
Appendix A18

Counting itineraries

A18.1 Counting curvatures

O
ne consequence of the finiteness of topological polynomials is that the con-

tributions to curvatures at every order are even in number, half with posi-

tive and half with negative sign. For instance, for complete binary labeling

(23.8),

c4 = −t0001 − t0011 − t0111 − t0t01t1

+ t0t001 + t0t011 + t001t1 + t011t1 . (A18.1)

We see that 23 terms contribute to c4, and exactly half of them appear with a

negative sign - hence if all binary strings are admissible, this term vanishes in the

counting expression. exercise A18.2

Such counting rules arise from the identity
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Substituting tp = znp and using (18.14) we obtain for unrestricted symbol dynam-

ics with N letters
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The zn coefficient in the above expansion is the number of terms contributing to

cn curvature, so we find that for a complete symbolic dynamics of N symbols and

n > 1, the number of terms contributing to cn is (N − 1)Nk−1 (of which half carry

a minus sign). exercise A18.4
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We find that for complete symbolic dynamics of N symbols and n > 1, the

number of terms contributing to cn is (N − 1)Nn−1. So, superficially, not much

is gained by going from periodic orbits trace sums which get Nn contributions of

n to the curvature expansions with Nn(1 − 1/N). However, the point is not the

number of the terms, but the cancelations between them.

Exercises

A18.1. Lefschetz zeta function. Elucidate the relation

betveen the topological zeta function and the Lefschetz

zeta function.

A18.2. Counting the 3-disk pinball counterterms. Verify

that the number of terms in the 3-disk pinball curvature

expansion (25.53) is given by
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+ . . . .(A18.3)

This means that, for example, c6 has a total of 20 terms,

in agreement with the explicit 3-disk cycle expansion

(25.54).

A18.3. Cycle expansion denominators. Prove

that the denominator of ck is indeed Dk, as asserted

(A14.14).

A18.4. Counting subsets of cycles. The techniques de-

veloped above can be generalized to counting subsets

of cycles. Consider the simplest example of a dynam-

ical system with a complete binary tree, a repeller map

(14.20) with two straight branches, which we label 0 and

1. Every cycle weight for such map factorizes, with a

factor t0 for each 0, and factor t1 for each 1 in its symbol

string. The transition matrix traces (18.28) collapse to

tr(T k) = (t0 + t1)k, and 1/ζ is simply
∏
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= 1 − t0 − t1 (A18.4)

Substituting into the identity
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Hence for n ≥ 2 the number of terms in the expansion

?! with k 0’s and n − k 1’s in their symbol sequences is

2
(

n−2
k−1

)

. This is the degeneracy of distinct cycle eigenval-

ues in fig.?!; for systems with non-uniform hyperbolicity

this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each

such subset we denote with Mn,k (n = 1, 2, . . . ; k =

{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number

of prime n-cycles whose labels contain k zeros, use bi-

nomial string counting and Möbius inversion and obtain

M1,0 = M1,1 = 1

nMn,k =

∑

m

∣

∣
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)

, n ≥ 2 , k = 1, . . . , n − 1

where the sum is over all m which divide both n and k.
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