
Appendix A2

Go straight

A
Hamiltonian system is said to be integrable if one can find a change of

coordinates to an action-angle coordinate frame where the phase-space

dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable

flow would be attained if one found a change of coordinates into a frame where

the stable/unstable manifolds are straight lines, and the flow is along hyperbolas.

Achieving this globally for anything but a handful of contrived examples is a pipe

dream. Nevertheless, as we shall now show, we can make some headway on

straightening out the flow locally.

There is much more to this story than what we touch upon here: other tricks

and methods to construct regularizations, what kind of singularities could be reg-

ularized, etc.. Even though such nonlinear coordinate transformations are very

important, especially in celestial mechanics, we shall not use them much in what

follows, so you can safely skip this chapter on the first reading. Except, perhaps,

you might like transformations that turn a Keplerian ellipse into a harmonic oscil-

lator (example A2.2) and regularize the 2-body Coulomb collisions (sect. A2.2)

in classical helium.

A2.1 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies is

to use it to pick out the simplest possible representative of an equivalence class.

These are just words, as we have no clue how to pick such ‘canonical’ represen-

tations, but for smooth flows we can always do it locally and for sufficiently short

time, by appealing to the rectification theorem, a fundamental theorem of ordi-

nary differential equations. The theorem tells us that a solution exists (at least for

a short time interval) and what it looks like. The rectification theorem holds in the

neighborhood of points of the vector field v(x) that are not singular, that is, ev-

erywhere except for the equilibrium points (2.8), and points at which v is infinite.
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According to the theorem, in a small neighborhood of a non-singular point there

exists a change of coordinates y = h(x) such that ẋ = v(x) in the new, canonical

coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 ,

(A2.1)

with unit velocity flow along yd, and no flow along any of the remaining directions.

This is an example of a one-parameter Lie group of transformations, with the finite

time τ action exercise 11.3

exercise A2.1

y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

Example A2.1 Harmonic oscillator, rectified: As a simple example of global

rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (A2.2)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the

system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{

q = h−1
1

(r, θ) = r cos θ

p = h−1
2

(r, θ) = r sin θ
. (A2.3)

The Jacobian matrix, ∂hi/∂x j, of the transformation is

h′ =

















cos θ sin θ

− sin θ

r

cos θ

r

















(A2.4)

resulting in (2.15) of rectified form exercise 5.1

(

ṙ

θ̇

)

=

















cos θ sin θ

− sin θ

r

cos θ

r

















(

q̇
ṗ

)

=

(

0
−1

)

. (A2.5)

In the new coordinates the radial coordinate r is constant, and the angular coordinate

θ wraps around a cylinder with constant angular velocity. There is a subtle point in this

change of coordinates: the domain of the map h−1 is not the plane R2, but rather the

plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-

tions should not change the topology of the space in which the dynamics takes place;

the coordinate transformation is not defined on the equilibrium point x = (0, 0), or r = 0.

A2.2 Collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and other

curious but rather idealized dynamical systems. If you have become impatient and
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Figure A2.1: Coordinates for the helium three body

problem in the plane.
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Figure A2.2: Collinear helium, with the two electrons

on opposite sides of the nucleus.
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started wondering what good are the methods learned so far in solving real life

physical problems, good news are here. We will apply here concepts of nonlinear

dynamics to nothing less than the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged particles

moving under the influence of their mutually attracting or repelling forces? It

turns out, we can, but we have to do it with care. The full problem is indeed

not accessible in all its detail, but we are able to analyze a somewhat simpler

subsystem–collinear helium. This system plays an important role in the classical

and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass me and charge

−e moving about a positively charged nucleus of mass mhe and charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that we

may work in the infinite nucleus mass approximation mhe = ∞, fixing the nucleus

at the origin. Finite nucleus mass effects can be taken into account without any

substantial difficulty. We are now left with two electrons moving in three spatial

dimensions around the origin. The total angular momentum of the combined elec-

tron system is still conserved. In the special case of angular momentum L = 0, the

electrons move in a fixed plane containing the nucleus. The three body problem

can then be written in terms of three independent coordinates only, the electron-

nucleus distances r1 and r2 and the inter-electron angle Θ, see figure A2.1.

This looks like something we can lay our hands on; the problem has been

reduced to three degrees of freedom, six phase-space coordinates in all, and the

total energy is conserved. But let us go one step further; the electrons are attracted

by the nucleus but repelled by each other. They will tend to stay as far away from

each other as possible, preferably on opposite sides of the nucleus. It is thus worth

having a closer look at the situation where the three particles are all on a line with

the nucleus being somewhere between the two electrons. If we, in addition, let the

electrons have momenta pointing towards the nucleus as in figure A2.2, then there

is no force acting on the electrons perpendicular to the common interparticle axis.

That is, if we start the classical system on the dynamical subspace Θ = π, d
dt
Θ = 0,
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the three particles will remain in this collinear configuration for all times.

A2.2.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a

system of two degrees of freedom with the Hamiltonian

H =
1

2me

(

p2
1 + p2

2

)

− 2e2

r1

− 2e2

r2

+
e2

r1 + r2

= E , (A2.6)

where E is the total energy. As the dynamics is restricted to the fixed energy shell,

the four phase-space coordinates are not independent; the energy shell dependence

can be made explicit by writing

(r1, r2, p1, p2)→ (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A

simple analysis of potential versus kinetic energy tells us that if the energy is

positive both electrons can escape to ri → ∞, i = 1, 2. More interestingly, a

single electron can still escape even if E is negative, carrying away an unlimited

amount of kinetic energy, as the total energy of the remaining inner electron has no

lower bound. Not only that, but one electron will escape eventually for almost all

starting conditions. The overall dynamics thus depends critically on whether E >

0 or E < 0. But how does the dynamics change otherwise with varying energy?

Fortunately, not at all. Helium dynamics remains invariant under a change of

energy up to a simple scaling transformation; a solution of the equations of motion

at a fixed energy E0 = −1 can be transformed into a solution at an arbitrary energy

E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√

−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m
1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–

dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
− 2

r1

− 2

r2

+
1

r1 + r2

= −1 . (A2.7)

The case of negative energies chosen here is the most interesting one for us. It

exhibits chaos, unstable periodic orbits and is responsible for the bound states and

resonances of the quantum problem.

A2.2.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (A2.7). When-

ever two bodies come close to each other, accelerations become large, numerical

appendFlows - 20mar2013 ChaosBook.org version15.9, Jun 24 2017



APPENDIX A2. GO STRAIGHT 835

routines require lots of small steps, and numerical precision suffers. No numerical

routine will get us through the singularity itself, and in collinear helium electrons

have no option but to collide with the nucleus. Hence a regularization of the dif-

ferential equations of motions is a necessary prerequisite to any numerical work

on such problems, both in celestial mechanics (where a spaceship executes close

approaches both at the start and its destination) and in quantum mechanics (where

much of semiclassical physics is dominated by returning classical orbits that probe

the quantum wave function at the nucleus).

There is a fundamental difference between two–body collisions r1 = 0 or r2 =

0, and the triple collision r1 = r2 = 0. Two–body collisions can be regularized,

with the singularities in equations of motion removed by a suitable coordinate

transformation together with a time transformation preserving the Hamiltonian

structure of the equations. Such regularization is not possible for the triple colli-

sion, and solutions of the differential equations can not be continued through the

singularity at the origin. As we shall see, the chaos in collinear helium originates

from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the Kust-

aanheimo–Stiefel (KS) transformation, which consists of a coordinate dependent

time transformation which stretches the time scale near the origin, and a canonical

transformation of the phase-space coordinates. In order to motivate the method,

we apply it first to the 1-dimensional Kepler problem

H =
1

2
p2 − 2

x
= E . (A2.8)

Example A2.2 Keplerian ellipse, rectified: To warm up, consider the E = 0 case,

starting at x = 0 at t = 0. Even though the equations of motion are singular at the initial

point, we can immediately integrate

1

2
ẋ2 − 2

x
= 0

by means of separation of variables

√
xdx = 2 dt , x = (3t)

2
3 , (A2.9)

and observe that the solution is not singular. The aim of regularization is to compensate

for the infinite acceleration at the origin by introducing a fictitious time, in terms of which

the passage through the origin is smooth.

A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian

H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if

the Hamiltonian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For the 1–

dimensional Coulomb problem with (A2.8) we choose the time transformation dt = xdτ

which lifts the |x| → 0 singularity in (A2.8) and leads to a new Hamiltonian

H = 1

2
xp2 − 2 − Ex = 0. (A2.10)

The solution (A2.9) is now parameterized by the fictitous time dτ through a pair of

equations

x = τ2 , t =
1

3
τ3 .
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The equations of motion are, however, still singular as x→ 0:

d2x

dτ2
= − 1

2x

dx

dτ
+ xE .

Appearance of the square root in (A2.9) now suggests a canonical transformation of

form

x = Q2 , p =
P

2Q
(A2.11)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q, P) =
1

8
P2 − EQ2 = 2, (A2.12)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that one seeks

a higher-dimensional generalization of the ‘square root removal’ trick (A2.11), by

introducing a new vector Q with property r = |Q|2 . In this simple 1-dimensional

example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1

, p2 =
P2

2Q2

(A2.13)

and reparameterization of time by dτ = dt/r1r2. The singular behavior in the

original momenta at r1 or r2 = 0 is again compensated by stretching the time

scale at these points. The Hamiltonian structure of the equations of motions with

respect to the new time τ is conserved, if we consider the Hamiltonian

Hko =
1

8
(Q2

2P2
1 + Q2

1P2
2) − 2R2

12 + Q2
1Q2

2(−E + 1/R2
12) = 0 (A2.14)

with R12 = (Q2
1
+Q2

2
)1/2, and we will take E = −1 in what follows. The equations

of motion now have the form

Ṗ1 = 2Q1













2 −
P2

2

8
− Q2

2













1 +
Q2

2

R4
12

























; Q̇1 =
1

4
P1Q2

2 (A2.15)

Ṗ2 = 2Q2













2 −
P2

1

8
− Q2

1













1 +
Q2

1

R4
12

























; Q̇2 =
1

4
P2Q2

1.

Individual electron–nucleus collisions at r1 = Q2
1
= 0 or r2 = Q2

2
= 0 no longer

pose a problem to a numerical integration routine. The equations (A2.15) are

singular only at the triple collision R12 = 0, i.e., when both electrons hit the

nucleus at the same time.

The new coordinates and the Hamiltonian (A2.14) are very useful when cal-

culating trajectories for collinear helium; they are, however, less intuitive as a

visualization of the three-body dynamics. We will therefore refer to the old coor-

dinates r1, r2 when discussing the dynamics and the periodic orbits.

appendFlows - 20mar2013 ChaosBook.org version15.9, Jun 24 2017



APPENDIX A2. GO STRAIGHT 837

Figure A2.3: (a) A typical trajectory in the [r1, r2]

plane; the trajectory enters here along the r1 axis

and escapes to infinity along the r2 axis; (b)

Poincaré map (r2=0) for collinear helium. Strong

chaos prevails for small r1 near the nucleus.
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To summarize, we have brought a 3-body problem into a form where the

2-body collisions have been transformed away, and the phase-space trajectories

computable numerically. To appreciate the full beauty of what has been attained,

you have to fast-forward to quantum chaos part of ChaosBook.org; we are already

‘almost’ ready to quantize helium by semiclassical methods.

fast track:

chapter 5, p. 102

A2.3 Rectification of maps

In sect. A2.1 we argued that nonlinear coordinate transformations can be prof-

itably employed to simplify the representation of a flow. We shall now apply the

same idea to nonlinear maps, and determine a smooth nonlinear change of coor-

dinates that flattens out the vicinity of a fixed point and makes the map linear in

an open neighborhood. In its simplest form the idea can be implemented only

for an isolated nondegenerate fixed point (otherwise one needs the normal form

expansion around the point), and only in a finite neighborhood of a point, as the

conjugating function in general has a finite radius of convergence. In sect. A2.4

we will extend the method to periodic orbits.

A2.3.1 Rectification of a fixed point in one dimension
exercise A2.3

Consider a 1-dimensional map xn+1 = f (xn) with a fixed point at x = 0, with

stability Λ = f ′(0). If |Λ| , 1, one can determine the power series for a smooth

conjugation h(x) centered at the fixed point, h(0) = 0, that flattens out the neigh-

borhood of the fixed point

f (x) = h−1(Λh(x)) (A2.16)

and replaces the nonlinear map f (x) by a linear map yn+1 = Λyn.

To compute the conjugation h we use the functional equation h−1(Λx) =
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f (h−1(x)) and the expansions

f (x) = Λx + x2 f2 + x3 f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (A2.17)

Equating the coefficients of xk on both sides of the functional equation yields hk

order by order as a function of f2, f3, . . . . If h(x) is a conjugation, so is any

scaling h(bx) of the function for a real number b. Hence the value of h′(0) is not

determined by the functional equation (A2.16); it is convenient to set h′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In any

case, for the time being we will not use much beyond the first, linear term in these

expansions.

Here we have assumed |Λ| , 1. If the fixed point has vanishing k−1 derivatives,

the conjugacy is to the kth normal form.

In multiple dimensions, Λ is replaced by the Jacobian matrix, and one has to

check that the eigenvalues M are non-resonant, that is, there is no integer linear

relation between the Floquet exponents (5.4). remark A2.3

A2.4 Rectification of a periodic orbit

In sect. A2.3.1 we have constructed the conjugation function for a fixed point.

Here we turn to the problem of constructing it for periodic orbits. Each point

around the cycle has a differently distorted neighborhood, with differing second

and higher order derivatives, so we need to compute a different conjugation func-

tion ha at each periodic point xa. We expand the map f around each periodic point

along the cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ
2 fa,2 + . . . (A2.18)

where xa is a point on the cycle, fa(φ) = f (xa + φ) is centered on the periodic

orbit, and the index k in fa,k refers to the kth order in the expansion (A2.17).

For a periodic orbit the conjugation formula (A2.16) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same way as

before, by equating coefficients of the expansion (A2.17), and assuming that the

cycle Floquet multiplier Λ =
∏n−1

a=0 f ′(xa) is not marginal, |Λ| , 1. The explicit

expressions for ha in terms of f are obtained by iterating around the whole cycle,

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (A2.19)

evaluated at each periodic point a. Again we have the freedom to set h′a(0) = 1 for remark A2.2

all a.
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A2.4.1 Repeats of cycles

We have traded our initial nonlinear map f for a (locally) linear map Λy and an

equally complicated conjugation function h. What is gained by rewriting the map

f in terms of the conjugacy function h? Once the neighborhood of a fixed point is

linearized, the iterates of f are trivialized; from the conjugation formula (A2.17)

one can compute the derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for an arbitrary iterate; the an-

swer will depend on the conjugacy function h(x) computed for a single application

of mapping f , and all the dependence on the iterate number will be carried by fac-

tors that are polynomial functions of Λr, a considerable simplification. The beauty

of the idea is difficult to gauge at this stage–an appreciation only sets in when one

starts computing perturbative corrections, whether in celestial mechanics (where

the method was born), or quantum or stochastic corrections to ‘semiclassical’ ap-

proximations.

in depth:

appendix A4.4, p. 854

Résumé

The dynamical system (M, f ) is invariant under the group of all smooth conjuga-

cies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the flow and

(ii) identify a set of invariants, numbers computed within a particular choice of

(M, f ), but invariant under allM→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D

degrees of freedom is fully stratified by D-tori. In the same spirit, for a uniformly

hyperbolic, chaotic dynamical system, one would like to transform to a coordinate

frame in which the stable and unstable manifolds form a set of transversally in-

tersecting hyper-planes, with the flow everywhere locally hyperbolic. That cannot

be achieved in general: Fully globally integrable and fully globally chaotic flows

are a very small subset of all possible flows, a ‘set of measure zero’ in the world

of all dynamical systems.

What we really care about is developing invariant notions for a given dynam-

ical system. The totality of smooth one-to-one nonlinear coordinate transforma-

tions h that map all trajectories of a given dynamical system (M, f t) onto all tra-

jectories of dynamical systems (M′, gt) gives us a huge equivalence class, much
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larger than the equivalence classes familiar from the theory of linear transforma-

tions. In the theory of Lie groups, the full invariant specification of an object is

given by a finite set of Casimir invariants. What a good full set of invariants for a

group of general nonlinear smooth conjugacies might be is not known, but the set

of all periodic orbits and their Floquet multipliers turns out to be a good start.

Commentary

Remark A2.1 Rectification of flows. See Section 2.2.5 of ref. [A2.10] for a pedagog-

ical introduction to smooth coordinate reparameterizations. Explicit examples of trans-

formations into canonical coordinates for a group of scalings and a group of rotations are

worked out.

Remark A2.2 Rectification of maps. The methods outlined above are standard in

the analysis of fixed points and the construction of normal forms for bifurcations, see

for example refs. [19.25, 15.35, A2.2, A2.3, A2.4, A2.5, A2.6, A2.7, 3.11]. The geom-

etry underlying such methods is elegant, and we enjoyed reading, for example, Percival

and Richards [A2.8], chaps. 2 and 4 of Ozorio de Almeida’s monograph [A2.9], and, as

always, Arnol’d [A2.1].

Recursive formulas for the evaluation of derivatives needed to evaluate (A2.17) are

given, for example, in Appendix A of ref. [19.9]. Section 10.6 of ref. [A2.11] describes

in detail the smooth conjugacy that relates the Ulam map (14.21) to the tent map (14.20).

For ‘negative Schwartzian derivatives,’ families of conjugacies of Ulam-type maps, as-

sociated Lyapunov exponents, continuous measures and further pointers to literature, see

ref. [A2.12].

Remark A2.3 A resonance condition. In the hyperbolic case there is a resonance

condition that must be satisfied: none of the Floquet exponents may be related by ratios of

integers. That is, if Λp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the Jacobian matrix,

then they are in resonance if there exist integers n1, . . . , nd such that

(Λp,1)n1 (Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, one may get corrections to the basic conjugation formulas in the

form of monomials in the variables of the map. (R. Mainieri)

Exercises

A2.1. Harmonic oscillator in polar coordinates: Given

a harmonic oscillator (A2.2) that follows ṗ = −q and

q̇ = p, use (A2.4) to rewrite the system in polar coordi-

nates (A2.3) and find equations for r and θ.
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1. Show that the 1-dimensional state space of the

rewritten system is the quotient spaceM/SO(2).

2. Construct a Poincaré section of the quotiented

flow.

A2.2. Coordinate transformations. Changing coordinates

is conceptually simple, but can become confusing when

carried out in detail. The difficulty arises from con-

fusing functional relationships, such as x(t) = h−1(y(t))

with numerical relationships, such as w(y) = h′(x)v(x).

Working through an example will clear this up.

(a) The differential equation in M is ẋ = {2x1, x2}
and the change of coordinates from M to M′ is

h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t). Find

h−1.

(b) Show that in the transformed spaceM′, the differ-

ential equation is

d

dt

[

y1

y2

]

=
1

3

[

5y1 + 2y2

y1 + 4y2

]

.

Solve this system. Does it match the solution in

theM space?

A2.3. Linearization for maps. Let f : C → C be a map

from the complex numbers into themselves, analytic at

the origin with a fixed point. By manipulating power se-

ries, find the first few terms of the map h that conjugates

f to αz, that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin

to assure that the conjugation is always possible. For-

mulate these conditions by examining the series

(difficulty: medium) (R. Mainieri)

A2.4. Ulam and tent maps. Show that the smooth conju-

gacy (2.12)

g(y0) = h ◦ f ◦ h−1(y0)

y = h(x) = sin2(πx/2) ,

conjugates the tent map f (x) = 1 − 2|x − 1/2| into the

Ulam map g(y) = 4y(1−y) . (continued as exercise 16.1)
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