Appendix B

Go straight

coordinates to an action-angle coordinate frame where iasgsspace

dynamics is described by motion on circles, one circle fahedegree
of freedom. In the same spirit, a natural description of aehplic, unstable
flow would be attained if one found a change of coordinates énframe where
the stabl@unstable manifolds are straight lines, and the flow is aloygelbolas.
Achieving this globally for anything but a handful of conegd examples is a pipe
dream. Nevertheless, as we shall now show, we can make somdevée on
straightening out the flow locally.

A Hamicronian system is said to beintegrableif one can find a change of

There is much more to this story than what we touch upon hetesr dricks
and methods to construct regularizations, what kind ofidargfies could be reg-
ularized, etc.. Even though such nonlinear coordinatestoamations are very
important, especially in celestial mechanics, we shallusetthem much in what
follows, so you can safely skip this chapter on the first nregdExcept, perhaps,
you might like transformations that turn a Keplerian ellifisto a harmonic oscil-
lator (example B.2) and regularize the 2-body Coulomb siollis (sect. B.2) in
classical helium.

B.1 Rectification of flows

A profitable way to exploit invariance of dynamics under sthomonjugacies is
to use it to pick out the simplest possible representativenoéquivalence class.
These are just words, as we have no clue how to pick such ‘czalbrepresen-
tations, but for smooth flows we can always do it locally andsigficiently short
time, by appealing to theectification theorema fundamental theorem of ordi-
nary diferential equations. The theorem tells us that a solutiost®xat least for
a short time interval) and what it looks like. The rectificattheorem holds in the
neighborhood of points of the vector fielfx) that are not singular, that is, ev-
erywhere except for the equilibrium points (2.8), and pattwhichv is infinite.
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According to the theorem, in a small neighborhood of a noigtdiar point there
exists a change of coordinatgs= h(x) such thatx'= v(x) in the new,canonical
coordinates takes form

Vi=Vo=---=VYq1=0
g e

with unit velocity flow alongyq, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transftioms, with the finite

time r action exercise 9A.3
exercise B.1
Y. = Vi, i=12...,d-1
Yd = Ya+T7.
Example B.1 Harmonic oscillator, rectified: As a simple example of global

rectification of a flow consider the harmonic oscillator
g=p, p=-q. (B.2)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates'y = (r,6):

1./ 9 = hr,6) = rcosy
h { p = hr.6) = rsing ®3)
The Jacobian matrix, oh;/dx;, of the transformation is
cosd  sind
h'=| sing cosg (B.4)
r r
resulting in (2.15) of rectified form exercise 5.1
; cosd  sind :
ry_ i a\_( O
(9),[7sm9 cosf J(D)’(—l)‘ (B.5)
r r

In the new coordinates the radial coordinate r is constant, and the angular coordinate
6 wraps around a cylinder with constant angular velocity. There is a subtle point in this
change of coordinates: the domain of the map h™! is not the plane R?, but rather the
plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-
tions should not change the topology of the space in which the dynamics takes place;
the coordinate transformation is not defined on the equilibrium point x = (0,0), orr = 0.
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Figure B.1: Coordinates for the helium three body )
problem in the plane. 4+
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Figure B.2: Collinear helium, with the two electrons__g, g @ ,,,,,,, <0

on opposite sides of the nucleus. r
1

B.2 Collinear helium

(G. Tanner) (ﬁb

So far much has been said about 1-dimensional maps, gamehiipand other
curious but rather idealized dynamical systems. If you leeme impatient and
started wondering what good are the methods learned so fahiing real life

physical problems, good news are here. We will apply here@gts of nonlinear
dynamics to nothing less than the helium, a dreaded thrdg-Goulomb problem.

Can we really jump from three static disks directly to threarged particles
moving under the influence of their mutually attracting opeling forces? It
turns out, we can, but we have to do it with care. The full peablis indeed
not accessible in all its detail, but we are able to analyzeraesvhat simpler
subsystem—collinear helium. This system plays an impbrtda in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons osmmasnd charge
—emoving about a positively charged nucleus of magsand charge-2e.

The helium electron-nucleus mass ratige/me = 1836 is so large that we
may work in the infinite nucleus mass approximatiog = oo, fixing the nucleus
at the origin. Finite nucleus masfects can be taken into account without any
substantial dficulty. We are now left with two electrons moving in three sglat
dimensions around the origin. The total angular momentuthetombined elec-
tron system is still conserved. In the special case of angudenentunL = 0, the
electrons move in a fixed plane containing the nucleus. Tieethody problem
can then be written in terms of three independent coordinaidy, the electron-
nucleus distanceg andr, and the inter-electron angé, see figure B.1.

This looks like something we can lay our hands on; the probtas been
reduced to three degrees of freedom, six phase-space catsliin all, and the
total energy is conserved. But let us go one step furtheeléwrons are attracted
by the nucleus but repelled by each other. They will tenddy as far away from
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each other as possible, preferably on opposite sides ofitleus. It is thus worth
having a closer look at the situation where the three pestiale all on a line with
the nucleus being somewhere between the two electrons,, Inhaddition, let the
electrons have momenta pointing towards the nucleus asurefig.2, then there
is no force acting on the electrons perpendicular to the comimterparticle axis.
That s, if we start the classical system on the dynamicadjsabe® = r, d%@ =0,
the three particles will remain in theollinear configuratiorfor all times.

B.2.1 Scaling

In what follows we will restrict the dynamics to this collmesubspace. It is a
system of two degrees of freedom with the Hamiltonian

Ll e 2 2 2 _
HmeE(pﬁpz) - + -E, (B.6)

whereE is the total energy. As the dynamics is restricted to the fewetgy shell,
the four phase-space coordinates are not independennehgyeshell dependence
can be made explicit by writing

(1,72, p1, P2) = (r2(E), r2(E), pa(E), p2(E)) -

We will first consider the dependence of the dynamics on tlegyrE. A
simple analysis of potential versus kinetic energy tellghat if the energy is
positive both electrons can escaperfo— oo, i = 1,2. More interestingly, a
single electron can still escape evelkifs negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remgiiminer electron has no
lower bound. Not only that, but one electraill escape eventually for almost all
starting conditions. The overall dynamics thus dependially on whethelE >
0 or E < 0. But how does the dynamics change otherwise with varyirygs?
Fortunately, not at all. Helium dynamics remains invariantler a change of
energy up to a simple scaling transformation; a solutiome®&guations of motion

at a fixed energ¥o = —1 can be transformed into a solution at an arbitrary energy

E < 0 by scaling the coordinates as

ri(E):(_ez—E)ri, pi(E)= v-mE p, i=12,

together with a time transformatiofE) = €2mi/?(-E)~%/2t. We include the
electron mass and charge in the scaling transformationderdo obtain a non—
dimensionalized Hamiltonian of the form

H=7F+F-—-—+ =-1. (B.7)

appendFlows - 20mar2013 ChaosBook.org version15, Jan 18 2015



APPENDIX B. GO STRAIGHT 817

The case of negative energies chosen here is the most tiigrese for us. It
exhibits chaos, unstable periodic orbits and is respoasiilthe bound states and
resonances of the quantum problem.

B.2.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hamién (B.7). When-
ever two bodies come close to each other, accelerationsrigelzoge, numerical
routines require lots of small steps, and numerical pregisiffers. No numerical
routine will get us through the singularity itself, and inlowar helium electrons
have no option but to collide with the nucleus. Henaegularizationof the dif-
ferential equations of motions is a necessary prerequisiggry numerical work
on such problems, both in celestial mechanics (where a spicexecutes close
approaches both at the start and its destination) and irtguamechanics (where
much of semiclassical physics is dominated by returningsital orbits that probe
the quantum wave function at the nucleus).

There is a fundamental fiérence between two-body collisions= 0 orry =
0, and the triple collisiom; = r, = 0. Two-body collisions can be regularized,
with the singularities in equations of motion removed by @atle coordinate
transformation together with a time transformation preiser the Hamiltonian
structure of the equations. Such regularization is notipkes$or the triple colli-
sion, and solutions of the flierential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in gelir helium originates
from this singularity of triple collisions.

A regularization of the two—body collisions is achieved bgans of the Kust-
aanheimo-Stiefel (KS) transformation, which consists cbardinate dependent
time transformation which stretches the time scale neawrilgen, and a canonical
transformation of the phase-space coordinates. In ordeotivate the method,
we apply it first to the 1-dimensional Kepler problem

1 2
H=Z-p?-Z=E. B.8
L (8.8)
Example B.2 Keplerian ellipse, rectified: To warm up, consider the E = 0O case,

starting at x = 0 att = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1., 2
S-Z-0
2" T x

by means of separation of variables
Vxdx=2dt,  x= (303, (B.9)
and observe that the solution is not singular. The aim of regularization is to compensate

for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.
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A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f(q, p)(H(q, p) — E). For the 1—
dimensional Coulomb problem with (B.8) we choose the time transformation dt = xdr
which lifts the |x| — O singularity in (B.8) and leads to a new Hamiltonian

’H:%xpz—Z—Ex=O. (B.10)
The solution (B.9) is now parameterized by the fictitous time dr through a pair of equa-
tions

x=12, t=27%.

The equations of motion are, however, still singular as x — 0:

d?x 1 dx L xE
dr2 ~ 2xdr ’
Appearance of the square root in (B.9) now suggests a canonical transformation of
form
P
2
= = — B.11
x=Q% P=55 (B.11)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian
1
HQP) =gP?-EQ =2 (B.12)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idghat one seeks
a higher-dimensional generalization of the ‘square rootawal’ trick (B.11), by
introducing a new vecto® with propertyr = |Q[2. In this simple 1-dimensional
example the KS transformation can be implemented by

P P2

=50 P27 a0, (B.13)

2 2
rn = le r2:Q2! P1

and reparameterization of time loly = dt/rir,.  The singular behavior in the
original momenta at; or r, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of thetemsof motions with
respect to the new timeis conserved, if we consider the Hamiltonian

1
Hko = §(Qgpf +Q3P2) - 2R%, + QPQ3(-E+ 1/R2) =0 (B.14)
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a) b)

Figure B.3: (a) A typical trajectory in therf. ] L
plane; the trajectory enters here along thexis , o

and escapes to infinity along the axis; (b) =
Poincaré mapr{=0) for collinear helium. Strong

chaos prevails for smali near the nucleus.

with Ry2 = (QF + Q3)%2, and we will takeE = —1 in what follows. The equations
of motion now have the form

. P2 3 .1

P1=2Q [2 - 32 - Q§(1+ %)] ; Q1= ZPlQE (B.15)
2

) p2 2 .

P2:2Q2[2—§1—Q§(1+ %H iniszf
2

Individual electron—nucleus collisions &t = Qf =0orr; = Qg = 0 no longer
pose a problem to a numerical integration routine. The égps{(B.15) are sin-
gular only at the triple collisiorfi; = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (B.14) are veryulisetien cal-
culating trajectories for collinear helium; they are, hoes less intuitive as a
visualization of the three-body dynamics. We will therefoefer to the old coor-
dinatesrs, r, when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a formrevhiee
2-body collisions have been transformed away, and the pdjzeee trajectories
computable numerically. To appreciate the full beauty oéteas been attained,
you have to fast-forward to quantum chaos par€iedosBook.org; we are al-
ready ‘almost’ ready to quantize helium by semiclassicahoes.

fast track:
E chapter 5, p. 98
B.3 Rectification of maps

In sect. B.1 we argued that nonlinear coordinate transfoomsi.can be profitably
employed to simplify the representation of a flow. We shalrapply the same
idea to nonlinear maps, and determine a smooth nonlineagehaf coordinates
that flattens out the vicinity of a fixed point and makes the tivggar in an open
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neighborhood. In its simplest form the idea can be impleggtonly for an iso-

lated nondegenerate fixed point (otherwise one needs tineahéwrm expansion
around the point), and only in a finite neighborhood of a pastthe conjugating
function in general has a finite radius of convergence. Ih 84 we will extend

the method to periodic orbits.

B.3.1 Rectification of a fixed point in one dimension
exercise B.3

Consider a 1-dimensional mafa.1 = f(x,) with a fixed point atx = 0, with
stability A = /(0). If |A| # 1, one can determine the power series for a smooth
conjugationh(x) centered at the fixed poirit(0) = 0, that flattens out the neigh-
borhood of the fixed point

f(X) = h"}(Ah(x)) (B.16)

and replaces the nonlinear méfx) by alinear mapyn.1 = Ayn.

To compute the conjugatioh we use the functional equatidm(Ax) =
f(h~1(x)) and the expansions

AX+ X+ XCfa+ ...
x+xhy + xChs + ... . (B.17)

f(x)
h™(x)

Equating the caicients of X on both sides of the functional equation yields
hg order by order as a function dp, fs,.... If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numbdx. Hence the value df’(0) is not
determined by the functional equation (B.16); it is coneanito sety(0) = 1.

The algebra is not particularly illuminating and best leftbmputers. In any
case, for the time being we will not use much beyond the firgtar term in these
expansions.

Here we have assumétl # 1. If the fixed point has vanishirig1 derivatives,
the conjugacy is to thkth normal form

In multiple dimensionsA is replaced by the Jacobian matrix, and one has to

check that the eigenvaluéd are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.4). remark B.3

B.4 Rectification of a periodic orbit

In sect. B.3.1 we have constructed the conjugation fundtoa fixed point. Here
we turn to the problem of constructing it for periodic orbiEach point around the
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cycle has a dierently distorted neighborhood, withfiéiring second and higher

order derivatives, so we need to compute féedént conjugation functioh, at

each periodic poink,. We expand the map around each periodic point along (5@
the cycle,

Ya(®) = fa(@) = Xas1 = pfar + ¢*faz + .. (B.18)

wherex, is a point on the cyclefa(¢) = f(Xa + ¢) is centered on the periodic
orbit, and the index in fax refers to thekth order in the expansion (B.17).

For a periodic orbit the conjugation formula (B.16) geniees to
fa@) = G (fiO0ha(@)), a=12---,n,

point by point. The conjugationg functiorig are obtained in the same way as
before, by equating céiécients of the expansion (B.17), and assuming that the
cycle Floquet multiplierA = ng;g f’(xa) is not marginal|A| # 1. The explicit
expressions foh, in terms off are obtained by iterating around the whole cycle,

(X + ¢) = N3 (Aha(9)) + Xa. (B.19)

evaluated at each periodic poatAgain we have the freedom to $€(0) = 1 for remark B.2
all a.

B.4.1 Repeats of cycles

We have traded our initial nonlinear mdpfor a (locally) linear mapAy and an
equally complicated conjugation functitm What is gained by rewriting the map
f in terms of the conjugacy function? Once the neighborhood of a fixed point
is linearized, the iterates dfare trivialized; from the conjugation formula (B.17)
one can compute the derivatives of a function composed teéif i times:

£7(x) = h"Y(ATh(x)).

One can already discern the form of the expansion for anrarpiiterate; the an-
swer will depend on the conjugacy functibfx) computed for aingleapplication

of mappingf, and all the dependence on the iterate number will be calosidec-
tors that are polynomial functions of , a considerable simplification. The beauty
of the idea is diicult to gauge at this stage—an appreciation only sets in when
starts computing perturbative corrections, whether iest&ll mechanics (where
the method was born), or quantum or stochastic correctmfsemiclassical’ ap-
proximations.

in depth:
” appendix C.4, p. 836
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Résum é

The dynamical system¥(, f) is invariant under the group of all smooth conjuga-
cies

M. f) > (M',g) = (h(M),ho foh™).

This invariance can be used to (i) find a simplified repredemtdor the flow and
(ii) identify a set of invariants, numbers computed withipaaticular choice of
(M, f), but invariant under alM — h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltoniaresystf D
degrees of freedom is fully foliated Hy-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system, one would like tasfarm to a coordinate
frame in which the stable and unstable manifolds form a seétaofversally in-
tersecting hyper-planes, with the flow everywhere locajlpdrbolic. That cannot
be achieved in general: Fully globally integrable and fgllgbally chaotic flows
are a very small subset of all possible flows, a ‘set of measere in the world
of all dynamical systems.

What wereally care about is developing invariant notions for a given dynam
ical system. The totality of smooth one-to-one nonlinearrdmate transforma-
tions h that map all trajectories of a given dynamical systewt, ¢*) onto all tra-
jectories of dynamical systema.(, ¢") gives us a huge equivalence class, much
larger than the equivalence classes familiar from the theblinear transforma-
tions. In the theory of Lie groups, the full invariant spezafion of an object is
given by a finite set of Casimir invariants. What a good futlafenvariants for a
group of general nonlinear smooth conjugacies might beti&kmawn, but the set
of all periodic orbits and their Floquet multipliers turnstdo be a good start.

Commentary

Remark B.1 Rectification of flows. See Section 2.2.5 of ref. [B.10] for a pedagogical
introduction to smooth coordinate reparameterizationgpliit examples of transfor-
mations into canonical coordinates for a group of scalings @ group of rotations are
worked out.

Remark B.2 Rectification of maps. The methods outlined above are standard in
the analysis of fixed points and the construction of normahffor bifurcations, see
for example refs. [1.26, 12.34, B.2, B.3, B.4, B.5, B.6, B3711]. The geometry un-
derlying such methods is elegant, and we enjoyed readinggXample, Percival and
Richards [B.8], chaps. 2 and 4 of Ozorio de Almeida’s monphi#.9], and, as always,
Arnol'd [B.1].

Recursive formulas for the evaluation of derivatives neletteevaluate (B.17) are
given, for example, in Appendix A of ref. [16.9]. Section &®f ref. [B.11] describes
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in detail the smooth conjugacy that relates the Ulam maybjti.the tent map (11.4).
For ‘negative Schwartzian derivatives, families of caggeies of Ulam-type maps, as-
sociated Lyapunov exponents, continuous measures amgfyrdinters to literature, see
ref. [B.12].

Remark B.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet expisneay be related by ratios
of integers. That is, ifAp1, Apa,.... Apg are the Floquet multipliers of the Jacobian
matrix, then they are in resonance if there exist integers ., ng such that

(Ap)™(Ap2)™ -+ (Apa)™ = 1.

If there is resonance, one may get corrections to the basigation formulas in the
form of monomials in the variables of the map. (R. Mainieri)

Exercises

B.1. Harmonic oscillator in polar coordinates: ~ Given a
harmonic oscillator (B.2) that follows = —qandd = p,
use (B.4) to rewrite the system in polar coordinates (B.3
and find equations farandé.

Solve this system. Does it match the solution in
the M space?

%.3. Linearization for maps. Letf : C - C be a map
from the complex numbers into themselves, analytic at

1. Show that the 1-dimensional state space of the  the origin with a fixed point. By manipulating power se-

B.2.

refsConjug - 2mar2003

rewritten system is the quotient spat€/SO(2).

2. Construct a Poincaré section of the quotiented
flow.

Coordinate transformations.  Changing coordinates

is conceptually simple, but can become confusing when
carried out in detail. The diculty arises from con-
fusing functional relationships, such &) = h™(y(t))
with numerical relationships, such agy) = i (X)v(X).
Working through an example will clear this up.

(a) The diferential equation ipM is X = {2xg, X2}
and the change of coordinates fro to M’ is
h(X1, X2) = {2X1 + X2, X1 — X2}. Solve forx(t). Find
h™t.

(b) Show that in the transformed spaké, the difer-
ential equation is

dfyi |_ 1| Syi+2y
dt| Y2 3| ity |°

B.4.

ries, find the first few terms of the méythat conjugates
ftoaz thatis,

f(2) = h"{(eh().

There are conditions on the derivative fofit the origin
to assure that the conjugation is always possible. For-
mulate these conditions by examining the series

(difficulty: medium) (R. Mainieri)

Ulam and tent maps.
gacy (2.12)

Show that the smooth conju-

9o) = hofoh(y)
y = h(x) = sirf(zx/2),

conjugates the tent map(x) = 1 — 2|x — 1/2| into
the Ulam mapg(y) = 4y(1 —y). (continued as exer-
cise 6A.1)
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