling and cycle-map renormalization2[A A.28, A.29]. This
work was done in collaboration with R. Artuso (PhD 1987-19&9. Gunaratne,
and E. Aurell (PhD 1984-1989), and it was written under th&chvial eye of par-
rot Gaspar in Fundacad de Faca, Porto Seguro, as twoRengcling of strange
setspapers [A.30, A.27]1. Cycle expansionandll. Applications The main les-
son was that one should never split theory and applicatiaiospiapers numbered
I and IlI; part Il, which covers many interesting results, basely been glanced at
by anyone.

The first published paper on these developments was Auerdiaah[A.31]
Exploring chaotic motion through periodic orbisubmitted March 1987). Here

only a ‘level sum’ approximation (20.41), section 22.4
Ny e s
1= Z t] eBA (XJ)’ t] = s (Al)
- Aj
xjeFixfn

to the trace formula is presented asrdin order estimate of the leading Perron-
Frobenius eigenvalugy), and applied to the Hénon attractor (Eq. (4) of the above
paper). (Theexactweight of an unstable prime periodic orlgt(for level sum
(18.7)) had been conjectured by Kad&rand Tang [A.32] in 1984.) Even as it
was written, the heuristics of this paper was rendered ebsdly the exact cycle
expansions, and yet, mysteriously, this might be one of thetroited periodic
orbits papers.

The first attempt to make cycle expansions accessible ty e@&rson was
condensed into Phys. Rev. Lettlyariant measurement of strange sets in terms
of cycleqsubmitted March 1988) [A.33]. However, the two long pag@rartuso
et al.[A.30, A.27] are a better read.

Several applications of the new methodology are worth roairtg. One was
the accurate calculation of the leading dozen eigenvaltiseqgoeriod-doubling
operator [A.27, A.28, A.34]. Another breakthrough was tlgele expansion of
deterministic transport cé@igcients [A.35, A.36, A.37], such asftlision constants
without any probabilistic assumptions. The classical Boltzmann eqadbr the chapter 25
evolution of 1-particle density is based &tosszahlansatzhe assumption that
velocities of colliding particles are not correlated. Irripdic orbit theory all
correlations are included in cycle averaging formulashagthe cycle expansion
for a particle dffusing chaotically across a spatially-periodic array.
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Physicists tend to obsess about matters weightier thaatiiigrmaps, so Cvi-
tanovi€¢ and Eckhardt showed that cycle expansions repeguantum resonances
of Eckhardt's 3-disk scatterer [A.38] to rather impressaseuracy [A.39] (sub-
mitted February 1989). Gaspard and Rice published a lovigy¢h of articles
(submitted September 1988) about the same 3-disk systessichl, semiclassi-
cal and quantum scattering) [A.40, A.41, A.42]. In 1992 PREsenqvist [A.43,
A.44], in his PhD thesis, combined the magic of spectral rdgiteants with their
symmetry factorizations [A.23, A.45] to take cycle expamsi to ridiculous accu-
racy; for example, periodic orbits up to 10 bounces detegrttie classical escape
rate for a 3-disk pinball to be

v = 0.4103384077693464893384613078192.

Try to extract this from a direct numerical simulation, orog-log plot of level
sums (A.1)! Prior to cycle expansions, the best accuradyGlagpard and Rice
achieved by applying Markov approximations to the speateaérminant [A.40]
was 1 significant digity ~ 0.45.

A 3-disk billiard is exceptionally nice, uniformly hyperho repeller. More
often than not, good symbolic dynamics for a given flow isaithot available,
or its grammar is not finite, or the convergence of cycle exjuas is &ected
by non-hyperbolic regions of state space. In those casasdtions such as thehapter 24
stability cutgf of Dahlqvist and Russberg [A.46, A.47] and Dettmann and Mor-
riss [A.48] might be helpful. The idea is to truncate the eyekpansion by in- section 20.6
cluding only the shadowing combinations of pseudo-cy¢@sp, - - -, pk} such
that|Ap, - - - Ap| < Amax, With the cutdf Amax equal to or smaller than the most
unstableA, in the data set.

It is pedagogically easier to motivate sums over periodlmterby starting
with discrete time dynamical systems, but most flows of ptatsnterest are con-
tinuous in time. The weighted averages of periodic orbitscfantinuous time
flows were introduced by Bowen, who treated them as Poirgecéon suspen-
sions weighted by the ‘time ceiling’ function, and were immorated into dyn-
amical zeta functions by Parry and Pollicott [A.49] and RaigA.50]. For people
steeped in quantum mechanics it all looked very unfamgiain 1991 Cvitanovic
and Eckhardt reformulated spectral determinants for naotis time flows along
the lines of Gutzwiller's derivation of the semi-classiti@ce formula [A.51]. As chapter 18
a consequence, quantum mechanicians [A.17, A.52, A.58]tegite this paper
as the first paper on cycle expansions.

2D billiards are only toys, but quantization of helium is synebt just a game.
By implementing cycle expansions in 1991, the group of Digfetgen obtained
a surprisingly accurate helium spectrum [A.54, A.55] frosnzall set of its short-
est cycles. This happened 50 years after old quantum themmtyfdiled to do
so and 20 years after Gutzwiller first introduced his quatittn of chaotic sys-
tems [A.12].

The Copenhagen group gave many conference and seminaakalks cycle
expansions. In December 1986, Cvitanovit presentedtsesuithe periodic-orbit
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description of the topology of Lozi and Hénon attractorsl &#me periodic-orbit
computation of associated dynamical averages, at the mgeeti “Chaos and section 12.4
Related Nonlinear Phenomena: Where do we go from Hefdis meeting was
organized by Moshe Shapiro and Itamar Procaccia and heleikibutz Kiryat

Anavim. A great meeting, and Celso Grebogi was in the audien®fter the

“Where do we go from here?”’meeting, the Maryland group wrote a series of
papers on unstable periodic orbits, or ‘UPOSs'. In the firgigsdA.56], Unstable remark 5.1
periodic orbits and the dimensions of multifractal chaagitractor (submitted
September 1987), the focus was on fractal dimensions oftichattiractors, as

was the fashion in the late 1980's. They prove that the nhtaemasureoy of

a mixing hyperbolic attractor is given by the limit of a sumeovhe unstable

periodic pointsx; of long periodn, embedded in a chaotic attractor. Each periodic

point is weighted by the inverse of the product of its peodibit's expanding

Floguet multipliersA, Eq. (14) in their paper:

, 1
poMs)=lim  >° =, xjeMs. (A2)

xjeFixfn !

This is an approximate level sum formula for natural megsargpecial case of
(A.1), with leading Perron-Frobenius eigenvalsie- 0 (no escape), angl = 0
(observable=1). The first paper does cite Auerbaehal. [A.31], in which the
same approximate level sum seems to have been publishduefirdt time. Ever
since then, various cyclist teams cite exclusively thein@apers and some of the
mathematicians of the 1970’s.

So you have now written a paper that uses periodic orbits.t\§lume to cite?
Work by Sinai-Bowen-Ruelle is smarter and more profouna tha vast majority
of ‘chaos’ publications from the 1980s on. If you are not allfucomputing any-
thing using periodic orbits and are reluctant to refer ter¢contributions, you
can safely credit Ruelle [A.22, A.11] for deriving the dynaai (or Ruelle) zeta
function, and Gutzwiller for formulating semiclassicakaptization as a Zeta func
tion over unstable periodic orbits [A.12, A.13]. There aceaycle expansions in
these papers or in Bowen's work (see, for example, the geiuriin Scholarpe-
dia.org). If you have computed something using sums weibbyeperiodic-orbit
weights, cite the first paper that introduced them, as wel aseful up-to-date
reference, which in this case ¢haosBook.org. Do not faint because this web-
book is available on (gasp!) the internet - it's third milhdmm, and having a
continuously updated, hyperlinked and reliable referdrasits virtues.

Depending on the context, one should also cite 1) Zoldi arekfside [A.57]
for being the second to determine unstable periodic orb&3 6f them) for Kuramoto-
Sivashinsky, on a domain larger than what was studied inAef9], 2) Lépez
et al. [A.58] for being the first to determine relative periodic itshin a spatio-
temporal PDE (complex Landau-Ginzburg), and 3) Kazant#e§9] for being
the first to determine periodic orbits in a weather model, famchis variational
method for finding periodic orbits. We love these authorsnlotifor their ‘escape- remark 20.1
time weighting’.
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While derivations of (A.1) by Kadariband Tang 1984 and Auerbaeh al.
1987 were heuristic, Grebogi, Ott and Yorke 1987 prove (AR)taking the
n — oo limit. In actual computations it would be madness to attetopake such
limit, as longer and longer periodic orbits are exponelytidlore and more un-
stable, exponentially growing in number, and non-comgatahnd the natural
measurepg is everywhere singular, with support on a fractal set, wighi— oo
limit even more impossible to compute. And why would one tdiie limit? The
whole point of cycle expansions is that it is smarter to cora@veragesvithout
constructingog.

Taking a limit to obtain a proof is good mathematics, but atistical mechan-
ics a partition function is not a limit of anything; it is thelf sum of all states.
Likewise, its ergodic theory cousin, the spectral deteemins not a long-time
limit; it is the exact sum over all periodic orbits. Cycle aexjgions were intro-
duced in a non-rigorous manner, on purpose [A.33]: the atippsvas meant not
to frighten a novice, innocent of Borel measurabl®o Q sets. This was set rightchapter 23
in the elegant PhD thesis of H. H Rugh’s in 1992e correlation spectrum for
hyperbolic analytic mapgA.60], which proves that the zeros of spectral deter-
minants are indeed the Ruelle-Pollicott resonances [AA632, A.63]. The proof
is well within mathematicians’ comfort zone, so they tenctie Rugh’s paper
as the paper on ‘Fredholm determinants’, and, as alwayswthr “a sense of
Grothendieck” for good measure [A.16, A.64], without cifiearlier papers on
cycle expansions.

If you intend to determine and use periodic orbits, hereastlessage: Heuris-
tic ‘level sums’ are approximations to the exact trace fdasthat are derived
here, in ChaosBook, and Gaspard monograph [A.65] with nceraort than
the heuristic approximations), not smart for computatidaster convergence is
obtained by utilizing the shadowing that is built into theaeixcycle expansions
of dynamical zeta functions and spectral determinants.leCgxpansions areot
heuristic, in classical deterministic dynamics they exactexpansions in the un-
stable periodic orbits [A.33, A.30, A.27]; in quantum megita and stochastic
mechanics they are semi-classically exact. So why wouldpoater a limit of
a heuristic sum such as (A.2) to the exact spectral detenninanvergent exactsection 22.4
periodic orbits sums, and exact periodic orbits formulasdinamical averages
of observables? It is not even wrong. Perhaps if one is vend fof baker's
maps [A.66], which, being piecewise linear, have no cyclpagsion curvature
terms, one does not appreciate the shadowing cancelatidihinto the spectral
determinants and their cycle expansions. That might bedhson why linear
thinkers stop at the level sum (A.2).

A.5 Dynamicist’svision of turbulence

The key theoretical concepts that form the basis of dyndntemries of turbu-
lence are rooted in the work of Poincaré, Hopf, Smale, Ru&Hutzwiller and
Spiegel. In Poincaré’s 1889 analysis of the three-bodylpra [A.67], he in-
troduced the geometric approach to dynamical systems atlbdeethat lie at
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the core of the theory developed here: qualitative topolafgstate space flows,
Poincaré sections, key roles played by equilibria, pégiodbits, heteroclinic con-
nections, and their staljlenstable manifolds.

In a seminal 1948 paper [A.68], Ebehardt Hopf visualizedftimetion space
of allowable Navier-Stokes velocity fields as an infiniteadnsional state space,
parameterized by viscosity, boundary conditions and eatdorces, with instan-
taneous state of a flow represented by a point in this statespaminar flows
correspond to equilibrium points, globally stable foffmiently large viscosity.
As the viscosity decreases (as the Reynolds number insjgdaebulent states
set in, represented by chaotic state space trajectoriesf'sHabservation that
viscosity causes a contraction of state space volumes uhdeaction of dy-
namics led to his key conjecture: that long-term, typicalbserved solutions of
the Navier-Stokes equations lie on finite-dimensional fiaéols embedded in the
infinite-dimensional state space of allowed states. Hapfsifold, known today
as the ‘inertial manifold,” is well-studied in the matheimatof spatio-temporal
PDEs. lts finite dimensionality for non-vanishing ‘visdgsiparameter has been
rigorously established in certain settings by Foias ankhcotators [A.69]. Hopf
presciently noted that “the geometrical picture of the pHémw is, however, not
the most important problem of the theory of turbulence. @fagger importance
is the determination of the probability distributions agated with the phase
flow”. Hopf's call for understanding probability distribahs associated with
the phase flow has indeed proven to be a key challenge, oneiai wiinam-
ical systems theory has made the greatest progress in thealsentury. In
particular, the Sinai-Ruelle-Bowen ergodic theory of tmat’ or SRB measures
has played a critical role in understanding dissipativeéesys with chaotic behav-
ior [A.7, A.70, A.71, A.11].

Hopf noted “[t]he great mathematicalfficulties of these important problems
are well known and at present the way to a successful attatikeom seems hope-
lessly barred. However, there is no doubt that many chaisiitefeatures of
the hydrodynamical phase flow occur in a much larger clasgfas problems
governed by non-linear space-time systems. In order toigaight into the na-
ture of hydrodynamical phase flows we are, at present, fawéidd and to treat
simplified examples within that class.” Hopf’s call for geetnic state space anal-
ysis of simplified models first came to fulfillment with the undintial Lorenz’s
truncation [A.72] of the Rayleigh-Bénard convection stgpace. The Proper Orexample 2.2
thogonal Decomposition (POD) models of boundary-laydnuilence brought this
type of analysis closer to physical hydrodynamics [A.73[4). Further signif-
icant progress has proved possible for systems such as gpatidl dimension
Kuramoto-Sivashinsky flow [A.75, A.76], which is a paradigiic model of tur-
bulent dynamics, as well as one of the most extensively etisiatially extended
dynamical systems.

Today, as we hope to have convinced the reader, with modenpuiation and
experimental insights, the way to a successful attack orfuthé\avier-Stokes
problem is no longer “hopelessly barred.” We address thdlesige in a way chapter 26
Hopf could not divine, employing methodology developedyownithin the past
two decades, explained in depth in this book.
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Hopf, however, to the best of our knowledge, never suggdsidturbulent
flow should be analyzed in terms of ‘recurrent flows’, i.e.ghperiodic solutions
of the defining PDEs. The story so far goes like this: in 19609pigel was
Robert Kraichnan's research associate. Kraichnan told ‘titow follows a reg-
ular solution for a while, then another one, then switcheartother one; that's
turbulence.” It was not too clear, but Kraichnan’s visiortwbulence moved Ed.
In 1962 Spiegel and Derek Moore investigated a set of 3raramlavection equa-
tions which seemed to follow one periodic solution, thenthen and continued
going from periodic solution to periodic solution. Ed toleiek, “This is turbu-
lence!” and Derek said “This is wonderful!” He gave a lectateCaltech in 1964
and came back very angry. They pilloried him there. “Why is tarbulence?”
they kept asking and he could not answer, so he expunged tite‘tndbulence’
from their 1966 paper [A.77] on periodic solutions. In 197flegel met Kraich-
nan and told him, “This vision of turbulence of yours has beety useful to me.”
Kraichnan said: “That wasn't my vision, that was Hopf’s @isi” What Hopfac-
tually said and where he said it remains deeply obscure to this esryTdhere are
papers that lump him together with Landau, as the ‘Landapfsdncorrect the-
ory of turbulence, a proposal to deploy incommensuratguescies as building
blocks of turbulence. This was Landau’s guess and was tlyeooiel that could be
implemented at the time.

The first paper to advocate a periodic orbit description diulent flows is
thus the 1966 Spiegel and Moore paper [A.77, A.78]. Thirtsrgdater, in 1996
Christiansenet al. [A.79] proposed (in what is now the gold standard for ex-
emplary ChaosBook.org/projects) that the periodic orbit theory be applied
to infinite-dimensional flows, such as the Navier-Stokesngishe Kuramoto-
Sivashinsky model as a laboratory for exploring the dynaroiose to the onset of
spatiotemporal chaos. The main conceptual advance inritisl iforay was the
demonstration that the high-dimensional (16-64 mode i&@l@runcations) dy-
namics of this dissipative flow can be reduced to an appraeiyna-dimensional
Poincaré return map — f(s), by choosing the unstable manifold of the shortest
periodic orbit as the intrinsic curvilinear coordinaterfravhich to measure near
recurrences. For the first time for any nonlinear PDE, sor@@QLunstable peri-
odic orbits were determined numerically. What was novelalius work? First,
dynamics on a strange attractor embedded in a high-dinreaisspace was essen-
tially reduced to 1-dimensional dynamics. Second, thetsols found provided
both aqualitative descriptiorand highly accuratquantitative predictiongor the
given PDE with the given boundary conditions and systemrmatar values.

How is it possible that the theory originally developed fowldimensional
dynamical systems can work in tke-dimensional PDE state spaces? For dis-
sipative flows the number of unstable, expanding directigsnsften finite and
even low-dimensional; perturbations along tkeof contracting directions heal
themselves, and play only a minor role in cycle weights - bahe long-time dy-
namics is ectively finite dimensional. For a more precise statemed,Ginelli
et al.[A.80].

The 1996 project went as far as one could with methods and et@tign re-
sources available, until 2002, when new variational metheere introduced [A.81,
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A.82, A.83]. Considerably more unstable, higher-dimenaiaegimes have be-
come accessible [A.84]. Of course, nobody really cares takatamoto-Siva-
shinsky. It is only a model; it was not until the full Naviete®es calculations
of Eckhardt, Kerswell and collaborators [A.85, A.86, A.8Fat the fluid dynam-
ics community started to appreciate that ttymamical(as opposed tetatistica)
analysis of wall-bounded flows is now feasible [A.88].

A.6  Gruppenpest

How many Tylenols should | take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Walé&e, forced to read chapter 9.

If you are not fan of chapter 9 “Flips, slides and turns,” atsdelaborations,
you are not alone. Or, at least, you were not alone in the 193@ is when the
articles by two young mathematical physicists, Eugene figmmd Johann von
Neumann [A.89], and Wigner's 1931 Gruppentheorie [A.9@Ftstd Die Grup-
penpesthat plagues us to this very day.

According to John Baez [A.91], the American physicist Jolates, inventor
of the ‘Slater determinant,’ is famous for having dismisgeolps as unnecessary
to physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl ered the picture
with their ‘Gruppenpest:’ the pest of the group theory [alliiy the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppest’ wrote papers
which were incomprehensible to those like me who had notietiugroup the-
ory... The practical consequences appeared to be neglidpbt everyone felt that
to be in the mainstream one had to learn about it. | had what body describe
as a feeling of outrage at the turn which the subject had takahwas obvious
that a great many other physicists were disgusted as | hadwigke the group-
theoretical approach to the problem. As | heard later, thexee remarks made
such as ‘Slater has slain the ‘Gruppenpest”. | believe thaither piece of work
| have done was so universally popular.”

A. John Coleman writes isroups and Physics - Dogmatic Opinions of a Se-
nior Citizen [A.92]: “The mathematical elegance and profundity of Weyl's book
[Theory of Groups and QM] was somewhat traumatic for the Bhegpeaking
physics community. In the preface of the second edition B0l @fter a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group’pesiradually being
cut out of quantum physics. This is certainly not true in scafathe rotation and
Lorentz groups are concerned; ...." In the autobiography. &f. Slater, published
in 1975, the famous MIT physicist described the “feeling atrage” he and other
physicists felt at the incursion of group theory into phgsit the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published thigily influential
treatise on the “Theory of Atomic Spectra”, Slater was widetralded as hav-
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ing “slain the Gruppenpest”. Pages 10 and 11 of Condon andI&yis treatise

are fascinating reading in this context. They devote thaagraphs to the role
of group theory in their book. First they say, “We manage tbajeng without

it.” This is followed by a lovely anecdote. In 1928 Dirac gaveseminar, at the
end of which Weyl protested that Dirac had said he would makase of group

theory but that in fact most of his arguments were applicatiof group theory.
Dirac replied, “I said that | would obtain the results witlhiquevious knowledge
of group theory!” Mackey, in the article referred to prevsty) argues that what
Slater and Condon and Shortley did was to rename the gereitthe Lie al-

gebra of SO(3) as “angular momenta” and create the feeliagwhat they were
doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people yauere working
with in Berlin, was there much interest in group theory as tifine?” WIGNER:
“No. On the opposite. Schrodinger coined the expressiGnppenpest’ must
be abolished.” “It is interesting, and representative efrtlations between math-
ematics and physics, that Wigner's paper was originallyrstibd to a Springer
physics journal. It was rejected, and Wigner was seekingyaiph journal that
might take it when von Neumann told him not to worry, he woudd igj into the
Annals of Mathematics. Wigner was happy to accept fisrgA.93].”

A.7 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

One afternoon in May 1991, Dieter Wintgen is sitting in hiae at the Niels Bohr
Institute beaming with the unparalleled glee of a boy whojhascommitted a
major mischief. The starting words of the manuscript he basgenned are

The failure of the Copenhagen School to obtain a reasonable .

Wintgen was 34 years old at the time, a styrkind of guy, always wearing san-
dals and holed out jeans, the German flavor of a 90’s left wiagel mountain

climber. He worked around the clock with his students Grédgomer and Klaus
Richter to complete the work that Bohr himself would haveelbio have seen
done back in 1916: a ‘planetary’ calculation of the heliuractpum.

Never mind that the ‘Copenhagen School’ refers not to theqalhtum the-
ory, but to something else. The old quantum theory was naytegaall; it was a
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set of rules bringing some order to a set of phenomena whitbddegic of clas-
sical theory. The electrons were supposed to describetplgnarbits around the
nucleus; their wave aspects were yet to be discovered. Tumalédions seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrqum theory
marched on, until by 1924 it reached an impasse: the heliwentspn and the
Zeeman #ect were its death knell.

Since the late 1890’s it had been known that the helium gp@ctonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggetiat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workheproblem, and
he wrote to Rutherford, “I have used all my spare time in tisé t@onths to make
a serious attempt to solve the problem of ordinary heliunctspm ... I think
really that at last | have a clue to the problem.” To otherezgiues he wrote that
“the theory was worked out in the fall of 1916” and of havingaibed a “partial
agreement with the measurements.” Nevertheless, the Batmmerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwere
of no avail.

For a while Heisenberg thought that he had the ionizatiorem@l for he-
lium, which he had obtained by a simple perturbative scher®wrote enthu-
siastic letters to Sommerfeld and was drawn into a colldtmravith Max Born
to compute the spectrum of helium using Born’s systematitugeative scheme.
To a first approximation, they reproduced the earlier catoohs. The next level
of corrections turned out to be larger than the computéece The concluding
paragraph of Max Born’s classic “Vorlesungen Uber Atomhagtk” from 1925
sums it up in a somber tone [A.94]:

(...) the systematic application of the principles of theugum theory

(...) gives results in agreement with experiment only irsthoases where
the motion of a single electron is considered; it fails evethie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not yeadinsistent.
(...) A complete systematic transformation of the cladsioachanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg fiared a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanatiagheohelium spec-
trum. He used wave mechanics, electron spin and the Pallisixa principle,
none of which belonged to the old quantum theory. As a repldhetary orbits
of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek ¢d understanding of
the subtleties of classical mechanics. Today we know wlest thissed in 1913-
24, the role of conjugate points (topological indices) glafassical trajectories
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was not accounted for, and they had no idea of the importahperimdic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdld quantum
mechanics has been fixed. Leopold and Percival [A.95] addeddpological
indices in 1980, and in 1991 Wintgen and collaborators [A%&%5] understood
the role of periodic orbits. Dieter had good reasons to ghvatle the rest of us
were preparing to sharpen our pencils and supercomputensi@r to approach

the dreaded 3-body problem, they just went ahead and did fitat\l¥ took—and
much else—is described in this book.

Oneis also free to ponder what quantum theory would looktbkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovi¢ gavelaitaSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, whad it so much that
after the talk he pulled Predrag aside and they trotted @velans’ secret place:
the best lunch on campus (Business School). Predrag askéolild quantum
mechanics look dierent if in 1917 Bohr and Krameget al. figured out how to
use the helium classical 3-body dynamics to quantize héfium

Bethe was very annoyed. He responded with an exasperatied indBethe

Deutschinglish (if you have ever talked to him, you can doubiee over your-
self):

“It would not matter at all!”
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Commentary

Remark A.1 Notion of global foliations.  For each paper cited in dynamical systems
literature, there are many results that went into its dgymlent. As an example, take the
notion of global foliations that we attribute to Smale. As#&a we can trace the idea, it
goes back to René Thom; local foliations were already ugéthdlamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom wasaéxiplg his notion of
transversality. One of Thom'’s disciples introduced Smald@tazilian mathematician
Peixoto. Peixoto (who had learned the results of the AndrdPontryagin school from
Lefschetz) was the closest Smale had ever come until thdretdndronov-Pontryagin
school. It was from Peixoto that Smale learned about stratstability, a notion that got
him enthusiastic about dynamical systems, as it blendebwitdl his topological back-
ground. It was from discussions with Peixoto that Smale lgetdroblems in dynamical
systems that lead him to his 1960 paper on Morse inequalities next year Smale pub-
lished his result on the hyperbolic structure of the non-deaimg set. Smale was not the
first to consider a hyperbolic point, Poincaré had alreanlyedthat; but Smale was the
first to introduce a global hyperbolic structure. By 1960 &mweas already lecturing on
the horseshoe as a structurally stable dynamical systelmawiinfinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponentKatok and J.-M. Strelcyn
carried out the program and developed a theory of generardigal systems with sin-
gularities. They studied uniformly hyperbolic systemsgaeng as Anosov’s), but with
sets of singularities. Under iterations a dense set of pdiit the singularities. Even
more important are the points that never hit the singulaety In order to establish some
control over how they approach the set, one looks at trajestthat approach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muclemobust: look at the
discontinuity set, take anneighborhood around it. Given that the Lebesgue measure is
€* and the stability grows not faster than (distaficé). Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nwsvgroblem has no
invariant Lebesgue measure. Assuming uniform hyperlgligiith singularities, and
tying together Lebesgue measure and discontinuities, &t ¢hat the stability grows
not faster than (distanck)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Loreazahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troubléniglifferentials. For the
Hénon attractor, already thefffirentials are nonhyperbolic. The points do not separate

uniformly, but the analogue of the singularity set can bewigtd by excising the regions
that do not separate. Hence there are 3 levels of ergodieragst

1. Anosov flow
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2. Anosov flow+ singularity set: For the Hamiltonian systems the genersé ésa
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi

3. Hénon case: The first proof was given by M. Benedicks an@drleson [A.96,
A.97,A.98]. Amore readable proofis givenin M. Benedickd artS. Young [A.99].

(based on Ya.B. Pesin’'s comments)

Remark A.3 Einstein did it?  The first hint that chaos is afoot in quantum mechanics
was givenin a note by A. Einstein [A.100]. The total discasss a one sentence remark.
Einstein being Einstein, this one sentence has been deefffietest to give him the credit
for being the pioneer of quantum chaos [A.13, A.101]. We dsigout the paper two
people from that era, Sir Rudolf Peierls and Abraham Paish@&ehad any recollection
of the 1917 article. However, Theo Geisel has unearthedearte that shows that
in early 20s Born did have a study group meeting in his houaegtudied Poincaré’s
Méchanique Céleste [A.67]. In 1954 Fritz Reiche, who haapusly followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland)nted out to J.B. Keller
that Keller's geometrical semiclassical quantization aasicipated by the long forgotten
paper by A. Einstein [A.100]. In this way an important papeitten by the physicist who
at the time was the president of German Physical Societytl@chost famous scientist
of his time, came to be referred to for the first time by Kell&l, 41 years later. But
before lan Percival included the topological phase, andg®mand students recycled the
Helium atom, knowing Méchanique Céleste was not enougiotoplete Bohr’s original
program.

Remark A.4 Berry-Keating conjecture. A very appealing proposal in the context of
semiclassical quantization is due to M. Berry and J. Kediin@02]. The idea is to im-
prove cycle expansions by imposing unitarity as a funclieqaation ansatz. The cycle
expansions that they use are the same as the original orm#héesabove [A.30], but the
philosophy is quite dferent; the claim is that the optimal estimate for low eigéumes of
classically chaotic quantum systems is obtained by takiageal part of the cycle expan-
sion of the semiclassical zeta function, ctitat the appropriate cycle length. M. Sieber,
G. Tanner and D. Wintgen, and P. Dahlqvist find that their micakresults support this
claim; F. Christiansen and P. Cvitanovi¢ do not find any emizk in their numerical re-
sults. The usual Riemann-Siegel formulas exploit the de#lity of the Riemann and
other zeta functions, but there is no evidence of such symrfmtgeneric Hamiltonian
flows. Also from the point of hyperbolic dynamics discussbdwe, proposal in its cur-
rent form belongs to the category of crude cycle expansittiesgycles are cutfbby a
single external criterion, such as the maximal cycle timigh wo regard for the topology
and the curvature corrections. While the functional equmationjecture is not in its final
form yet, it is very intriguing and fruitful research insgiion.

The real life challenge are generic dynamical flows, whichdither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riezatfumction on the other.

Remark A.5 Sources. The tale of appendix A.7, aside from a few personal rec-
ollections, is in large part lifted from Abraham Pais’ acotiof the demise of the old
quantum theory [A.103, A.104], as well as Jammer’s accodrit(5]. In August 1994
Dieter Wintgen died in a climbing accident in the Swiss Alps.
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